曲线运动 能量和动量
动能定理和动量定理的区别与联系教学内容
动能定理和动量定理的区别与联系动量定理和动能定理虽然都是从牛顿第二定律推导出来的,但在解决力学中某些问题时,这两个定理比牛顿第二定律更能体现出优越性。
我们先看一看它们共同之处:1.两个定理都不用考虑中间过程,只考虑始末状态。
动量定理只考虑始末状态的动量,动能定理只考虑始末状态的动能。
过程中的速度加速度变化不予考虑。
例1 质量为m的小球以初速度v o在水平面上向右运动,小球与水平面间动摩擦因数为μ,小球碰到右侧固定挡板后被弹回,假设在碰撞过程中没有能量损失,求小球在水平面上运动的总路程S。
解:分析:小球来回与挡板碰撞运动方向不断改变,速度大小也不断改变,运用牛顿第二定律显然不好解出,而用动能定理就比较方便了,小球受三个力作用:重力mg,支持力F,摩擦力f,全过程只有摩擦力做负功,所以有–μmg S=0-1/2mv o2 S=mv o2/2μmg =v o2/2μg2.两个定理不仅适用于恒力,也适用于变力。
例2 物块A和B用轻绳相连悬在轻弹簧下端静止不动,连接A,B的绳子被烧断后,A上升到某位置速度大小为V,这时B下落的速度大小为μ,已知A, B质量分别为m和M,在这段时间内,弹簧的弹力对物块A的冲量是多少?解析弹簧的弹力为变力,设弹力对物体A的冲量为I 取向上为正方向,根据动量定理:对物块A:I–mgt=mu-0 ①对物块B:–Mgt=–Mμ-0 ②解得:I =mv+mu3.两个定理不仅适用于直线运动,也适用于曲线运动。
例3 如图,质量为1kg的物体从轨道A点由静止下滑,轨道B是弯曲的,A点高出B点0.8m,物体到达B点的速度为2m/s.求物体在AB轨道上克服摩擦力所做的功。
解析本题中物体在轨道上受到的摩擦力是大小方向不断变化的,不适合用牛顿第二定律求解,但用动能定理就方便了mgh-W=1/2mv2-0 得W=6J4.两个定理都主要解决“不守恒”问题,动量定理主要解决动量不守恒问题,动能定理主要解决机械能不守恒问题。
动能定理和动量定理的区别与联系
动能定理和动量定理的区别与联系动量定理和动能定理虽然都是从牛顿第二定律推导出来的,但在解决力学中某些问题时,这两个定理比牛顿第二定律更能体现出优越性。
我们先看一看它们共同之处:1.两个定理都不用考虑中间过程,只考虑始末状态。
动量定理只考虑始末状态的动量,动能定理只考虑始末状态的动能。
过程中的速度加速度变化不予考虑。
例1 质量为m的小球以初速度vo在水平面上向右运动,小球与水平面间动摩擦因数为μ,小球碰到右侧固定挡板后被弹回,假设在碰撞过程中没有能量损失,求小球在水平面上运动的总路程S。
解:分析:小球来回与挡板碰撞运动方向不断改变,速度大小也不断改变,运用牛顿第二定律显然不好解出,而用动能定理就比较方便了,小球受三个力作用:重力mg,支持力F,摩擦力f,全过程只有摩擦力做负功,所以有–μmg S=0-1/2mv o2 S=mv o2/2μmg =v o2/2μg2.两个定理不仅适用于恒力,也适用于变力。
例2 物块A和B用轻绳相连悬在轻弹簧下端静止不动,连接A,B的绳子被烧断后,A上升到某位置速度大小为V,这时B下落的速度大小为μ,已知A, B质量分别为m和M,在这段时间内,弹簧的弹力对物块A的冲量是多少?解析 弹簧的弹力为变力,设弹力对物体A 的冲量为I 取向上为正方向,根据动量定理:对物块A :I –mgt =mu-0 ①对物块B : –Mgt=–M μ-0 ②解得:I =mv+mu3.两个定理不仅适用于直线运动,也适用于曲线运动。
例3 如图,质量为1kg 的物体从轨道A 点由静止下滑,轨道B 是弯曲的,A 点高出B 点0.8m ,物体到达B 点的速度为2m/s .求物体在AB 轨道上克服摩擦力所做的功。
解析 本题中物体在轨道上受到的摩擦力是大小方向不断变化的,不适合用牛顿第二定律求解,但用动能定理就方便了 mgh-W=1/2mv 2-0 得W=6J4.两个定理都主要解决“不守恒”问题,动量定理主要解决动量不守恒问题,动能定理主要解决机械能不守恒问题。
高中物理必修一知识点梳理归纳
高中物理必修一知识点梳理归纳1500字高中物理必修一主要包括运动学、力学、能量与动量、电学四个部分。
下面将对这些知识点进行梳理归纳。
一、运动学1. 物体的位置:位移、直线运动和曲线运动、速度、加速度。
2. 运动的规律:匀速直线运动、变速直线运动、匀速曲线运动、变速曲线运动。
3. 运动的描述:用图象来描述运动、用函数来描述运动。
二、力学1. 牛顿的运动定律:第一定律(惯性定律)、第二定律(物体的加速度与作用力成正比,与物体的质量成反比)、第三定律(作用力与反作用力大小相等,方向相反)。
2. 弹簧力与摩擦力:胡克定律、摩擦力的类型及计算。
3. 静力学:静平衡、平衡力的条件。
4. 动力学:动量的概念、动量守恒定律、冲量及冲量定理。
5. 万有引力:质点的万有引力、行星的运动、地球表面附近物体的重力、弹力与重力的比较。
三、能量与动量1. 功与机械能:功的定义、功的计算、功的单位、功率的定义及计算、能量的转化与守恒、动能与重力势能、机械能的守恒、机械能的应用。
2. 惯性力与非惯性力:匀速圆周运动、牛顿力学的局限性。
四、电学1. 电流与电阻:电流的概念、电路的基本组成、电阻和电阻器。
2. 电压与电功:电压的概念、电压和电动势、电功和功率。
3. 理想电源电路:理想电源的作用、电流分布、串联电路和并联电路。
4. 半导体与 PN 结:半导体的性质、PN 结的形成、PN 结的特性与应用。
以上是高中物理必修一的主要知识点梳理,通过学习这些知识点,可以建立起对物理基本概念和原理的理解,为后续物理学习打下坚实的基础。
当然,学习物理最重要的是理解和掌握物理规律和运用物理知识解决问题的能力,因此在学习过程中要注重理论与实践相结合,积累解决问题的经验。
同时,物理知识与实际生活紧密相关,学习物理过程中要善于与实际应用结合,通过观察、实验和实际操作,加深对物理知识的理解和应用能力的培养。
高中物理《动量与能量》知识点与学习方法
高中物理《动量与能量》知识点与学习方法动量与能量动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。
分析这类问题时,应首先建立清晰的物理图象,抽象出物理模型,选择合理的物理规律建立方程进行求解。
一、力学规律的选用原则1、如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律。
2、研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间问题)或动能定理(涉及位移问题)去解决。
3、若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律去解决问题,但须注意研究的问题是否满足守恒条件。
4、在涉及相对位移问题时,则优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量。
5、在涉及有碰撞、爆炸、打击、绳绷紧等物理现象时,须注意到一般这些过程均隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场。
二、利用动量观点和能量观点解题应注意下列问题(1)动量定理和动量守恒定律是矢量表达式,还可以写出分量表达式,而动能定理和能量守恒定律是标量式,绝无分量式。
(2)从研究对象上看动量定理既可研究单体,又可研究系统,但高中阶段一般用于单体,动能定理在高中阶段只能用于单体。
(3)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,解题时必须注意动量守恒的条件和机械能守恒的条件,在应用这两个规律时,应当确定了研究对象及运动状态变化的过程后,根据问题的已知条件和要求解未知量,选择研究的两个状态列方程求解。
(4)中学阶段可用力的观点解决的问题,若用动量观点或能量观点求解,一般都要比用力的观点简便,而中学阶段涉及的曲线运动(加速度不恒定)、竖直面内的圆周运动、碰撞等,就中学只是而言,不可能单纯考虑用力的观点解决,必须考虑用动量观点和能量观点解决。
机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
曲线运动知识点总结
点
抛物线切线方向时,物体可能飞离抛物
线轨迹
曲线运动的混沌现象
与预测
• 曲线运动的混沌现象:物体在曲线运动中,由于受到复杂的合外
力作用,物体的运动状态难以预测
• 如三体运动,由于受到太阳、地球、月球之间的复杂引力作
用,三体运动呈现出混沌现象
• 如大气层中的气流运动,由于受到地球引力和大气压强的复杂
作用,气流运动呈现出混沌现象
在变化
曲线运动的最大速度与最小速度
曲线运动的最小速度:物体在曲线运动中,速度达到最小值时的速度
• 如圆周运动,最小速度为v<sub>min</sub> = v,其中v为物体沿圆周切线方向的速度
• 如抛物线运动,最小速度出现在抛物线顶点,速度大小为v<sub>min</sub> = v - gt
曲线运动的最大速度:物体在曲线运动中,速度达到最大值时的速度
曲线运动的向量表示:用向量表示物体的位置、速
度、加速度等物理量
曲线运动的向量表示方法:
• 如位置向量:r = (x, y)
• 可以用向量表示物体的运动状态,如
• 如速度向量:v =
速度、加速度等
(v<sub>x</sub>,
• 可以用向量运算表示物体受到的合外
v<sub>y</sub>)
力、合力矩等
• 曲线运动的研究有助于我们更好地解决工程技术中的实际问题,
提高工程质量和效率
曲线运动在生物学中的应用
• 曲线运动在生物学中的应用广泛,如动物迁徙、植物生长等
• 如鸟类迁徙,研究鸟类的迁徙路线,揭示鸟类迁徙的规律和原
因
动能定理和动量定理专题讲解
