砷化镓材料国内外现状及发展趋势
砷化镓
镓镓在地壳中的含量不算太少,约占十万分之二,比锡还多。
可是,提炼镓却比提炼锡困难得多,这是因为镓在大自然中很分散,没有形成集中的镓矿。
平时,在某些煤灰、铁矿、锑铅矿、铜矿中,含有少量镓。
镓在常温下,看上去象一块锡,如果你想把它放在手心里,它马上就熔化了,成为银亮的小珠。
原来镓的熔点很低,只有29.8℃。
镓的熔点虽然很低,可是沸点却非常高,竟高达2070℃!人们就利用镓的这个特性来制造测量高温的温度计,人们常用这种温度计来测量反应炉、原子反应堆的温度。
镓具有较好的铸造特性,由于它“热缩冷胀”,被用来制造铅字合金,使字体清晰。
在原子能工业中,用镓作为热传导介质,把反应堆中的热量传导出来。
镓与许多金属,如铋、铅、锡、镉,铟、铊等,生成熔点低于60℃的易熔合金。
其中如含铟25%的镓铟合金(熔点16℃),含锡8%的镓锡合金(熔点20℃),可以用在电路熔断器和各种保险装置上,温度一高,它们就会自动熔化断开,起到安全保险的作用。
砷化镓(gallium arsenide)化学式 GaAs。
黑灰色固体,熔点 1238℃。
它在600℃以下,能在空气中稳定存在,并且不为非氧化性的酸侵蚀。
砷化镓可作半导体材料,性能比硅更优良。
它的禁带宽度大,电子迁移率高,介电常数小,能引入深能级杂质,电子有效质量小,能带结构特殊,具有双能谷导带,可以制备发光器件、半导体激光器、微波体效应器件、太阳能电池和高速集成电路等,广泛用于雷达、电子计算机、人造卫星、宇宙飞船等尖端技术中。
GaAs拥有一些比Si还要好的电子特性,如高的饱和电子速率及高的电子移动率,使得GaAs可以用在高于250 GHz的场合。
如果等效的GaAs和Si元件同时都操作在高频时,GaAs会拥有较少的噪声。
也因为GaAs有较高的崩溃电压,所以GaAs比同样的Si元件更适合操作在高功率的场合。
因为这些特性,GaAs电路可以运用在移动电话、卫星通讯、微波点对点连线、雷达系统等地方。
砷化镓研究报告
砷化镓研究报告砷化镓研究报告砷化镓简介•砷化镓是一种半导体材料,具有广泛应用前景。
•砷化镓具有优异的电子特性和光电特性,适用于多种应用领域。
砷化镓的制备方法•气相外延法•分子束外延法•金属有机化学气相沉积法砷化镓的性质和特点•高电子迁移率•高饱和漂移速度•强耐辐照性•宽的能带隙•优异的导电性和光电特性砷化镓的应用领域1.电子器件•高频功率放大器•混频器•高速开关2.光电子器件•光电探测器•激光器•光电发射器3.太阳能电池4.无线通信领域•5G通信•卫星通信砷化镓研究的进展和挑战•砷化镓在电子器件领域具有广泛应用,但仍面临一些挑战和问题。
•应继续研究砷化镓材料的改性和优化方法,以提高其性能和稳定性。
结论•砷化镓作为一种重要的半导体材料,在电子器件和光电子器件领域有着广泛的应用前景。
•砷化镓的研究将会继续推动半导体技术的发展,为现代科技的进步做出贡献。
以上是关于砷化镓研究报告的相关内容,希望对读者了解砷化镓及其应用领域有所帮助。
砷化镓研究报告砷化镓简介•砷化镓是一种半导体材料,具有广泛应用前景。
•砷化镓具有优异的电子特性和光电特性,适用于多种应用领域。
砷化镓的制备方法•气相外延法•分子束外延法•金属有机化学气相沉积法砷化镓的性质和特点•高电子迁移率•高饱和漂移速度•强耐辐照性•宽的能带隙•优异的导电性和光电特性砷化镓的应用领域1. 电子器件•高频功率放大器•混频器•高速开关2. 光电子器件•光电探测器•激光器•光电发射器3. 太阳能电池4. 无线通信领域•5G通信•卫星通信砷化镓研究的进展和挑战•砷化镓在电子器件领域具有广泛应用,但仍面临一些挑战和问题。
•目前的研究重点是改进砷化镓的制备方法,提高其晶体质量和成膜速度。
•同时还需要研究砷化镓材料的稳定性和可靠性,以确保其长期稳定工作。
结论•砷化镓作为一种重要的半导体材料,在电子器件和光电子器件领域有着广泛的应用前景。
•砷化镓的研究将会继续推动半导体技术的发展,为现代科技的进步做出贡献。
LED外延片技术发展趋势及工艺
LED外延片技术发展趋势及工艺一、材料方面:1.砷化镓外延片:砷化镓外延片是目前最常用的LED外延片材料,具有优异的光电性能和高效的电荷注入。
未来的发展趋势是提高砷化镓外延片的晶体质量,降低晶格失配和缺陷密度,以提高LED器件的发光效率和可靠性。
2.氮化镓外延片:氮化镓外延片是近年来新兴的LED外延片材料,具有宽带隙和高饱和电子迁移率等优点。
未来的发展趋势是进一步提高氮化镓外延片的制备工艺,降低杂质浓度和缺陷密度,以提高LED器件的发光效率和长寿命性能。
3.磷化铟外延片:磷化铟外延片是用于红/红橙光LED器件的关键材料,具有较高的发光效率和色纯度。
未来的发展趋势是进一步提高磷化铟外延片的晶体生长质量,改善杂质分布和缺陷密度,以提高LED器件的色纯度和发光效率。
二、技术方面:1.多量子阱技术:多量子阱技术是提高LED器件发光效率的重要途径,通过在外延片中构建多层次的量子阱结构,可以增加电荷载流子的约束,提高注入效率和辐射复合率。
2.柱状量子结构技术:柱状量子结构技术是提高LED器件发光强度和发光波长可调性的重要途径,通过在外延片中形成柱状结构,可以实现光的强烈约束和增强发光效率。
3.纳米结构技术:纳米结构技术是实现高效LED器件和全彩光电显示的关键技术,通过控制外延片中的纳米尺度结构,可以改善载流子限制和辐射复合效率,进一步提高LED器件的发光效率和色纯度。
三、工艺方面:1.MOCVD外延技术:金属有机化学气相沉积(MOCVD)是制备高质量LED外延片的主要工艺方法,未来的发展趋势是进一步提高MOCVD工艺的控制精度和均匀性,以获得更好的结晶质量和量子阱结构。
2.激光剥离技术:激光剥离技术是实现LED外延片的快速转移的关键技术,通过激光切割外延片和衬底之间的键合层,可以将外延片转移到其他材料上,实现快速制备和大面积生产。
3.外延薄化技术:外延薄化技术是实现LED器件超薄化的重要工艺,通过控制外延片的厚度,可以降低光散逸和损失,并提高器件的光输出效率和亮度。
砷化镓材料
砷化镓材料1 引言化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。
1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。
