红外吸收光谱(IR)大体原理及应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外吸收光谱(IR)的大体原理及应用
一、红外吸收光谱的历史
太阳光透过三棱镜时,能够分解成红、橙、黄、绿、蓝、紫的光谱带;1800年,发此刻红光的外面,温度会升高。

如此就发觉了具有热效应的红外线。

红外线和可见光一样,具有反射、色散、衍射、干与、偏振等性质;它的传播速度和可见光一样,只是波长不同,是电磁波总谱中的一部份。

(图一)、波长范围在微米到大约1000微米左右。

红外区又能够进一步划分为近红外区<到2微米,基频红外区(也称指纹区,2至25微米)和远红外区(25微米至1000微米)三个部份。

1881年以后,人们发觉了物质对不同波长的红外线具有不同程度的吸收,二十世纪初,测量了各类无机物和有机物对红外辐射的吸收情形,并提出了物质吸收的辐射波长与化学结构的关系,慢慢积存了大量的资料;与此同时,分子的振动――转动光谱的研究慢慢深切,确立了物质分子对红外光吸收的大体理论,为红外光谱学奠定了基础。

1940年以后,红外光谱成为化学和物理研究的重要工具。

今年来,干与仪、运算机和激光光源和红外光谱相结合,诞生了运算机-红外分光光度计、傅立叶红外光谱仪和激光红外光谱仪,开辟了崭新的红外光谱领域,增进了红外理论的进展和红外光谱的应用。

二、红外吸收的本质
物质处于不断的运动状态当中,分子经光照射后,就吸收了光能,运动状态从基态跃迁到高能态的激发态。

分子的运动能量是量子化的,它不能占有任意的能量,被分子吸收的光子,其能量等于分子动能的两种能量级之差,不然不能被吸收。

分子所吸收的能量可由下式表示:
E=hυ=hc/λ
式中,E为光子的能量,h为普朗克常数,υ为光子的频率,c为光速,λ为波长。

由此可见,光子的能量与频率成正比,与波长成反比。

相关文档
最新文档