动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例1】05如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0 代入数据得:υ0 = 3.0m/s(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有: —(F fBA +F fCA )t = m A υA -m A υ0对B 由动理定理有: F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有: —(F fBA +F fCA )s A = 1/2m A υ-1/2m A υf (1)2A o (2)f (1)20o (2)o (2)对B 由动能定理有: F fA Bf s B = 1/2m B υf (1)2B o (2)根据动量与动能之间的关系有: m A υA = ,m B υB = KA A E m 2r (2mAEKA )KB B E m 2r (2mBEKB )木板A的长度即B 相对A 滑动距离的大小,故L = s A -s B ,代入放数据由以上各式可得L = 0.50m .训练题 05质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ = 0.1,长木板的长度l = 2m .系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:(g 取10m/s 2)(1)给小木块施加水平向右的恒定外力F 作用时间t = 2s ,则F 至少多大?(2)给小木块一个水平向右的瞬时冲量I ,则冲量I 至少是多大?答案:(1)F=1.85N(2)I=6.94NS【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a , 由牛顿第二定律有:a =m T F mg m-,代入数据得a = 5m/s 2f (FT m -mg )当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 == 2s ,位移s 1 = 1/2at = 10m .aυf (v )f (1)21o (2)此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm = = 15m/s .mgP m f (Pm )这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =mυ-mυ221f (1)2m o (2)21f (1)代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题一辆汽车质量为m ,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm ,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间. 答案:(1)P=kmgv m(2)t=(v m 2+2kgs )/2kgv m【例3】05一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K = 0重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧.(2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-mυcos θ在竖直方向取向上为正方向,有:-mgt = 0-mυsin θ 上两式相比得,故电场强度为E = θθsin cos 1+=mg qE f (qE )f (1+cos θ)θθsin )cos 1(q mg +f (mg (1+cos θ))(3)竖直方向液滴初速度为υ1 = υsinθ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h =2221sin 22ggυυθ=f (v \o (2,1))f (v 2sin 2θ)从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U =22sin 2m qυθf (mv 2sin 2θ)【例4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A 端由静止开始运动,木块和管壁间动摩擦因数μ = 0.5,管两臂长AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α = 37°角,如图所示.求:(1)木块从A 到达B 时的速率;(2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F = mg .在垂直于管壁方向有:F N = F cosα = mg cosα,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sinα= mg sinα = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有: FL sin α-F f L = 1/2mυf (1)2B o (2)代入F 、F f 各量得υB = = 2 = 2.83m/s.)cos (sin 2αμα-gL r(2gL(sin α-μcos α))2r (2)(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有: FL sin α-F f s = △E K = 0 代入各量得s == 3mααcos sin m L f (Lsin α)训练题质量为2kg 的小球以4m/s 的初速度由倾角为30°斜面底端沿斜面向上滑行,若上滑时的最大距离为1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2) 答案:E K =4J能力训练1. 05在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是(ABD)A .甲在B 点速率一定大于乙在B ′点的速率 B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能 2.05下列说法正确的是(BCD)A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.05质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,则(B)A .P 1>P 2和E 1>E 2 B .P 1>P 2和E 1<E 2C .P 1<P 2和E 1>E 2D .P 1<P 2和E 1<E 24.05如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( C )A .停止运动B .向左运动C .向右运动D .不能确定5.05在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁,如图3-10-8所示.如果CO 2气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2f (1)的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A ,求:(1)单位时间内打在平板上的CO 2分子数;(2)CO 2气体对平板的压力.答案:(1)设在△t 时间内,CO 2分子运动的距离为L ,则 L =υ△t打在平板上的分子数△N=n L S N A 61故单位时间内打在平板上的C02的分子数为tNN ∆∆=得 N=n S N A υ61(2)根据动量定理 F △t=(2mυ)△N μ=N A m解得F=nμSυ2 31CO2气体对平板的压力 F / = F =nμSυ2 316.05如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
2023届高考物理三轮重点题型2万有引力与曲线运动
高考三轮:重点题型--万有引力与曲线运动(2)❶万有应力的应用:万有引力定律、天体问题、双星问题、宇宙速度、同步卫星❷曲线运动的综合应用:平抛运动、匀速圆周运动、曲线运动中的能量与动量问题1我国已成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。
该卫星()A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少解析D 同步卫星只能位于赤道正上方,A 错误;由GMm r 2=mv 2r 可得v =GM r ,可知卫星的轨道半径越大,环绕速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 错误;同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度,C 错误;若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少。
2世界首颗量子科学实验卫星“墨子号”在圆满完成4个月的在轨测试任务后,正式交付用户单位使用。
如图为“墨子号”变轨示意图,轨道A 与轨道B 相切于P 点,轨道B 与轨道C 相切于Q 点,以下说法正确的是()A.“墨子号”在轨道B 上由P 向Q 运动的过程中速率越来越大B.“墨子号”在轨道C 上经过Q 点的速率大于在轨道A 上经过P 点的速率C.“墨子号”在轨道B 上经过P 点时的向心加速度大于在轨道A 上经过P 点时的向心加速度D.“墨子号”在轨道B 上经过Q 点时受到的地球的引力小于经过P 点时受到的地球的引力解析D “墨子号”在轨道B 上由P 向Q 运动的过程中,逐渐远离地心,速率越来越小,故选项A 错误;“墨子号”在A 、C 轨道上运行时,轨道半径不同,根据G Mm r2=m v 2r 可得v =GM r ,轨道半径越大,线速度越小,故选项B 错误;“墨子号”在A 、B 两轨道上经过P 点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,故选项C 错误;“墨子号”在轨道B 上经过Q 点比经过P 点时离地心的距离要远些,受地球的引力要小些,故选项D 正确。
专题07动量和能量的综合应用
专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
②若两物体相向运动,碰后两物体的运动方向不可能都不改变。
爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。
八年级物理上册知识点
八年级物理上册知识点一、运动的描述和分析1. 运动的分类及描述运动是物体在空间和时间上的变化,可以从以下几个方面进行分类和描述:(1)直线运动:物体在直线上运动,速度为常量,可用等速直线运动公式计算。
(2)曲线运动:物体在曲线上运动,速度大小和方向均随时间改变,需要用到瞬时速度和瞬时加速度的概念。
(3)圆周运动:物体在圆周上运动,速度大小为常量,速度方向不断改变,需要用到圆周运动的角速度和角加速度的概念。
(4)自由落体运动:物体在重力作用下自由下落,速度大小不断增加,可用自由落体运动公式计算。
2. 运动的描述和分析我们可以通过以下几个方面对运动进行描述和分析:(1)物体的位置和位移:可以用向量表示,位移等于终点位置减去起点位置。
(2)物体的速度和速度变化:速度是位移随时间的导数,速度大小和方向均随时间改变,当速度大小为常量时,称为匀速运动;当速度大小和方向均随时间改变时,称为变速运动。
(3)物体的加速度和加速度变化:加速度是速度随时间的导数,加速度大小和方向均随时间改变,当加速度大小为常量时,称为匀加速运动;当加速度大小和方向均随时间改变时,称为变加速运动。
(4)物体的力和力的作用:力是物体之间的相互作用,可以用牛顿定律描述,力的大小和方向决定了物体的运动状态。
二、力的作用和分析1. 力的分类力是物体之间相互作用的结果,可以从以下几个方面进行分类和描述:(1)接触力:物体之间接触的力,例如摩擦力、弹簧力等。
(2)重力:物体受到的重力作用,例如自由落体运动、行星运动等。
(3)电磁力:带电粒子之间的相互作用,例如静电力、磁场力等。
(4)核力:原子核中的质子和中子之间相互作用的结果,例如核反应、核聚变等。
2. 力的作用和分析我们可以通过以下几个方面对力进行作用和分析:(1)牛顿第一定律:物体如果受到合外力的作用,就会有运动状态的改变,这个定律也称作惯性定律。
(2)牛顿第二定律:物体受到合外力的作用,其加速度大小和方向与所受力成正比,与物体质量成反比,即F=ma。
高考物理二轮复习教案专题二能量与动量功和功率功能关系
功和功率 功能关系复习备考建议(1)能量观点是高中物理三大观点之一,是历年高考必考内容;或与直线运动、平抛运动、圆周运动结合,或与电场、电磁感应结合,或与弹簧、传送带、板块连接体等结合;或借助选择题单独考查功、功率、动能定理、功能关系的理解,或在计算题中考查动力学与能量观点的综合应用,难度较大.(2)对于动量问题,17年只在选择题中出现,而且是动量守恒、动量定理的基本应用,18年在计算题中出现,Ⅰ卷、Ⅱ卷都是动量守恒的基本应用,运动过程简单,综合性较低,Ⅲ卷只是用到了动量的概念,19年在计算题中出现,Ⅰ卷、Ⅲ卷都涉及动量与能量观点的综合应用,Ⅱ卷中用到了动量定理,对于动量的考察,综合性、难度有所提升,备考时应多加注意.第4课时 功和功率 功能关系 考点 功、功率的分析与计算1.恒力功的计算(1)单个恒力的功W =Fl cos α. (2)合力为恒力的功①先求合力,再求W =F 合l cos α. ②W =W 1+W 2+…. 2.变力功的计算(1)若力大小恒定,且方向始终沿轨迹切线方向,可用力的大小跟路程的乘积计算. (2)力的方向不变,大小随位移线性变化可用W =F l cos α计算. (3)F -l 图象中,功的大小等于“面积”. (4)求解一般变力做的功常用动能定理. 3.功率的计算(1)P =Wt,适用于计算平均功率;(2)P =Fv ,若v 为瞬时速度,则P 为瞬时功率;若v 为平均速度,则P 为平均功率. 注意:力F 与速度v 方向不在同一直线上时功率为Fv cos θ.例1 (多选)(2019·山西晋中市适应性调研)如图1甲所示,足够长的固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,沿杆方向给环施加一个拉力F ,使环由静止开始运动,已知拉力F 及小环速度v 随时间t 变化的规律如图乙、丙所示,重力加速度g 取10m/s 2.则以下判断正确的是( )图1A .小环的质量是1kgB .细杆与地面间的倾角是30°C .前3s 内拉力F 的最大功率是2.25WD .前3s 内拉力对小环做功5.75J 答案 AD解析 由速度-时间图象得到环先匀加速上升,然后匀速运动,由题图可得:第1s 内,a =Δv t =0.51m/s 2=0.5 m/s 2,加速阶段:F 1-mg sin θ=ma ;匀速阶段:F 2-mg sin θ=0,联立以上三式解得:m =1kg ,sin θ=0.45,故A 正确,B 错误;第1s 内,速度不断变大,拉力的瞬时功率也不断变大,第1s 末,P =Fv 1=5×0.5W=2.5W ;第1s 末到第3s 末,P =Fv 1=4.5×0.5W=2.25W ,即拉力的最大功率为2.5W ,故C 错误;从速度-时间图象可以得到,第1 s 内的位移为0.25 m,1~3 s 内的位移为1 m ,前3 s 内拉力做的功为:W =5×0.25 J +4.5×1J =5.75J ,故D 正确. 变式训练1.(2019·河南名校联盟高三下学期2月联考)如图2所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆,a 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点.每根杆上都套着一个质量相等的小滑环(图中未画出),三个滑环分别从a 、b 、c 处由静止释放,用P 1、P 2、P 3依次表示各滑环从静止滑到d 过程中重力的平均功率,则( )图2A .P 1<P 2<P 3B .P 1>P 2>P 3C .P 3>P 1>P 2D .P 1=P 2=P 3 答案 B解析 对小滑环b 受力分析,受重力和支持力,将重力沿杆的方向和垂直杆的方向正交分解,根据牛顿第二定律得,小滑环做初速度为零的匀加速直线运动的加速度为a =g sin θ(θ为杆与水平方向的夹角),由数学知识可知,小滑环的位移x =2R sin θ,所以t =2xa=2×2R sin θg sin θ=4Rg,t 与θ无关,即t 1=t 2=t 3,而三个环重力做功W 1>W 2>W 3,所以有:P 1>P 2>P 3,B 正确.2.(多选)(2019·福建龙岩市期末质量检查)如图3所示,在竖直平面内有一条不光滑的轨道ABC ,其中AB 段是半径为R 的14圆弧,BC 段是水平的.一质量为m 的滑块从A 点由静止滑下,最后停在水平轨道上C 点,此过程克服摩擦力做功为W 1.现用一沿着轨道方向的力推滑块,使它缓慢地由C 点推回到A 点,此过程克服摩擦力做功为W 2,推力对滑块做功为W ,重力加速度为g ,则下列关系中正确的是( )图3A .W 1=mgRB .W 2=mgRC .mgR <W <2mgRD .W >2mgR 答案 AC解析 滑块由A 到C 的过程,由动能定理可知mgR -W 1=0,故A 对;滑块由A 到B 做圆周运动,而在推力作用下从C 经过B 到达A 的过程是一个缓慢的匀速过程,所以从A 到B 的过程中平均支持力大于从B 到A 的平均支持力,那么摩擦力从A 到B 做的功大于从B 到A 做的功,而两次经过BC 段摩擦力做功相等,故W 2<W 1=mgR ,故B 错;滑块由C 到A 的过程中,由能量守恒可知,推力对滑块做的功等于滑块重力势能增加量与克服摩擦力所做的功两部分,即W -mgR -W 2=0,即W =W 1+W 2,由于W 2<W 1=mgR ,所以mgR <W <2mgR ,故C 对,D 错.考点 功能关系的理解和应用1.几个重要的功能关系(1)重力做的功等于重力势能的减少量,即W G =-ΔE p . (2)弹力做的功等于弹性势能的减少量,即W 弹=-ΔE p . (3)合力做的功等于动能的变化量,即W =ΔE k .(4)重力(或系统内弹力)之外的其他力做的功等于机械能的变化量,即W 其他=ΔE . (5)系统内一对滑动摩擦力做的功是系统内能改变的量度,即Q =F f ·x 相对. 2.理解(1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化可以通过做功来实现.(2)功是能量转化的量度,功和能的关系,一是体现在不同性质的力做功对应不同形式的能转化,二是做功的多少与能量转化的多少在数值上相等. 3.应用(1)分析物体运动过程中受哪些力,有哪些力做功,有哪些形式的能发生变化. (2)列动能定理或能量守恒定律表达式.例2 (多选)(2019·全国卷Ⅱ·18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图4所示.重力加速度取10m/s 2.由图中数据可得( )图4A .物体的质量为2kgB .h =0时,物体的速率为20m/sC .h =2m 时,物体的动能E k =40JD .从地面至h =4m ,物体的动能减少100J 答案 AD解析 根据题图图像可知,h =4m 时物体的重力势能mgh =80J ,解得物体质量m =2kg ,抛出时物体的动能为E k0=100J ,由公式E k0=12mv 2可知,h =0时物体的速率为v =10m/s ,选项A 正确,B 错误;由功能关系可知F f h =|ΔE 总|=20J ,解得物体上升过程中所受空气阻力F f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -F f h =E k -100J ,解得E k =50J ,选项C 错误;由题图图像可知,物体上升到h =4m 时,机械能为80J ,重力势能为80J ,动能为零,即从地面上升到h =4m ,物体动能减少100J ,选项D 正确. 变式训练3.(多选)(2018·安徽安庆市二模)如图5所示,一运动员穿着飞行装备从飞机上跳出后的一段运动过程可近似认为是匀变速直线运动,运动方向与水平方向成53°角,运动员的加速度大小为3g4.已知运动员(包含装备)的质量为m ,则在运动员下落高度为h 的过程中,下列说法正确的是(sin53°=45,cos53°=35)( )图5A .运动员重力势能的减少量为35mghB .运动员动能的增加量为34mghC .运动员动能的增加量为1516mghD .