五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。
砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。
由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。
目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。
2 砷化镓材料的性质及用途砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。
在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。
砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。
因此,广泛应用于高频及无线通讯中制做IC器件。
所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。
除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。
表1 砷化镓材料的主要用途3 砷化镓材料制备工艺从20世纪50年代开始,已经开发出了多种砷化镓单晶生长方法。
目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里其曼法(HB)、垂直布里其曼法(VB)以及垂直梯度凝固法(VGF)等。
砷化镓研究报告(一)
砷化镓研究报告(一)砷化镓研究报告1. 简介在本篇研究报告中,我们将重点关注砷化镓的相关研究,探讨其特性、应用以及未来的发展方向。
2. 特性•高电子迁移率:砷化镓是一种具有高电子迁移率的半导体材料,具备优异的导电性能。
•宽带隙:砷化镓具有较大的能隙,使其在高频器件和光电子器件中具有独特的优势。
•高效率:利用砷化镓制造的器件,如太阳能电池和激光器,能够实现高效能的能量转换。
•热稳定性:相比其他材料,砷化镓在高温环境下表现出更好的稳定性和可靠性。
3. 应用领域砷化镓材料在许多领域都有广泛的应用,包括但不限于以下几个方面:3.1 光电子器件•高性能激光器•高亮度LED•高速光通信器件3.2 太阳能电池•高效率多接触太阳能电池•高效率多结太阳能电池3.3 射频器件•高频功率放大器•高速开关4. 未来发展方向砷化镓作为一种重要的半导体材料,在未来的发展中有着巨大的潜力。
以下是我们对砷化镓发展方向的一些建议:4.1 器件性能提升不断提高砷化镓器件的性能,如电子迁移率、发光效率等,以满足不断变化的市场需求。
4.2 新应用的探索探索砷化镓在新兴领域的应用潜力,如量子计算、人工智能等,以拓展砷化镓的市场份额。
4.3 减少成本通过技术创新和工艺改进,降低砷化镓材料的生产成本,以提高其市场竞争力。
结论砷化镓作为一种具有优异特性的半导体材料,在光电子器件、太阳能电池、射频器件等领域都有广泛的应用。
未来,我们应不断提高砷化镓器件的性能、探索新应用,并减少其生产成本,以进一步促进其发展。
5. 参考文献•Smith, J., & Johnson, R. (2010). Advances in Gallium Arsenide Research. Journal of Advanced Materials,22(4), .•Brown, A., & Lee, C. (2015). Gallium Arsenide in Optoelectronics: Overview and Recent Advances. OpticsExpress, 23(11), .•Zhang, Y., & Xu, B. (2018). GaAs-Based Solar Cells: Characteristics, Performance, and Prospects. Renewable Energy, 127, .•Di Carlo, A., & Forni, G. (2019). Gallium Arsenide Devices for High-Frequency Applications: Challenges and Opportunities. IEEE Journal of Solid-State Circuits,54(3), .以上是一些关于砷化镓研究的主要参考文献,供读者深入了解该材料的特性、应用和未来发展方向。
砷化镓
产业发展存在的问题
1
2 制备费用高居不下
砷有毒,一般的企业不愿投产
3
4
构造隧道结和阻止p/n结难度大
追日跟踪系统实施有难度 政策不明确,多晶· 硅依赖进口
5
解决方案:
.广大的相关科研机构 合作攻关,做好镓的高 纯提取
国家策支持明细化鼓 励各地新建光伏电站 采用砷化镓光伏电池
对策
加大技术攻关,简化制 备工艺,减小电池系统 复杂度,降低电池制备 耗费
提高工厂生产的智能化、 自动化,减少生产直接 接触人员
应用情况:
砷化镓器件主要包括光电器件和微波器 件两大类。砷化镓以及其他Ⅲ-Ⅴ族化合 物具有直接跃迁的能带结构,在光电应 用方面处于有利的地位。
砷化镓太阳能电池
国内、外应用:
70 年代中期至 90 年代中期 90 年代中期
国内均采用L PE技术研制GaAs 电池。 国内开始采用MOCVD 技术研制GaAs 电池。
20世纪60年代
20世纪70年代
世纪80年代后
性质与属性:
砷化镓材料的分类:
1. 按照应用领域不同分类 :分为半绝缘砷化镓材料和低阻砷化镓材料。
• 第一类为半绝缘砷化镓材料约占整个GaAs 单晶材料市场需求的40 % 左右,主要用于微波场效应器件(FET)、模拟集成电路、数字集成 电路、光电子集成电路(OEIC)。 • 第二类为低阻(掺杂半导体)砷化镓材料,约占GaAs 材料的64%。 主要用于发光二极管(LED)、激光器、太阳能电池光电探测器 (PD)、微波二极管等器件。 2. 按照工艺方法不同的分类: 目前国内常用的砷化镓晶体生长方法有三种,LEC法(俗称为直拉)、 HB法(俗称为水平法)和VB法或VGF法(俗称为垂直)。
砷化镓太阳能电池发展趋势
转化效率
砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想 的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效 单结电池。
砷化镓太阳能电池的发展趋势
目前的发展情况
在2008年,全球的砷化镓电池的生产取得突破性的发展,4 月,作为砷化镓生产的全球主要厂家之一SpectroLab,获 得350兆瓦,9300万美元(1000倍聚光)的电站订单。
制备方法
砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的 12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多, 最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一 种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术, 其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等 诸多参数的影响。 GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。 用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射, 但生产成本高,产量受限,目前主要作空间电源用。
2007年8月开始,由于聚光技术的采用,砷化镓电池从卫星 上的使用转变为聚光的太阳能发电站的规模应用。为此, Emcore公司花了1000万美元,将产能增加到目前的每年 150兆瓦。 在东亚地区,也有初步的生产推广,2008年5月,韩国电站 就接到70兆瓦,2800万美元(500倍聚光)的订单。
目前应用
砷化镓太阳能电池发展趋势
目录
一、砷化镓太阳能电池简介 定义及制造方法 制备方法 转化效率 二、砷化镓太阳能电池的发展趋势 目前发展情况 目前应用 发展趋势和壁垒
2024年砷化镓市场分析现状
砷化镓市场分析现状引言砷化镓是一种重要的半导体材料,具有优异的电学性能和光电性能,广泛应用于光电子、半导体器件、光纤通信等领域。
本文将对砷化镓市场的现状进行分析,并展望未来的发展趋势。
砷化镓市场规模及发展动态根据市场调研公司的数据显示,全球砷化镓市场规模在过去几年保持了稳健增长的态势。
砷化镓市场的发展主要受到电子产品需求、通信市场扩张、新能源汽车等多个因素的影响。
电子产品需求推动砷化镓市场增长随着移动互联网的快速发展,智能手机、平板电脑等电子产品的需求不断增加,这直接推动了砷化镓市场的增长。
砷化镓材料被广泛用于高频和高功率器件的制造,如射频功率放大器和高速开关等。
其中,射频功率放大器在手机基带解调器和射频前端模块中扮演着重要的角色,对砷化镓的需求量大。
通信市场扩张带动砷化镓市场需求增加5G通信的快速发展也是砷化镓市场增长的重要推动因素。
砷化镓材料在5G射频前端模块中具有重要作用,其高频性能和能耗特性优于其他材料。
随着5G通信网络的建设和规模化商用,砷化镓市场将迎来更广阔的发展空间。
新能源汽车市场增长催化砷化镓需求随着全球对节能环保的需求不断提高,新能源汽车市场逐渐崛起。
砷化镓在新能源汽车电动驱动系统、高效充电器等方面具有广泛应用。
预计随着新能源汽车市场的不断扩大,对砷化镓的需求也将持续增长。
砷化镓市场供应链及竞争格局砷化镓市场的供应链主要包括砷化镓原材料供应商、芯片制造商和终端产品制造商。
目前,全球砷化镓市场竞争激烈,主要的制造商集中在亚洲地区。
砷化镓原材料供应商砷化镓原材料供应商主要集中在美国、中国和日本等地。
其中,美国是全球砷化镓原料的主要产地,拥有丰富的砷资源。
中国和日本等地也有一些知名的砷化镓原料供应商,为市场的稳定供应提供了保障。
芯片制造商砷化镓市场的芯片制造商主要集中在亚洲地区,特别是台湾、韩国和中国。
这些地区拥有成熟的半导体制造技术和产业链,为砷化镓芯片的生产提供了良好的基础。
同时,这些地区的企业还积极推动技术创新和产品升级,提高了产品的竞争力。
金属镓的生产、应用现状和前景
金属镓的生产、应用现状和前景镓是一种较年轻的金属,1875年才被发现。
因其稀少且分散,直到1915年才真正提炼出来。
当时认为,这种熔点低而贵的金属几乎没有什么用途。
美国到了1943年才将镓作为副产品少量生产,中国则到了1957年才作为副产品少量生产。
从那时起,各国在建设氧化铝工厂时,都附带建有镓生产车间以综合利用资源;我国直到20世纪末,才有山东铝厂生产镓。
一、镓的用途与市场各国对金属镓的兴趣源于20世纪60年代初,砷化镓作为一种新型优质半导体的研究热兴起,但真正大规模的生产是在20世纪80年代。
随着砷化镓半导体器件研究的成熟,砷化镓化合物半导体的优异性能不断被发现,砷化镓微波器件、激光器和发光二极管大量涌现,尤其是20世纪90年代初,蓝色LED的研究成功,激发了白色LED的开发,“照明革命”开始了。
于是,对镓的需求急剧增加,加上商业炒作,镓的身价甚至上涨4倍以上。
经过近20年的努力,白色LED照明技术已取得突飞猛进的发展,加上节能环保的优势,世界各国政府都给予大力扶植。
由于可预见的效益,对砷化镓的研究和生产目前已大部分转向了LED产业。
用于通讯产业的砷化镓晶体2005年以来的几年中,虽然全球镓的需求量只增加了26.68%,但应用的结构发生了很大的变化,原来金属镓用于制造GaAs、GaP载体材料,作为载体材料增加的速度有限,但器件的发展是以薄膜化为特征的。
LED、集成电路、激光器和太阳能电池,都采用了在衬底片上生长单晶薄膜的工艺生长GaAs、GaSb、GaN,且用的都是三甲基镓(TMG)。
虽然规模很大,但以镓的重量来计算,毕竟是少的。
化合物半导体器件发展的势头越来越迅猛,因为它符合节能和环保的特点,预计今后每年将以20%~25%的速度增长,所以对镓的需求也会稳步增长。
未来预计,中国的需求增长速度将高于全球。
一是因为中国原来基础比较薄弱,以LED 为例,原来芯片95%都是进口的,为了赶上半导体照明这场产业浪潮,国家成立了协调办公室,批准成立了八个半导体照明示范基地;几年中,LED芯片的自供率已达到了60%,但白光LED的效率、成本与世界发达国家还有很大差距,国家已投入越来越多的力量,大力发展LED产业。
6英寸砷化镓的现状及发展趋势
6英寸砷化镓的现状及发展趋势摘要:砷化镓广泛应用于光电子和微电子领域,是制作半导体发光二极管和通信器件的关键衬底材料。
与硅单晶一样,砷化镓衬底正逐步向大尺寸、高几何精度、高表面质量方向发展。
目前,日本住友电工、美国AXT代表着国际领先水平,中科晶电、晶明公司代表着国内的先进水平。
未来几年是国内企业研发6英寸产品,向国际水平冲击的重要时期。
关键词:6英寸砷化镓;现状;发展趋势引言:砷化镓(GaAs)是目前最重要、最成熟的化合物半导体材料之一,广泛应用于光电子和微电子领域。
GaAs材料主要分为两类:半绝缘砷化镓材料和半导体砷化镓材料。
半绝缘砷化镓材料主要制作MESFET、HEMT和HBT结构的集成电路。
主要用于雷达、微波及毫米波通信、超高速计算机及光纤通信等领域。
半导体砷化镓材料主要应用于光通信有源器件(LD)、半导体发光二极管(LED)可见光激光器、近红外激光器、量子阱大功率激光器和高效太阳能电池。
1砷化镓技术发展现状1.1随着GaAsIC集成度的提高和降低成本的需要,砷化镓材料总的发展趋势是晶体大直径,长尺寸化。
2000年已研制出8英寸LEC砷化镓单晶抛光片,2002年研制出8英寸VGF砷化镓单晶抛光片及8英寸VGF砷化镓外延片,2006年制定出8英寸砷化镓抛光片SEMIM9.8标准。
半导体材料应用增多,最大应用商品为6英寸。
由于8英寸砷化镓器件生产线投入太大,造成了8英寸砷化镓衬底没有形成量产。
(见图一)图1随着微波砷化镓器件集成度的提高和降低成本的需求,半绝缘砷化镓抛光片的发展趋势是增大直径、提高电学参数的均匀性和一致性。
为了提高单片管芯数量,要求增加衬底晶片的尺寸,同时对晶片的几何参数以及表面状态的要求更高,对产品的批次一致性要求也更严格。
6英寸半绝缘砷化镓抛光片生产技术主要掌握在日本住友电工、德国费里伯格、美国AXT三个公司手中。
这些公司的产品占据着砷化镓市场的绝大部分份额。
砷化镓单晶生长技术也向成晶率高、成本低的VB/VGF单晶生长技术转移。
砷化镓材料国内外现状及发展趋势
砷化镓材料国内外现状及发展趋势中国电子科技集团公司第四十六研究所纪秀峰1 引言化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。
1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。
五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。
砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。
由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。
目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。
2 砷化镓材料的性质及用途砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。
在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。
砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。
因此,广泛应用于高频及无线通讯中制做IC器件。
所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。
除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。
表1 砷化镓材料的主要用途3 砷化镓材料制备工艺从20世纪50年代开始,已经开发出了多种砷化镓单晶生长方法。
目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里其曼法(HB)、垂直布里其曼法(VB)以及垂直梯度凝固法(VGF)等。
对高纯砷市场的展望
对高纯砷市场的展望摘要:本文简述了高纯砷的性质、用途、发展历史、生产和技术现状以及市场现状,统计并分析了2004年以来的国内高纯砷产量,预测未来三年国内高纯砷产量将以15%以上的速度增长。
还统计分析了2004年以来国内高纯砷的消耗量,并预测了未来三年国内的消耗量将以25%左右的速度递增。
本文还对高纯砷市场进行了整体分析,提出了未来高纯砷市场的几点发展趋势。
关键词:高纯砷;市场;展望1 高纯砷的性质及用途高纯砷是一种高纯度的砷,为银灰色金属结晶状,质脆而硬,有金属光泽,在潮湿空气中易氧化,属有毒产品。
高纯砷密度5.75g/cm3,熔点817℃,614℃升华,不溶于水。
高纯砷主要用来制备砷化镓、砷铝化镓、砷化铟等半导体化合物及高纯合金,在医药卫生、防腐、染料等领域也有着越来越广泛的应用,特别是砷化镓,有着相当广泛的用途。
砷化镓是继单晶硅之后的第二代半导体材料,是目前最重要、最具发展前途的化合物半导体材料,也是科学家研究最深入、应用最广泛的半导体材料。
砷化镓因其具有禁带宽度大,电子迁移率高等特殊性能,被广泛用于制作二极管、发光二极管、隧道二极管、红外线发射管、激光器以及太阳能电池等。
砷化镓还正在微电子领域、光电子、半导体照明领域以及军事工业、宇航工业、计算机等尖端科技领域发挥着越来越大的作用。
砷化镓的其它用途也还正在被开发,例如在半导体照明方面。
2 高纯砷的发展历史我国研究生产高纯砷的历史已有几十年了,最早是在1962年由中国科学院上海冶金研究所研制成纯度达99.9999%(6N)的高纯砷。
1965年推广至上海金属加工厂进行生产,生产20多公斤;1966年起提高到100公斤以上,后因需用量不多而停产。
1970年起上海市所需高纯砷由四川峨眉半导体材料厂提供。
我厂也是最早生产高纯砷的厂家之一,于1972年成功生产出接近99.9999%的高纯砷,达到当时的先进水平。
但是由于市场需求量不大,高纯砷产业没有取得大的发展,一直到上个世纪末期,随着砷化镓的高强耐腐、电子迁移高等特殊性能的不断发现,砷化镓被广泛应用于光纤通信、移动通讯、空间技术和航天、军事等光电子和微电子领域,高纯砷的重要性才被广泛认同,高纯砷产业也随之热火起来。
砷化镓
砷化镓李启靖何智慧杨海荣砷化镓(gallium arsenide)(化学式GaAs)是一种重要的半导体材料。