运动员的机械能减少了116mgh答案 CD解析 运动员下落的高度是h ,则重力做功:W =mgh ,所以运动员重力势能的减少量为mgh ,故A 错误;运动员下落的高度是h ,则飞行的距离:L =h sin53°=54h ,运动员受到的合外力:F 合=ma =34mg ,动能的增加量等于合外力做的功,即:ΔE k =W 合=F 合L =34mg ×54h =1516mgh ,故B 错误,C 正确;运动员重力势能的减少量为mgh ,动能的增加量为1516mgh ,所以运动员的机械能减少了116mgh ,故D 正确.4.(多选)(2019·福建厦门市第一次质量检查)如图6甲所示,一轻质弹簧的下端固定在水平面上,上端与A 物体相连接,将B 物体放置在A 物体上面,A 、B 的质量都为m ,初始时两物体处于静止状态.现用竖直向上的拉力F 作用在物体B 上,使物体B 开始向上做匀加速运动,拉力F 与物体B 的位移x 的关系如图乙所示(g =10m/s 2),下列说法正确的是( )图6A .0~4cm 过程中,物体A 、B 和弹簧组成的系统机械能增大B .0~4cm 过程中,弹簧的弹性势能减小,物体B 运动到4cm 处,弹簧弹性势能为零C .弹簧的劲度系数为7.5N/cmD.弹簧的劲度系数为5.0N/cm答案AC解析0~4 cm过程中,物体A、B和弹簧组成的系统,因力F对系统做正功,则系统的机械能增大,选项A正确.由题图可知,在x=4 cm处A、B分离,此时A、B之间的压力为零,A、B的加速度相等,但是弹簧仍处于压缩状态,弹簧的弹性势能不为零,选项B错误.开始物体处于静止状态,重力和弹力二力平衡,有:2mg=kΔl1;拉力F1为20 N时,弹簧弹力和重力平衡,合力等于拉力,根据牛顿第二定律,有:F1=2ma;物体B与A分离后,拉力F2为50 N,根据牛顿第二定律,有:F2-mg=ma;物体A与B分离时,物体A的加速度为a,则根据牛顿第二定律有:kΔl2-mg=k(Δl1-4 cm)-mg=ma;联立解得:m=4.0 kg,k=7.5 N/cm.选项C正确,D错误.考点动能定理的应用1.表达式:W总=E k2-E k1.2.五点说明(1)W总为物体在运动过程中所受各力做功的代数和.(2)动能变化量E k2-E k1一定是物体在末、初两状态的动能之差.(3)动能定理既适用于直线运动,也适用于曲线运动.(4)动能定理既适用于恒力做功,也适用于变力做功.(5)力可以是各种性质的力,既可以同时作用,也可以分阶段作用.3.基本思路(1)确定研究对象和研究过程.(2)进行运动分析和受力分析,确定初、末速度和各力做功情况,利用动能定理全过程或者分过程列式.4.在功能关系中的应用(1)对于物体运动过程中不涉及加速度和时间,而涉及力和位移、速度的问题时,一般选择动能定理,尤其是曲线运动、多过程的直线运动等.(2)动能定理也是一种功能关系,即合外力做的功(总功)与动能变化量一一对应.例3如图7所示,在地面上竖直固定了刻度尺和轻质弹簧,弹簧原长时上端与刻度尺上的A点等高.质量m=0.5kg的篮球静止在弹簧正上方,其底端距A点的高度h1=1.10m,篮球由静止释放,测得第一次撞击弹簧时,弹簧的最大形变量x1=0.15m,第一次反弹至最高点,篮球底端距A点的高度h2=0.873m,篮球多次反弹后静止在弹簧的上端,此时弹簧的形变量x2=0.01m,弹性势能为E p=0.025J.若篮球运动时受到的空气阻力大小恒定,忽略篮球与弹簧碰撞时的能量损失和篮球形变,弹簧形变在弹性限度范围内,g取10m/s2.求:图7(1)弹簧的劲度系数;(2)篮球在运动过程中受到的空气阻力的大小; (3)篮球在整个运动过程中通过的路程. 答案 (1)500N/m (2)0.50N (3)11.05m 解析 (1)由最后静止的位置可知kx 2=mg , 所以k =500N/m(2)由动能定理可知,在篮球由静止下落到第一次反弹至最高点的过程中mg Δh -F f ·L =12mv 22-12mv 12整个过程动能变化为0,重力做功mg Δh =mg (h 1-h 2)=1.135J 空气阻力大小恒定,作用距离为L =h 1+h 2+2x 1=2.273m故可得F f ≈0.50N(3)整个运动过程中,空气阻力一直与运动方向相反 根据动能定理有mg Δh ′+W f +W 弹=12mv 2′2-12mv 12整个过程动能变化为0,重力做功mg Δh ′=mg (h 1+x 2)=5.55J 弹力做功W 弹=-E p =-0.025J则空气阻力做功W f =-mg Δh ′-W 弹=-5.525J 因W f =-F f s 故解得s =11.05m. 变式训练5.(2019·全国卷Ⅲ·17)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3m 以内时,物体上升、下落过程中动能E k 随h 的变化如图8所示.重力加速度取10m/s 2.该物体的质量为( )图8A.2kgB.1.5kgC.1kgD.0.5kg答案 C解析设物体的质量为m,则物体在上升过程中,受到竖直向下的重力mg和竖直向下的恒定外力F,当Δh=3m时,由动能定理结合题图可得-(mg+F)×Δh=(36-72) J;物体在下落过程中,受到竖直向下的重力mg和竖直向上的恒定外力F,当Δh=3m时,再由动能定理结合题图可得(mg-F)×Δh=(48-24) J,联立解得m=1kg、F=2N,选项C正确,A、B、D均错误.6.由相同材料的木板搭成的轨道如图9所示,其中木板AB、BC、CD、DE、EF…的长均为L =1.5m,木板OA和其他木板与水平地面的夹角都为β=37°,sin37°=0.6,cos37°=0.8,g取10m/s2.一个可看成质点的物体在木板OA上从离地高度h=1.8m处由静止释放,物体与木板间的动摩擦因数都为μ=0.2,在两木板交接处都用小曲面相连,使物体能顺利地经过,既不损失动能,也不会脱离轨道,在以后的运动过程中,求:(最大静摩擦力等于滑动摩擦力)图9(1)物体能否静止在木板上?请说明理由.(2)物体运动的总路程是多少?(3)物体最终停在何处?并作出解释.答案(1)不能理由见解析(2)11.25m (3)C点解释见解析解析(1)物体在木板上时,重力沿木板方向的分力为mg sinβ=0.6mg最大静摩擦力F fm=μmg cosβ=0.16mg因mg sinβ>μmg cosβ,故物体不会静止在木板上.(2)从物体开始运动到停下,设总路程为s,由动能定理得mgh -μmgs cos β=0解得s =11.25m(3)假设物体依次能到达B 、D 点,由动能定理得mg (h -L sin β)-μmg cos β(L +hsin β)=12mv B 2 解得v B >0mg (h -L sin β)-μmg cos β(3L +hsin β)=12mv D 2 v D 无解说明物体能通过B 点但不能到达D 点,因物体不能静止在木板上,故物体最终停在C 点.考点 动力学与能量观点的综合应用1.两个分析(1)综合受力分析、运动过程分析,由牛顿运动定律做好动力学分析.(2)分析各力做功情况,做好能量的转化与守恒的分析,由此把握各运动阶段的运动性质,各连接点、临界点的力学特征、运动特征、能量特征. 2.四个选择(1)当物体受到恒力作用发生运动状态的改变而且又涉及时间时,一般选择用动力学方法解题;(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移时,应优先选择能量守恒定律;(3)当涉及细节并要求分析力时,一般选择牛顿运动定律,对某一时刻的问题选择牛顿第二定律求解;(4)复杂问题的分析一般需选择能量的观点、运动与力的观点综合分析求解.例4 (2019·河北邯郸市测试)如图10所示,一根轻弹簧左端固定于竖直墙上,右端被质量m =1kg 可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB 长L =5m ,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC 长s =1.5 m ,它与物块间的动摩擦因数μ2=0.3,在C 点右侧有一半径为R 的光滑竖直圆弧轨道与BC 平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v =5m/s 的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p =18 J 能量全部释放时,小物块恰能滑到与圆心等高的E 点,取g =10 m/s 2.图10(1)求右侧圆弧的轨道半径R ;(2)求小物块最终停下时与C 点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.答案 (1)0.8m (2)13m (3)37m/s≤v ≤43m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中, 由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到:a 1=2m/s 2,t 1=0.5s ,x 1=2.75m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR代入数据得到:R =0.8m.(2)设物块从E 点返回至B 点的速度大小为v B , 由12mv 2-12mv B 2=μ2mg ·2s 得到v B =7m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知,物块以相同的速率离开传送带,经分析可知最终在BC 间停下,设最终停在距C 点x 处,由12mv B 2=μ2mg (s -x ),代入数据解得:x =13m. (3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin30°=m v F 2R从B 到F 过程中由动能定理可知: -μ2mgs -mg (R +R sin30°)=12mv F 2-12mv 12解得:v 1=37m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点, 由12mv 22=μ2mg ·3s +mgR解得:v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56m/s若物块在E 、F 间速度减为0,则物块将脱离轨道.