它在许多领域都得到了重要的应用。
本文将从四个方面进行对砷化镓的介绍。
一、砷化镓的简介砷化镓是Ⅲ-Ⅴ族元素化合的化合物,黑灰色固体,熔点1238℃。
它在600℃以下,能在空气中稳定存在,并且不为非氧化性的酸侵蚀。
砷化镓可作半导体材料,其电子迁移率高、介电常数小,能引入深能级杂质、电子有效质量小,能带结构特殊,可作磊晶片。
由于传送讯号的射频元件需要工作频率高、低功率消耗、低杂讯等特色,而砷化镓本身具有光电特性与高速,因此砷化镓多用於光电元件和高频通讯用元件。
砷化镓可应用在WLAN、WLL、光纤通讯、卫星通讯、LMDS、VSAT等微波通讯上。
不过,砷化镓材料成本较高,使用的制程设备也与一般IC业者常用的矽制程设备不同。
砷化镓材料是继硅单晶之后第二代新型化合物半导体材料中最重要、用途最广泛的材料之一。
在微电子和光电子领域有着巨大的应用空间,主要用于制作高速、高频、大功率等微电子器件和电路,随着IT行业的发展,市场空间不断扩大。
在光电子领域,随着全球LED市场突飞猛进的发展,在世界半导体固态照明大趋势的引领下,砷化镓晶片的需要已经开始大幅增加。
随着科学技术的不断发展,砷化镓材料将有更加广泛的用途。
砷化镓材料在世界发达国家均被视为战备储备物资,美、英、法、俄、日、德等国家都对砷化镓材料的开发应用投入了巨资,尤其美国还将砷化镓材料的生产应用技术列入国防白皮书,从而对美国国防技术起到了重要作用。
在现代军备技术中,几项关键技术均与砷化镓材料有直接关系。
例如,机载相控雷达、战术红外线夜视镜,抗辐射电子元件,红外线激光导航、红外线激光瞄准仪等。
以砷化镓化合物半导体材料为代表的新型信息功能材料已经列入国家高科技优先发展目录,信息功能已成为国家鼓励发展产业。
二、砷化镓的应用由于砷化稼拥有高频、低噪声与高电子迁移率的物理特性, 砷化稼微波器件技术最初是应用在国防、太空科技及人造卫星通讯方面, 由于无线通讯的需求量不断成长, 砷化稼微波器件现已广泛普及到一般的商业用途, 例如在手机功率放大器、计算机产品、工业应用及无线电通信等方面。
全球镓资源现状及供需形势
高技术矿产专辑全球镓资源现状及供需形势刘 麦,李伊兰,张 睿,裴立双(北京安泰科信息股份有限公司,北京100814)摘 要:本文介绍了战略性资源镓的特征及其各项新应用,以全球镓资源储量及开发利用现状为基础,从生产、消费、进出口贸易和价格等几个方面就镓供需形势以及镓产业链发展现状进行了分析,反映出了其他国家对中国镓资源的高依赖度。
并在此基础上提出了收储、开发新工艺、延伸产业链等3个发展,我国镓工业与保护宝贵镓资源的建议。
关键词:镓 5G 资源储量 供需形势 政策建议1 镓的特征及主要用途镓是自然界中为数不多在常温环境下呈液态的金属,熔点虽然很低,沸点却很高。
金属镓能够浸润玻璃,互溶于同周期的锌、硒和钛等金属,同时还溶于铝、铟、铋、锗、铊、镉、锡和汞等金属,对这些金属形成腐蚀,改变其原本的物理性能[1]。
在20世纪中叶以前,镓用于生产低熔点合金与高温温度计,但用量很少。
之后,移动通信、个人电子设备、汽车及LED 行业的发展对镓的消费需求贡献显著。
此外,镓还用于永磁材料、功率节能器件、光伏、液态金属材料等领域。
镓可与烷基、卤代烷基形成镓的有机化合物,例如三甲基镓、二乙基氢化镓、四甲基乙镓烷,其中三甲基镓是金属有机法砷化镓气相外延工艺的常用镓源。
镓多以砷化镓、氮化镓、氧化镓、4N 工业镓形式应用,其中工业镓又是其他产品最主要的基础产品。
砷化镓作为重要的第二代半导体材料,是目前最为成熟、生产量最大的化合物半导体材料之一,有四大用途,即LED 、用于移动电子设备人脸识别的垂直外腔面发射激光器(VECSEL )、射频器件、光伏器件,其中LED 和射频器件占据主要部分。
氮化镓属于第三代半导体材料,更是核心材料,拥有更宽的禁带宽度以及更高的临界击穿电场,电子迁移率高,且为直接带隙,发光效率高,抗干扰、抗辐射以及在恶劣环境下性能良好。
此外,具有更大的饱和电子速率和更小的介电常数,能够承受更高的工作电压,适合更高频率。
砷化镓太阳能光伏电池主要上市公司
砷化镓太阳能光伏电池主要上市公司展开全文砷化镓太阳能光伏电池主要上市公司一、砷化镓电池基本介绍近年来,太阳能光伏发电在全球取得长足发展。
常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。
目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太阳电池,减小对原料在量上的依赖程度。
常用薄膜电池转化率较低,因此新型的高倍聚光电池系统受到研究者的重视[1]。
聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。
这时太阳电池可能产生出相应倍数的电功率。
它们具有转化率高,电池占地面积小和耗材少的优点。
高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。
GaAs属于III-V族化合物半导体材料,其能隙与太阳光谱的匹配较适合,且能耐高。
与硅太阳电池相比,GaAs太阳电池具有较好的性能[2]。
二、砷化镓电池与硅光电池的比较1、光电转化率:砷化镓的禁带较硅为宽,使得它的光谱响应性和空间太阳光谱匹配能力较硅好。
目前,硅电池的理论效率大概为23%,而单结的砷化镓电池理论效率达到27%,而多结的砷化镓电池理论效率更超过50%。
2、耐性常规上,砷化镓电池的耐性要好于硅光电池,有实验数据表明,砷化镓电池在250℃的条件下仍可以正常工作,但是硅光电池在200℃就已经无法正常运行。
3、机械强度和比重砷化镓较硅质在物理性质上要更脆,这一点使得其加工时比容易碎裂,所以,目前常把其制成薄膜,并使用衬底(常为Ge[锗]),来对抗其在这一方面的不利,但是也增加了技术的复杂度。
三、砷化镓电池的技术发展现状1、历程GaAs太阳电池的发展是从上世纪50年代开始的,至今已有已有50多年的历史。
1954年世界上首次发现GaAs材料具有光伏效应。
砷化镓单晶的制备及应用
砷化镓单晶的制备及应用李卫学号24101901672 序号38摘要随着全球科技的快速发展,当今世界已经进入了信息时代.作为信息领域的命脉,光电子技术和微电子技术无疑成为了科技发展的焦点。