综合上述分析可知,只要传送带速度37m/s≤v ≤43m/s 就满足条件. 变式训练7.(2019·山东青岛二中上学期期末)如图11所示,O 点距水平地面的高度为H =3m ,不可伸长的细线一端固定在O 点,另一端系一质量m =2kg 的小球(可视为质点),另一根水平细线一端固定在墙上A 点,另一端与小球相连,OB 线与竖直方向的夹角为37°,l <H ,g 取10m/s 2,空气阻力不计.(sin37°=0.6,cos37°=0.8)图11(1)若OB 的长度l =1m ,剪断细线AB 的同时,在竖直平面内垂直OB 的方向上,给小球一个斜向下的冲量,为使小球恰好能在竖直平面内做完整的圆周运动,求此冲量的大小; (2)若先剪断细线AB ,当小球由静止运动至最低点时再剪断OB ,小球最终落地,求OB 的长度l 为多长时,小球落地点与O 点的水平距离最远,最远水平距离是多少. 答案 (1)246kg·m/s (2)1.5m355m 解析 (1)要使小球恰好能在竖直平面内做完整的圆周运动,最高点需满足:mg =m v 2l从B 点到最高点,由动能定理有: -mg (l +l cos37°)=12mv 2-12mv 02联立得一开始的冲量大小为I =mv 0=246kg·m/s(2)从剪断AB 到小球至H -l 高度过程,设小球至H -l 高度处的速度为v 0′ 由机械能守恒可得12mv 0′2=mgl (1-cos37°)小球从H -l 高度做初速度为v 0′的平抛运动,12gt 2=H -l ,x =v 0′t 联立得,x =45(-l 2+3l ) 当l =1.5m 时x 取最大值,为355m .专题突破练1.(2019·山东烟台市上学期期末)如图1所示,把两个相同的小球从离地面相同高度处,以相同大小的初速度v 分别沿竖直向上和水平向右方向抛出,不计空气阻力.则下列说法中正确的是( )图1A .两小球落地时速度相同B .两小球落地时,重力的瞬时功率相同C .从小球抛出到落地,重力对两小球做的功相等D .从小球抛出到落地,重力对两小球做功的平均功率相等 答案 C解析 两小球运动过程中均只有重力做功,故机械能都守恒,由机械能守恒定律得,两小球落地时的速度大小相同,但方向不同,故A 错误;两小球落地时,由于竖直方向的分速度不同,故重力的瞬时功率不相同,故B 错误;由重力做功公式W =mgh 得,从开始运动至落地,重力对两小球做功相同,故C 正确;从抛出至落地,重力对两小球做的功相同,但是落地的时间不同,故重力对两小球做功的平均功率不相同,故D 错误.2.(2019·河北张家口市上学期期末)如图2所示,运动员跳伞将经历加速下降和减速下降两个过程,在这两个过程中,下列说法正确的是( )图2A .运动员先处于超重状态后处于失重状态B .空气浮力对系统始终做负功C .加速下降时,重力做功大于系统重力势能的减小量D .任意相等的时间内系统重力势能的减小量相等 答案 B解析 运动员先加速向下运动,处于失重状态,后减速向下运动,处于超重状态,选项A 错误;空气浮力与运动方向总相反,则对系统始终做负功,选项B 正确;无论以什么运动状态运动,重力做功都等于系统重力势能的减小量,选项C 错误;因为是变速运动,相等的时间内,因为系统下降的高度不相等,则系统重力势能的减小量不相等,选项D 错误. 3.(2019·河南驻马店市上学期期终)一物体在竖直向上的恒力作用下,由静止开始上升,到达某一高度时撤去外力.若不计空气阻力,则在整个上升过程中,物体的机械能E 随时间t 变化的关系图象是( )答案 A解析 设物体在恒力作用下的加速度为a ,机械能增量为:ΔE =F Δh =F ·12at 2,知此时E-t 图象是开口向上的抛物线;撤去外力后的上升过程中,机械能守恒,则机械能不随时间改变,故A 正确,B 、C 、D 错误.4.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图3A .两滑块组成的系统机械能守恒B .轻绳对m 做的功等于m 机械能的增加量C .重力对M 做的功等于M 动能的增加量D .两滑块组成的系统机械能的损失等于M 克服摩擦力做的功 答案 BD5.(2019·福建三明市期末质量检测)如图4所示,一个质量m =1 kg 的小球(视为质点)从H =11m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零,然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为(重力加速度g =10m/s 2)( )图4A .10mB .9.5mC .9mD .8.5m 答案 B解析 到达圆环顶点C 时,刚好对轨道压力为零,则mg =m v C 2R,解得v C =210m/s ,则物体在BC 阶段克服摩擦力做功,由动能定理mg (H -2R )-W BC =12mv C 2,解得W BC =10J ;由于从C到B 过程小球对圆轨道的平均压力小于从B 到C 过程小球对圆轨道的平均压力,则小球从C 到B 过程克服摩擦力做的功小于从B 到C 过程克服摩擦力做的功,即0<W CB <10J ;从C 到D 由动能定理:mg (2R -h )-W CB =0-12mv C 2,联立解得9m<h <10m.6.一名外卖送餐员用电动自行车沿平直公路行驶给客户送餐,中途因电瓶“没电”,只能改用脚蹬车以5m/s 的速度匀速前行,骑行过程中所受阻力大小恒为车和人总重力的0.02倍(取g =10 m/s 2),该送餐员骑电动自行车以5m/s 的速度匀速前行过程做功的功率最接近( )A .10WB .100WC .1kWD .10kW 答案 B解析 设送餐员和车的总质量为100kg ,匀速行驶时的速率为5m/s ,匀速行驶时的牵引力与阻力大小相等,F =0.02mg =20 N ,则送餐员骑电动自行车匀速行驶时的功率为P =Fv =100W ,故B 正确.7.(多选)(2019·四川第二次诊断)如图5甲所示,质量m =1kg 的物块在平行斜面向上的拉力F 作用下从静止开始沿斜面向上运动,t =0.5s 时撤去拉力,其1.5s 内的速度随时间变化关系如图乙所示,g 取10m/s 2.则( )图5A .0.5s 时拉力功率为12WB .0.5s 内拉力做功9JC .1.5s 后物块可能返回D .1.5s 后物块一定静止 答案 AC解析 0~0.5 s 内物体的位移:x 1=12×0.5×2 m=0.5 m ;0.5~1.5 s 内物体的位移:x 2=12×1×2m =1m ;由题图乙知,各阶段加速度的大小:a 1=4m/s 2,a 2=2 m/s 2;设斜面倾角为θ,斜面对物块的动摩擦因数为μ,根据牛顿第二定律,0~0.5s 内F -μgm cos θ-mg sin θ=ma 1;0.5~1.5s 内-μmg cos θ-mg sin θ=-ma 2,联立解得:F =6N ,但无法求出μ和θ.0.5s 时,拉力的功率P =Fv =12W ,故A 正确.拉力做的功为W =Fx 1=3J ,故B 错误.无法求出μ和θ,不清楚tan θ与μ的大小关系,故无法判断物块能否静止在斜面上,故C 正确,D 错误.8.(多选)(2019·安徽安庆市期末调研监测)如图6所示,重力为10N 的滑块轻放在倾角为30°的光滑斜面上,从a 点由静止开始下滑,到b 点接触到一个轻质弹簧,滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点.已知ab =1m ,bc =0.2m ,则以下结论正确的是( )图6A .整个过程中弹簧弹性势能的最大值为6JB .整个过程中滑块动能的最大值为6JC .从c 到b 弹簧的弹力对滑块做功5JD .整个过程中弹簧、滑块与地球组成的系统机械能守恒 答案 AD解析 滑块从a 到c, mgh ac +W 弹′=0-0,解得:W 弹′=-6J .则E pm =-W 弹′=6J ,所以整个过程中弹簧弹性势能的最大值为6J ,故A 正确;当滑块受到的合外力为0时,滑块速度最大,设滑块在d 点合外力为0,由分析可知d 点在b 点和c 点之间.滑块从a 到d 有:mgh ad +W 弹=E k d -0,因mgh ad <6J ,W 弹<0,所以E k d <6J ,故B 错误;从c 点到b 点弹簧的弹力对滑块做的功与从b 点到c 点弹簧的弹力对滑块做的功大小相等,即为6J ,故C 错误;整个过程中弹簧、滑块与地球组成的系统机械能守恒,没有与系统外发生能量转化,故D 正确.9.(多选)(2019·河南九师联盟质检)如图7所示,半径为R =0.4m 的14圆形光滑轨道固定于竖直平面内,圆形轨道与光滑固定的水平轨道相切,可视为质点的质量均为m =0.5kg 的小球甲、乙用轻杆连接,置于圆轨道上,小球甲与O 点等高,小球乙位于圆心O 的正下方.某时刻将两小球由静止释放,最终它们在水平面上运动,g 取10m/s 2.则( )图7A .小球甲下滑过程中机械能增加B .小球甲下滑过程中重力对它做功的功率先增大后减小C .小球甲下滑到圆形轨道最低点对轨道压力的大小为12ND .整个过程中轻杆对小球乙做的功为1J 答案 BD解析 小球甲下滑过程中,轻杆对甲做负功,则甲的机械能减小,故A 错误.小球甲下滑过程中,最高点速度为零,故重力的功率为零;最低点速度和重力垂直,故重力的功率也是零;而中途重力的功率不为零,故重力的功率应该是先增大后减小,故B 正确.两个球与轻杆组成的系统机械能守恒,故:mgR =12mv 2+12mv 2,解得:v =gR =10×0.4m/s =2 m/s ;小球甲下滑到圆弧形轨道最低点,重力和支持力的合力提供向心力,故:F N -mg =m v 2R,解得:F N=mg +m v 2R =0.5×10N+0.5×220.4N =10N ,根据牛顿第三定律,小球甲对轨道的压力大小为10N ,故C 错误;整个过程中,对球乙,根据动能定理,有:W =12mv 2=12×0.5×22J =1J ,故D 正确.10.(2019·吉林“五地六校”合作体联考)一辆赛车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图8所示.已知赛车的质量为m =1×103kg ,赛车受到的阻力为车重力的0.1倍,重力加速度g 取10m/s 2,则以下说法正确的是( )图8A .赛车在前5s 内的牵引力为5×102N。
高二物理知识点大全及解析
高二物理知识点大全及解析一、机械运动1. 运动的基本概念运动是物体在时间内位置发生改变的现象。
物体的位置变化包括位移、速度和加速度。
2. 直线运动直线运动是物体按直线路径运动的情况。
根据速度与加速度的关系可以分为匀速直线运动和变速直线运动。
3. 曲线运动曲线运动是物体按曲线路径运动的情况。
常见的曲线运动包括圆周运动和抛体运动。
4. 牛顿运动定律牛顿第一定律:物体在没有外力作用的情况下保持静止或匀速直线运动。
牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
F = ma牛顿第三定律:任何两个物体之间相互作用的力大小相等,方向相反。
二、动量和能量1. 动量动量是物体运动状态的量度,与物体的质量和速度有关。
动量的守恒定律指出,在没有外力作用下,系统的总动量保持不变。
2. 动能动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能定理说明了物体的动能变化与物体所受的合外力以及运动距离有关。
3. 功和机械能功是力对物体做功的量度,它等于力在物体上的作用点上的位移与力的夹角的余弦值的乘积。
机械能是动能和势能的总和,机械能守恒定律指出,在没有非保守力做功的情况下,系统的总机械能保持恒定。
三、静电学和电流1. 电荷和静电场电荷是物质的一种基本属性,具有正负两种。
静电场是由静止电荷产生的力场,它对带电物体产生力的作用。
2. 库仑定律库仑定律描述了两个点电荷之间的静电力与它们的距离、电荷量之间的关系。
F = k * (q1 * q2) / r^23. 电场电场是空间中每一点的电场强度和电场力所构成的物理量。
电场强度指电场力对单位正电荷的大小。
电场线是表示电场强度方向的曲线。
4. 电流和电阻电流是电荷通过导体截面的数量,单位是安培。
电阻是物体阻碍电流通过的程度,单位是欧姆。
欧姆定律描述了电流、电阻和电压之间的关系。
I = V / R5. 电压和电功率电压是单位电荷所具有的能量,单位是伏特。
曲线运动第12讲 功能关系(动能定理及其应用篇)
功能关系(动能定理及其应用)知识点梳理1.动能:物体由于运动而具有的能量。
影响因素:<1>质量 <2>速度 表达式:E k =221mv 单位:J 2、动能定理<1>定义:物体动能的变化量等于合外力做功。
<2>表达式:△E k =W F 合3、W 的求法动能定理中的W 表示的是合外力的功,可以应用W =F 合·lc os α(仅适用于恒定的合外力)计算,还可以先求各个力的功再求其代数和,W =W 1+W 2+…(多适用于分段运动过程)。
4.适用范围动能定理应用广泛,直线运动、曲线运动、恒力做功、变力做功、同时做功、分段做功等各种情况均适用。
5.动能定理的应用(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况:受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的始末状态的动能E k 1和E k 2;母本身含有负号。
方法突破之典型例题题型一对动能定理的理解1.一个人用手把一个质量为m=1kg的物体由静止向上提起2m,这时物体的速度为2m/s,则下列说法中正确的是()A.合外力对物体所做的功为12JB.合外力对物体所做的功为2JC.手对物体所做的功为22JD.物体克服重力所做的功为20J2.关于对动能的理解,下列说法不正确的是()A.凡是运动的物体都具有动能B.动能总是正值C.一定质量的物体,动能变化时,速度一定变化D.一定质量的物体,速度变化时,动能一定变化光说不练,等于白干1、若物体在运动过程中所受的合外力不为零,则()A.物体的动能不可能总是不变的B.物体的动量不可能总是不变的C.物体的加速度一定变化D.物体的速度方向一定变化2、物体在合外力作用下,做直线运动的v﹣t图象如图所示,下列表述正确的是()A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做正功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功3、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则()A.从第1秒末到第3秒末合外力做功为4WB.从第3秒末到第5秒末合外力做功为-2WC.从第5秒末到第7秒末合外力做功为WD.从第3秒末到第4秒末合外力做功为-0.75W4、美国的NBA篮球赛非常精彩,吸引了众多观众.经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利.如果运动员投篮过程中对篮球做功为W,出手高度为h1,篮筐距地面高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能表达正确的是()A.mgh1+mgh2-WB.mgh2-mgh1-WC.W+mgh1-mgh2D.W+mgh2-mgh15、轻质弹簧竖直放在地面上,物块P 的质量为m ,与弹簧连在一起保持静止。
动量、动能定理、机械能守恒、能量守恒综合运用
图5-3-1动能、动量、机械能守恒 综合运用 动能定理的理解1.动能定理的公式是标量式,v 为物体相对于同一参照系的瞬时速度.2.动能定理的研究对象是单一物体,或可看成单一物体的物体系.3.动能定理适用于物体做直线运动,也适用于物体做曲线运动;适用于恒力做功,也适用于变力做功;力可以是各种性质的力,既可以同时作用,也可以分段作用.只要求出在作用的过程中各力所做功的总和即可.这些正是动能定理的优越性所在.4.若物体运动过程中包含几个不同的过程,应用动能定理时可以分段考虑,也可以将全过程视为一个整体来考虑.【例1】一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图5-3-1,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.【解析】 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:mgh mgl W G==αsinαμcos 1mgl W f -=物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则22mgS W f μ-= 对物体在全过程中应用动能定理:ΣW =ΔE k . 所以 mgl sin α-μmgl cos α-μmgS 2=0 得 h -μS 1-μS 2=0.式中S 1为斜面底端与物体初位置间的水平距离.故ShS S h =+=21μ动能定理的应用技巧1.一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系.若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功. (3)选择初、末状态及参照系. (4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例2】如图5-3-2所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止.求物体在轨道AB 段所受的阻力对物体做的功.【解析】物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求.根据动能定理可知:W外=0,所以mgR -umgS -W AB =0即W AB =mgR -umgS =1×10×0.8-1×10×3/15=6J【例3】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m.质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ. 解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段.所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0= mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2, 有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,ghv s 22=……③ 由①、②、③可得μ=0.50【点悟】从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理.机械能(1)定义:机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和.图5-3-2Lhs图5-3-3(2)说明①机械能是标量,单位为焦耳(J ).②机械能中的势能只包括重力势能和弹性势能,不包括其他各种势能.机械能守恒定律内容:在只有重力或弹力做功的物体系统内,动能与重力势能可以相互转化,而总的机械能保持不变. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.一、应用机械能守恒定律解题的步骤:1.根据题意选取研究对象(物体或系统);2.分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒;3.确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能;4.根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性.【例1】如图5-5-1所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为m 的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点 多高?通过轨道点最低点时球对轨道压力多大? 【解析】 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列Rv m mg c 2= 得gR m R v m c 2212=在圆轨道最高点小球机械能:mgR mgR E C 221+=在释放点,小球机械能为: mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解得R h 25=同理,小球在最低点机械能 221BB mv E = gR v E E B CB 5==小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.图5-5-1【例2】质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时,弹簧的压缩量为x 0,如图5-5-8所示.物块从钢板正对距离为3 x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动.已知物体质量也为m 时,它们恰能回到O 点,若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度,求物块向上运动到最高点与O 点的距离. 物块从3x 0位置自由落下,与地球构成的系统机械能守恒.则有200213.mv x mg =(1) v 0为物块与钢板碰撞时的的速度.因为碰撞板短,内力远大于外力,钢板与物块间动量守恒.设v 1为两者碰撞后共同速m v 0=2m v 1 (2)两者以v l 向下运动恰返回O 点,说明此位置速度为零。