砷化镓作为第二代III-V族化合物半导体材料,现在虽然还没有硅材料应用的普及,但它凭借着工作速度和频率上的优势也在迅速地扩大着它的使用领域。
为了能让大家更好地了解砷化镓这个具有无限潜力和广阔前景的半导体单晶,我决定对砷化镓的制备工艺过程及其应用做一些介绍。
一、砷化镓的制备过程随着对砷化镓使用的愈加广泛,人类对砷化镓的制备工艺也在进行着不断地研究和完善,到目前为止已经有多种砷化镓的制备工艺技术,其中最主要的要属水平布里奇曼法和液态密封法。
下面我将对液态密封法制备砷化镓工艺全过程做一些介绍。
液态密封法也称LEP法或LEC法,它是目前拉制大直径III—V族化合物晶体的最重要的方法。
它的大概过程是再高压炉内,将欲拉制的化合物材料盛于石英坩埚中,上面覆盖一层透明而黏滞的惰性熔体,将整个化合物熔体密封起来,然后再在惰性熔体上充以一定压力的惰性气体,用此法来抑制化合物材料的离解。
LEC法制备砷化镓单晶的工艺流程如下:1.装料:一石英杯装Ga,一石英安瓶装As,石英坩埚中装B2O3.2。
抽真空下,B2O3加热脱水(900—1000度),Ga杯,As瓶烘烤除去氧化膜。
3。
降温至600—700度,将Ga倒入坩埚内沉没在B2O3下,充Ar气。
3.降温至600-700度,将Ga倒入坩埚内沉没在B2O3下,充Ar气。
4.As安瓶下端的毛细管尖插入Ga夜中,升温至合成温度,As受热气化溶入Ga内生长GaAs。
5。
拔出安瓶管,并按Si直拉法拉晶程序,引晶-缩颈-放肩-等径生长—收尾拉光等步骤拉制GaAs单晶.下面对整个制备工艺过程的几个方面加以详细介绍:(一)、密封化合物熔体的惰性熔体应具备以下条件:1.密度比化合物材料小,熔化后能浮在化合物熔体上面。
镓当前发展现状
镓当前发展现状镓产业是指以镓为主要原料的工业领域,主要包括高纯镓制备、光电器件、半导体和光伏等。
随着新能源产业的蓬勃发展和半导体工业的快速增长,镓产业也呈现出稳步发展的趋势。
目前,全球镓市场呈现出供需持续增长的态势。
尤其是光伏产业的迅猛发展,推动了镓的需求量大幅增加。
根据统计数据显示,2019年全球镓产业市场规模达到了约180亿美元,预计到2025年将达到400亿美元以上。
镓在光伏领域的应用主要集中在硅基薄膜太阳能电池和III-V族化合物半导体太阳能电池上,这两种技术正逐渐成为光伏市场的主流。
同时,半导体行业对镓的需求也在不断增长。
随着电子产品的更新换代和高性能计算的不断进步,对半导体器件的需求量也在不断上升。
镓作为半导体原料中的重要组成部分,被广泛运用于电子器件的制造中。
特别是在芯片制造过程中,镓材料的纯度和结晶度要求极高,这对镓产业提出了更高的要求和挑战。
在镓产业发展过程中,我国始终保持着卓越的产能和市场优势。
作为全球最大的硅材料生产国家,我国镓产业一直处于全球领先地位。
据统计数据显示,我国镓产业市场占据了全球镓市场的一半以上份额。
我国镓产业链的完善和原材料的丰富资源,为镓行业的快速发展提供了坚实的基础。
然而,值得注意的是,我国镓产业仍然存在一些亟待解决的问题。
首先是技术创新和核心知识产权的缺乏。
虽然我国在硅材料生产方面处于领先地位,但在其他镓材料的制备和应用方面仍有较大差距。
如何加强自主创新和知识产权保护,是我国镓产业发展中需着重解决的问题。
其次是环境污染和资源浪费的问题。
镓产业的制备过程需要大量的能源消耗和化学品排放,这对环境造成了一定影响。
如何优化生产工艺,减少能源消耗和排放,将是未来镓产业可持续发展的关键。
综上所述,在全球新能源和半导体领域的快速发展下,镓产业正处于蓬勃发展的阶段。
我国在镓产业方面具有丰富的资源和市场优势,但仍需加强技术创新和环保意识,推动镓产业朝着更加健康可持续的方向发展。
砷化镓行业竞争格局及未来发展预测分析,整个产业链呈现寡头垄断格局
砷化镓行业竞争格局及未来发展预测分析,整个产业链呈现寡头垄断格局一、砷化镓行业市场规模预测预计2023年全球砷化镓元件市场规模达到157亿美元,5年CAGR为10%。
根据数据,2018年全球砷化镓元件市场总产值达到89亿美元,较2017年增长0.45%,2012-2018年CAGR为7%。
预计到2023年,全球砷化镓元件市场规模将达到143亿美元,2019-2024年CAGR为10%,增速加快。
预计2023年国内砷化镓元件市场规模达到90亿美元,5年CAGR为44%。
2018年国内砷化镓元件市场总产值约14亿美元,未来5G手机更新换代,预计拉动大量PA用量,国内砷化镓元件需求量将继续保持高速增长,2023年砷化镓元件规模有望达90亿美元,5年CARG为44%。
二、砷化镓衬底材料市场规模预测预计2023年全球砷化镓衬底规模约10.5亿美元,中国为3.5亿美元。
2018年全球/国内为4.1/0.6亿美元,预计2023年全球/国内上升至10.5/3.5亿美元,全球和国内的5年CAGR分别为21%和45%。
全球砷化镓衬底市场结构变化不大,国内方面射频芯片用衬底占比大幅上升。
三、砷化镓行业竞争格局砷化镓上游衬底到下游元件价值量逐级放大。
数据显示,2018年,全球砷化镓产业链上衬底、外延片、晶圆代工、元件的市场规模分别为 4.6亿美元、11.0亿美元、56.7亿美元、88.7亿美元。
2018年数据显示,砷化镓上游衬底到下游元件,市场规模放大约18倍。
砷化镓产业链各环节均处于寡头垄断的竞争格局。
砷化镓产业链上,各环节的CR2都大于50%,单晶衬底、外延片和晶圆代工环节的CR3甚至接近90%,整个产业链呈现明显的寡头垄断格局。
与国外相比,我国砷化镓产业链竞争格局仍处于弱势。
现阶段的现状为:原材料开采环节竞争力强;单晶制造环节竞争力一般;外延片中的射频器件竞争力较弱、光电器件有一定竞争力;IDM中的射频器件竞争力缺失,主要集中在LED芯片的上下游垂直整合。
砷化稼作为二代半导体材料 有半导体贵族之称 回收砷和稼的工艺
砷化稼作为二代半导体材料有半导体贵族之称回收
砷和稼的工艺
砷化镓(GaAs)作为第二代半导体其价格昂贵而素有“半导体贵族”之称。
砷化镓是当代国际公认的继“硅”之后最成熟的化合物半导体材料,具有高频率、高电子迁移率、高输出功率、低噪音以及线性度良好等优越特性,是光电子和微电子工业最重要的支撑材料之一。
以砷化镓为代表的第二代半导体,广泛应用于制造高频、高速、大功率、低噪声、耐高温、抗辐照等集成电路领域,已经发展成为现代电子信息产品”和“信息高速公路”关键技术,5G芯片市场非常好,产品供不应求。