动量与动能的计算
03
二维运动下动量与动能计 算
平面曲线运动描述
位置矢量
描述物体在平面上的位置 ,用坐标(x, y)表示。
速度矢量
描述物体在平面上的速度 ,包括大小和方向,用矢 量表示。
加速度矢量
描述物体在平面上的加速 度,包括大小和方向,也 用矢量表示。
二维弹性碰撞
碰撞前后动量守恒
在弹性碰撞中,两个物体碰撞前后的总动量保持不变 。
碰撞前后动能守恒
在弹性碰撞中,两个物体碰撞前后的总动能也保持不 变。
碰撞后速度计算
根据动量守恒和动能守恒,可以计算出碰撞后两个物 体的速度。
矢量运算在处理二维问题中应用
矢量加减
在二维平面上,矢量加减遵循平行四边形法则或 三角形法则。
矢量点乘
用于计算两个矢量的点乘,结果是一个标量,表 示两个矢量的相似度。
动能是标量
动能只有大小,没有方 向,是标量。
动能转化
动能可以转化为其他形 式的能量,如势能、热 能等,且总能量保持不 变。
动量与动能关系
动量与动能关系式
对于同一物体,其动量与动能之间存在关系 $E_k=frac{p^2}{2m}$,其中$E_k$为动能,$p$为动量, $m$为质量。
动量与动能的区别
动能守恒
在弹性碰撞中,系统总动能也守恒,即$frac{1}{2}m_1v_1^2 + frac{1}{2}m_2v_2^2 = frac{1}{2}m_1v_1'^2 + frac{1}{2}m_2v_2'^2$。
碰撞结果
根据动量守恒和动能守恒定律,可以求解出碰撞后两物体的速度。在完全弹性碰撞中,两 物体会以相同的速度分离,且速度大小与碰撞前相同但方向相反。
动量定理和动能定理在应用上的区别
动量定理和动能定理在应用上的区别?虽然动量定理和动能定理确是有惊人的相似之处,但细究之下,两者的区别还是十分明显的。
一、概念比较动量定理,冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。
物体所受合力的冲量等于物体的动量变化。
动量定理的矢量性,也就是如何正确理解“合”外力的冲量等于物体“动量的变化”。
尤其是方向的一致性,即合外力的冲量的方向和动量变化量的方向一致。
动能定理,合力所做的功等于物体动能的变化。
动量定理和动能定理都是和物理过程联系在一起的定理,因此在应用它们时,要明确研究对象和物理过程,弄清初状态和末状态。
求解匀变速直线运动时,用牛顿运动定律和运动学公式、动量定理、动能定理都可以;求解瞬时加速度或某一时刻变力的一个值时,要用牛顿定律;求解有变力作用的运动速度、位移、时间、冲量、功等时,要用动量定理或动能定理比较。
二、掌握基本规律1. 动量定理动量定理的表述:物体受到的合外力的冲量,等于物体动量的改变量。
用数学式表达:I=p2- p1。
式中的“-”为矢量减法。
当物体作直线运动并建立了坐标系之后,可以用代数运算代替矢量运算。
要会用动量定理定性分析有关的物理现象。
如:为什么玻璃杯落在水泥地上容易碎,而落在软垫上不易碎。
2. 动能定理(1)对外力对物体做的总功的理解:有的力促进物体运动,而有的力则阻碍物体运动。
因此它们做的功就有正、负之分,总功指的是各外力做功的代数和,总功也可理解为合外力的功。
(2)对该定理标量性的认识:因动能定理中各项均为标量,所以单纯速度方向改变不影响动能大小。
如用细绳拉着一物体在光滑桌面上以绳头为圆心做匀速圆周运动过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,并不因速度方向改变而改变。
(3)对定理中“增加”一词的理解:由于外力做功可正可负,所以物体在一运动过程中动能可增加,也可能减少。
动力学中的粒子运动规律
动力学中的粒子运动规律动力学是研究物体运动的规律和原理的学科,而粒子则是其中一个基本的研究对象。
本文将探讨动力学中粒子运动的规律,并介绍一些常见的粒子运动模型。
一、直线运动在动力学中,直线运动是最简单的一种粒子运动形式。
当粒子在直线上运动时,它的位置可以用一维欧几里得空间中的坐标表示。
粒子在直线上的运动受到力的作用,根据牛顿第二定律,粒子的加速度与作用力成正比,同时与质量成反比。
因此,可以得到粒子的运动方程:F = m * a其中,F 是作用在粒子上的力,m 是粒子的质量,a 是粒子的加速度。
根据运动方程,可以求解出粒子的速度和位移关系。
二、曲线运动曲线运动是动力学中较为复杂的粒子运动形式。
在曲线运动中,粒子的运动轨迹不再是直线,而是一条曲线。
曲线运动的速度和加速度不再保持恒定,而是随时间变化。
曲线运动可以分为两种情况:一种是平面曲线运动,即粒子在平面上的曲线运动;另一种是空间曲线运动,即粒子在三维空间中的曲线运动。
不论是平面曲线运动还是空间曲线运动,其运动规律都可以通过向量和微分方程进行描述。
三、周期性运动周期性运动是指粒子在运动过程中,其运动状态以一定的周期重复出现的运动形式。
在周期性运动中,粒子会绕着某个中心点作圆周运动或者振动。
周期性运动的规律可以通过一些数学模型来描述。
例如,简谐振动就是一种常见的周期性运动模型。
在简谐振动中,粒子的运动满足标准的正弦函数关系,可以用以下的运动方程表示:x(t) = A * sin(ωt + φ)其中,x(t) 是粒子的位移,A 是振幅,ω 是角频率,t 是时间,φ 是初始相位。
周期性运动在物理学和工程学中有着广泛的应用。
例如,钟摆的摆动、地球的绕太阳运动等都属于周期性运动的范畴。
四、碰撞运动在动力学中,粒子的碰撞运动是指粒子之间发生碰撞,从而引起运动状态改变的过程。
在碰撞运动中,粒子的速度和动能会发生变化。
碰撞运动可以分为弹性碰撞和非弹性碰撞两种情况。
(完整版)高中物理二级结论(最新整理)
高三物理——结论性语句及二级结论一、力和牛顿运动定律1.静力学(1)绳上的张力一定沿着绳指向绳收缩的方向.(2)支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G . (3)两个力的合力的大小范围:|F 1-F 2|≤F ≤F 1+F 2.(4)三个共点力平衡,则任意两个力的合力与第三个力大小相等,方向相反,多个共点力平衡时也有这样的特点.(5)两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值.图1(6)物体沿斜面匀速下滑,则tan μα=.2.运动和力(1)沿粗糙水平面滑行的物体:a =μg (2)沿光滑斜面下滑的物体:a =g sin α(3)沿粗糙斜面下滑的物体:a =g (sin α-μcos α) (4)沿如图2所示光滑斜面下滑的物体:(5)一起加速运动的物体系,若力是作用于m 1上,则m 1和m 2的相互作用力为N =m 2Fm 1+m 2,与有无摩擦无关,平面、斜面、竖直方向都一样.(6)下面几种物理模型,在临界情况下,a=g tan α.(7)如图5所示物理模型,刚好脱离时,弹力为零,此时速度相等,加速度相等,之前整体分析,之后隔离分析.(8)下列各模型中,速度最大时合力为零,速度为零时,加速度最大.(9)超重:a 方向竖直向上(匀加速上升,匀减速下降). 失重:a 方向竖直向下(匀减速上升,匀加速下降). (10)系统的牛顿第二定律 x x x x a m a m a m F 332211++=∑(整体法——求系统外力)y y y y a m a m a m F 332211++=∑二、直线运动和曲线运动一、直线运动1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)的常用比例时间等分(T ):①1T 末、2T 末、3T 末、…、nT 末的速度比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).③连续相等时间内的位移差Δx =aT 2,进一步有x m -x n =(m -n )aT 2,此结论常用于求加速度a =ΔxT 2=x m -x nm -n T 2.位移等分(x ):通过第1个x 、第2个x 、第3个x 、…、第n 个x 所用时间比: t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 2.匀变速直线运动的平均速度①v =v t 2=v 0+v 2=x 1+x 22T.②前一半时间的平均速度为v 1,后一半时间的平均速度为v 2,则全程的平均速度:v =v 1+v 22.③前一半路程的平均速度为v 1,后一半路程的平均速度为v 2,则全程的平均速度:v =2v 1v 2v 1+v 2.3.匀变速直线运动中间时刻、中间位置的速度v t2=v =v 0+v 2,v x 2=v 20+v 22. 4.如果物体位移的表达式为x =At 2+Bt ,则物体做匀变速直线运动,初速度v 0=B (m/s),加速度a =2A (m/s 2). 5.自由落体运动的时间t =2hg.6.竖直上抛运动的时间t 上=t 下=v 0g =2H g ,同一位置的速率v 上=v 下.