砷化镓(GaAs)是光电及手机网通高频通讯不可或缺的元件,近几年随着物联网(loT)、车联网及Al(人工智慧)应用激增,各国加速布建5G基础建设,加上苹果iPhoneX导入脸部辨识功能,带动砷化镓VCSEL及高阶通讯元件需求大增。
面对砷化镓产业大商机,国内外砷化镓及光电厂无不倾全力抢进。
砷化镓可在一块芯片上同时处理光电数据,因而被广泛应用于遥控、手机、DVD计算机外设、照明等诸多光电子领域。
另外,因其电子迁移率比硅高6倍,砷化镓成为超高速、超高频器件和集成电路的必需品。
它还被广泛使用于军事领域,是激光制导导弹的重要材料,曾在海湾战争中大显神威,赢得“砷化镓打败钢铁”的美名。
据悉,砷化镓单晶片的价格大约相当于同尺寸硅单晶片的20至30倍。
尽管价格不菲,目前国际上砷化镓半导体的年销售额仍在10亿美元以上。
在“十五”计划中,我国将实现该产品的产业化,以占据国际市场。
砷化镓无机非金属材料
砷化镓无机非金属材料
砷化镓是一种重要的无机非金属材料,它由砷和镓两种元素组成,化学式为GaAs。
砷化镓具有许多优异的物理和化学性质,因此在半导体、光电子、太阳能电池等领域得到了广泛的应用。
砷化镓是一种半导体材料,具有优异的电学性能。
它的导电性介于导体和绝缘体之间,可以通过掺杂来改变其导电性质。
此外,砷化镓的载流子迁移率高,电子和空穴的迁移速度都很快,因此在高速电子器件中得到了广泛的应用。
砷化镓是一种优异的光电子材料。
它的能带结构使得它具有优异的光电转换性能,可以将光能转化为电能或者将电能转化为光能。
因此,砷化镓被广泛应用于光电子器件中,如激光器、光电探测器、光电调制器等。
砷化镓还是一种优异的太阳能电池材料。
它的光电转换效率高,可以将太阳能转化为电能。
砷化镓太阳能电池具有高效、稳定、寿命长等优点,因此在太阳能电池领域得到了广泛的应用。
砷化镓作为一种重要的无机非金属材料,具有优异的物理和化学性质,在半导体、光电子、太阳能电池等领域得到了广泛的应用。
随着科技的不断发展,砷化镓的应用前景将会更加广阔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
砷化镓材料国内外现状及发展趋势中国电子科技集团公司第四十六研究所纪秀峰1 引言化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。
1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。
五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。
砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。
由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。
目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。
2 砷化镓材料的性质及用途砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。
在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。
砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。
因此,广泛应用于高频及无线通讯中制做IC器件。
所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。
除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。
表1 砷化镓材料的主要用途3 砷化镓材料制备工艺从20世纪50年代开始,已经开发出了多种砷化镓单晶生长方法。
目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里其曼法(HB)、垂直布里其曼法(VB)以及垂直梯度凝固法(VGF)等。
3.1液封直拉法(Liquid Encapsulated Czochralski,简称LEC)LEC法是生长非掺半绝缘砷化镓单晶(SI GaAs)的主要工艺,目前市场上80%以上的半绝缘砷化镓单晶是采用LEC法生长的。
LEC法采用石墨加热器和PBN坩埚,以B2O3作为液封剂,在2MPa的氩气环境下进行砷化镓晶体生长。
LEC工艺的主要优点是可靠性高,容易生长较长的大直径单晶,晶体碳含量可控,晶体的半绝缘特性好。
其主要缺点是:化学剂量比较难控制、热场的温度梯度大(100~150 K/cm)、晶体的位错密度高达104以上且分布不均匀。
日本日立电线公司于1998年首先建立了6英寸LEC砷化镓单晶生产线,该公司安装了当时世界上最大的砷化镓单晶炉,坩埚直径400mm,投料量50公斤,生长的6英寸单晶长度达到350 mm。
德国Freiberger公司于2000年报道了世界上第一颗采用LEC工艺研制的8英寸砷化镓单晶。
3.2 水平布里其曼法(Horizontal Bridgman,简称HB)HB法是曾经是大量生产半导体(低阻)砷化镓单晶(SC GaAs)的主要工艺,使用石英舟和石英管在常压下生长,可靠性和稳定性高。
HB法的优点是可利用砷蒸汽精确控制晶体的化学剂量比,温度梯度小从而达到降低位错的目的。
HB砷化镓单晶的位错密度比LEC 砷化镓单晶的位错密度低一个数量级以上。
主要缺点是难以生长非掺杂的半绝缘砷化镓单晶,所生长的晶体界面为D形,在加工成晶片过程中将造成较大的材料浪费。
同时,由于高温下石英舟的承重力所限,难以生长大直径的晶体。
目前采用HB工艺工业化大量生产的主要是2英寸和3英寸晶体,报道的HB法砷化镓最大晶体直径为4英寸。
目前采用HB工艺进行砷化镓材料生产的公司已经不多,随着VB和VGF工艺的日渐成熟,HB工艺有被逐渐取代的趋势。
3.3 垂直布里其曼法(Vertical Bridgman,简称VB)VB法是上世纪80年代末开始发展起来的一种晶体生长工艺,将合成好的砷化镓多晶、B2O3以及籽晶装入PBN坩埚并密封在抽真空的石英瓶中,炉体垂直放置,采用电阻丝加热,石英瓶垂直放入炉体中间。
高温下将砷化镓多晶熔化后与籽晶进行熔接,然后通过机械传动机构由支撑杆带动石英瓶与坩埚向下移动,在一定的温度梯度下,单晶从籽晶端开始缓慢向上生长。
VB法即可以生长低阻砷化镓单晶,也可以生长高阻半绝缘砷化镓单晶。
晶体的平均EPD在5 000个/cm-2以下。
3.4 垂直梯度凝固法(Vertical Gradient Freeze,简称VGF)VGF工艺与VB工艺的原理和应用领域基本类似。
其最大区别在于VGF法取消了晶体下降走车机构和旋转机构,由计算机精确控制热场进行缓慢降温,生长界面由熔体下端逐渐向上移动,完成晶体生长。
这种工艺由于取消了机械传动机构,使晶体生长界面更加稳定,适合生长超低位错的砷化镓单晶。
VB与VGF工艺的缺点是晶体生长过程中无法观察与判断晶体的生长情况,同时晶体的生长周期较长。
目前国际上商用水平已经可以批量生产6英寸的VB/VGF砷化镓晶体,Freiberger公司在2002年报道了世界上第一颗采用VGF工艺研制的8英寸砷化镓单晶。
表2 GaAs单晶生长方法比较4 国内外砷化镓材料发展现状半绝缘砷化镓材料主要用于高频通信器件,受到近年民用无线通信市场尤其是手机市场的拉动,半绝缘砷化镓材料的市场规模也出现了快速增长的局面。
2003~2008年,半绝缘砷化镓市场需求增长了54%。
目前微电子用砷化镓晶片市场主要掌握在日本住友电工(Sumitomo Electric)、费里伯格(Freiberger Compound Materials )、日立电线(Hitachi Cable)和美国AXT等四家大公司手中。
主要以生产4、6英寸砷化镓材料为主。
费里伯格公司供应LEC法生长的3、4、6英寸半绝缘砷化镓衬底,供应VGF法生长的4、6英寸半绝缘砷化镓衬底。
住友供应VB法生长的4、6英寸半绝缘砷化镓衬底。
日立电线供应LEC法生长的2、3、4、6英寸半绝缘砷化镓衬底。
AXT供应VGF法生长的2、3、4、6英寸半绝缘砷化镓衬底。
表3 国际砷化镓材料主要生产厂商目前中国的砷化镓材料生产企业主要以LED用低阻砷化镓晶片为代表的低端市场为主,利润率较高的微电子用4~6英寸半绝缘晶片还没有形成产业规模。
中国大陆从事砷化镓材料研发与生产的公司主要有:北京通美晶体技术有限公司(AXT)、中科晶电信息材料(北京)有限公司、天津晶明电子材料有限责任公司(中电集团46研究所)、北京中科镓英半导体有限公司、北京国瑞电子材料有限责任公司、扬州中显机械有限公司、山东远东高科技材料有限公司、大庆佳昌科技有限公司、新乡神舟晶体科技发展有限公司(原国营542厂)等九家。
北京通美是美国AXT独资子公司,其资金、管理和技术实力在国内砷化镓材料行业首屈一指,产品主要以VGF法4、6英寸半绝缘砷化镓材料为主。
其在高纯镓、高纯砷、高纯锗以及氮化硼坩埚等方面均有投资,有效地控制了公司成本,2009年销售收入8 000万美元,短期内国内其它各公司还难以和北京通美形成真正的竞争。
中科晶电成立于2006年,主要从事VGF砷化镓单晶生长和抛光片生产,该公司为民营企业,总投资为2 500万美元,在高纯砷和高纯镓方面也已投资建厂。
2009年月产2英寸砷化镓晶片10万片,2010年月产达到15万片。
该公司是目前国内发展速度最快的砷化镓企业。
天津晶明公司成立于2007年,由中国电子科技集团公司第四十六研究所投资,注册资本1400万元,总投入约5 000万元。
主要产品为2英寸LED用VB法低阻砷化镓晶体及抛光片,兼顾少量3~4英寸半绝缘砷化镓单晶材料。
目前拥用LEC单晶炉4台,VB单晶炉60台,已建成一条完整的单晶生长及抛光片加工生产线,目前月产约为3万片。
中科镓英公司成立于2001年,晶体生长只有两台LEC单晶炉,目前主要在国内购买HB或VGF砷化镓单晶进行抛光片加工,销售对象主要是国内的LED外延企业,月产约2~3万片。
北京国瑞公司和扬州中显公司主要生产2~2.5英寸HB砷化镓单晶,山东远东公司主要生产2英寸LEC(或称LEVB)砷化镓单晶,这三家公司的产品主要针对LED市场,其单晶质量、成品率以及整体经营状况都很稳定。
这三家公司目前都没有晶片加工工序,只能将单晶卖给其它公司进行加工。
大庆佳昌原主要从事LEC砷化镓单晶生长,曾生长出8英寸LEC砷化镓单晶样品。
2009年争取到政府立项投资1.3亿元,转向以VGF工艺生产LED用低阻砷化镓材料,目前已完成厂房建设和小试生产,其产品定位主要在4英寸市场。
新乡神舟公司主要从事LEC和HB砷化镓单晶生长,近期开始进行VGF法砷化镓工艺研究,目前的市场定位还不是很明确,主要以承担军工科研任务为主。
表4 国内砷化镓材料主要生产企业5 我国砷化镓材料发展趋势我国的砷化镓材料行业,虽然受到国家的高度重视,但由于投资强度不足且分散,研究基础一直比较薄弱,发展速度缓慢。
只是近几年由于半导体照明产业的拉动作用,部分民营企业开始涉足这个行业,发展速度有所加快,但也仅限于LED用的低端砷化镓材料,集成电路和功率器件用的大直径半绝缘砷化镓材料还是掌握在少数国际大公司手中,国内所用的4-6英寸半绝缘砷化镓晶片仍然基本全部依赖进口。
目前,国内的半绝缘砷化镓材料,在常规电学指标上与国外水平大体相当,但是材料的微区特性、晶片精密加工和超净清洗封装方面与国外差距很大。
由于现在国内正处在从多研少产向批量生产过渡的阶段,正在逐步解决材料的电学性能均匀性差、批次间重复性差等问题,缺乏材料和典型器件关系验证。
另外关键设备落后也是造成上述局面的原因之一。
我国砷化镓材料发展趋势将主要体现在以下几个方面:①增大晶体直径,目前发达国家6英寸的半绝缘砷化镓产品已经商用化,国内4英寸产品还没有实现商用,这方面差距还比较大;②降低单晶的缺陷密度,特别是位错,提高材料的电学和光学微区均匀性;③提高抛光片的表面质量,针对MOCVD和MBE外延需求,提供“开盒即用”(Epi-ready)产品;④研发具有自主知识产权的新工艺,近年国内外VGF砷化镓生长技术发展很快,已经成为砷化镓材料主流技术,但核心技术仍掌握在少数国际大公司手中,应在VGF设备和工艺方面加大投入力度。
6 结束语砷化镓材料是最重要的半导体材料之一,其应用领域不断扩大,产业规模也在急剧扩张,在民用与军事领域发挥着不可替代的作用。
由于种种原因,我国的砷化镓材料产业发展速度迟缓,与国际先进水平的差距还很大。