上升最大高度202m v h g= 7.追及相遇问题匀减速追匀速:恰能追上或追不上的关键:v 匀=v 匀减. v 0=0的匀加速追匀速:v 匀=v 匀加时,两物体的间距最大. 同时同地出发两物体相遇:时间相等,位移相等.A 与B 相距Δs ,A 追上B :s A =s B +Δs ;如果A 、B 相向运动,相遇时:s A +s B =Δs .8.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0,如果题干中的时间t 大于t 0,用v 20=2ax 或x =v 0t 02求滑行距离;若t 小于t 0时,x =v 0t +12at 2.9.逐差法:若是连续6段位移,则有: 21234569)()(T x x x x x x a ++-++=二、运动的合成与分解 1.小船过河(1)当船速大于水速时①船头的方向垂直于水流的方向则小船过河所用时间最短,t =dv 船.②合速度垂直于河岸时,航程s 最短,s =d . (2)当船速小于水速时①船头的方向垂直于水流的方向时,所用时间最短,t =dv 船.②合速度不可能垂直于河岸,最短航程s =d ×v 水v 船.2.绳端物体速度分解: 分解不沿绳那个速度为沿绳和垂直于绳三、圆周运动1.水平面内的圆周运动,F=mg tan θ,方向水平,指向圆心.图142.竖直面内的圆周运动图15(1)绳,内轨,水流星最高点最小速度为gR,最低点最小速度为5gR,上下两点拉压力之差为6mg.(2)离心轨道,小球在圆轨道过最高点v min=gR,如图16所示,小球要通过最高点,小球最小下滑高度为2.5R.图16(3)竖直轨道圆周运动的两种基本模型绳端系小球,从水平位置无初速度释放下摆到最低点:绳上拉力F T =3mg ,向心加速度a =2g ,与绳长无关.小球在“杆”模型最高点v min =0,v 临=gR ,v >v 临,杆对小球有向下的拉力. v =v 临,杆对小球的作用力为零. v <v 临,杆对小球有向上的支持力.图17四、万有引力与航天1.重力加速度:某星球表面处(即距球心R ): g =GMR2.距离该星球表面h 处(即距球心R +h 处):g ′=GM r 2=2)(h R GM +. 2.人造卫星:G Mm r 2=m v 2r =mω2r =m 4π2T2r =ma =mg ′.速度 v 2T =,加速度2GMar =<g第一宇宙速度v 1=gR =GMR=7.9 km/s ,211.2km/s v =,316.7km/s v = 地表附近的人造卫星:r =R =6.4×106 m ,v 运=v 1,T =2πRg=84.6分钟. 3.同步卫星T =24小时,h =5.6R =36 000 km ,v =3.1 km/s.4.重要变换式:GM =gR 2(R 为地球半径)5.行星密度:ρ=3πGT 2,式中T 为绕行星表面运转的卫星的周期.6. 卫星变轨: 2143v v v v >>>7.恒星质量: 2324r M GT π=或GgR 2= 8.引力势能:P GMm E r =-,卫星动能 2k GMm E r =,卫星机械能2GMmE r=- 同一卫星在半长轴为a =R 的椭圆轨道上运动的机械能,等于半径为R 圆周轨道上的机械能。
曲线运动知识点总结
曲线运动知识点总结曲线运动是物理学研究中的一个重要概念,它也是大学物理课程必修的一部分。
曲线运动包括了受力作用时的运动类型,比如,摆、滚子或抛体。
本文将以总结形式介绍曲线运动的相关知识,包括曲线运动的定义、曲线运动的性质和曲线运动中的基本概念。
曲线运动是指一个物体沿着曲线运动的场景,最常见的可以是抛物线,圆曲线,双曲线等。
在分析曲线运动的基础上,物理学家研究了曲线运动的物理性质。
曲线运动在位置和速度中都具有非常明显的变化,从而构成了曲线运动的定义。
曲线运动的性质:(1)它具有明显的位置变化,抛物线或圆曲线的运动就是典型例子。
在抛物线运动中,物体首先以一定的加速度在水平方向运动,然后以负加速度在垂直方向上下运动。
(2)它具有明显的速度变化,当物体在某处位置稳定时,它的速度便为零;当物体在某个方向的加速运动时,它的速度逐渐增加;当物体在某个方向的减速运动时,它的速度逐渐减小。
(3)它具有受力作用的特点,受力作用的物体一定不是匀速运动的,也不能假定速度为常量,它的速度将会随着受力作用的大小而不断变化。
曲线运动中的基本知识点:(1)加速度:加速度是指物体运动过程中,其速度变化的速率。
加速度可以是正值,表示物体正在变快;也可以是负值,表示物体正在变慢。
(2)运动轨迹:运动轨迹是一种连续的空间曲线,它表示物体沿着它走过的路径的形状。
(3)动量:动量是物体运动过程中,其运动量的变化。
动量的大小取决于物体的速度和质量。
(4)重力:重力是一种引力,它使得物体在受力作用时减速甚至停止运动。
(5)能量:运动中物体存在多种能量,包括动能和重力能等。
以上就是曲线运动的基本性质和相关知识点的总结。
曲线运动受力作用,其运动轨迹、速度、动量和能量的变化,对于科学家来说有着重要的意义,也是一些大学物理学课程的重要知识点。
本文就是曲线运动的总结,希望能够为读者提供一些帮助。
项目物理知识点总结高中
项目物理知识点总结高中一、运动1. 运动的描述和分解(1) 运动的描述:位置、位移、速度、加速度(2) 直线运动:匀速直线运动、变速直线运动(3) 曲线运动:圆周运动2. 运动的基本规律(1) 牛顿第一定律:惯性定律(2) 牛顿第二定律:力的作用和加速度的大小关系(3) 牛顿第三定律:作用力和反作用力3. 运动的动能和势能(1) 动能:动能公式、动能定理(2) 势能:重力势能、弹簧势能二、能量和动量守恒1. 能量守恒定律(1) 能量守恒与能量转化(2) 机械能守恒2. 动量守恒定律(1) 动量守恒与动量转化3. 定常力下的运动(1) 圆周运动的几何关系(2) 央力场中的低速运动4. 能量和动量守恒在实际中的应用(1) 弹性碰撞和非弹性碰撞(2) 火箭速度转移定律(3) 核反应的能量变化三、机械波1. 机械波的基本特征(1) 机械波和非机械波(2) 波的传播方式和波的分类2. 声波的产生和传播(1) 声源的产生(2) 声波的特征和传播过程3. 光波的产生和传播(1) 光波的电磁理论(2) 光的干涉和衍射4. 波的叠加和干涉(1) 波的叠加原理(2) 波的相长和相消5. 波与容器和障碍物的交互关系(1) 波的反射和折射(2) 波的透射和吸收四、热学1. 宏观和微观角度下的热量(1) 热量的传递方式和热平衡(2) 分子速度和温度的关系2. 热量传导和传热原理(1) 材料导热系数和传热速度(2) 热膨胀和温度变化3. 热学循环和热力学定律(1) 热力学循环过程(2) 热力学定律和温度变化规律4. 热力学定律在实际中的应用(1) 热机效率和制冷原理(2) 热力学定律在工程中的应用五、电学1. 电荷和电场(1) 电荷的基本性质(2) 电场的产生和性质2. 电场中的电势(1) 电场中电势的产生和变化(2) 电势差和电场强度的关系3. 电流和电路(1) 电流的基本概念和分析(2) 电路的结构和特点4. 电磁场和电磁感应(1) 磁场的产生和特性(2) 感生电动势和电磁感应定律六、原子物理1. 原子结构和基本粒子(1) 原子的组成和结构(2) 基本粒子的发现和研究2. 原子核的性质和衰变(1) 原子核的稳定性和衰变规律(2) 放射性元素和放射衰变3. 原子核能和核反应(1) 原子核能的释放和利用(2) 核反应的过程和应用七、现代物理1. 相对论和光电效应(1) 相对论的基本原理和推导(2) 光电效应的基本规律和应用2. 粒子物理和宇宙学(1) 基本粒子的分类和特性(2) 宇宙学的基本原理和研究以上内容是对项目物理知识点的一个总结,包括了运动、能量和动量守恒、机械波、热学、电学、原子物理和现代物理等多个方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动能量和动量
第Ⅰ卷 (选择题共40分)
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,第1~5题只有一个选项正确,第6~10题有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分.
1.如图所示,某河段两岸平行,河水越靠近河中央水流速度越大.一条小船(可视为质点)沿垂直于河岸的方向航行,它在静水中航行速度为v,沿河岸向下及垂直河岸建立直角坐标系xOy,则该船渡河的大致轨迹正确的是 ( )
答案:C
解析:小船在垂直于河岸方向做匀速直线运动,平行河岸方向先做加速运动后做减速运动,因此合速度方向与河岸间的夹角先减小后增大,即运动轨迹的切线方向与x轴的夹角先减小后增大,C项正确.2.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定( )
A.小于拉力所做的功 B.等于拉力所做的功
C.等于克服摩擦力所做的功 D.大于克服摩擦力所做的功
答案:A
解析:A对、B错:由题意知,W拉-W阻=ΔE k,则W拉>ΔE k;
C、D错:W阻与ΔE k的大小关系不确定.
3.如图所示,内壁光滑的半球形碗放在水平面上,将质量不同的A、B两个小球(A球质量小,B球质量大)从碗口两侧同时由静止释放,
B.B球先到达碗底.两球向下滚动的过程中,碗有向左滑动的趋势.两球向下滚动的过程中,碗有向右滑动的趋势
( )
.两种传送带对小物体做功相等
.将小物体传送到B处,两种传送带消耗的电能相等.两种传送带与小物体之间的动摩擦因数甲的大.将小物体传送到B处,两种系统产生的热量相等
=
R+12=G
R+h22
=
( )
日,“卡西尼”在近圆轨道上绕土星运动的角速度小日,“卡西尼”在近圆轨道上绕土星运动的速率大于
.弹簧、木块和子弹组成的系统动量守恒,机械能守恒
.弹簧、木块和子弹组成的系统动量不守恒,机械能不守恒
组成的系统机械能守恒,动量守恒
组成的系统机械能不守恒,动量不守恒
两次碰撞之间所经历的时间一定相等
M=0.4 kg的小车静止在光滑的水平面上,长的轻绳的一端系在小车上的O点,另一端系一质量
现将小球拉到与O点等高的A点,由静止释放后,
后继续向右摆动.取重力加速度大小g
( )
2.4 m/s
点的过程中受到的合外力的冲量大小
设计了如图所示的实验,实验步骤如下:
.将长木板置于水平桌面;B.在一薄木板上标出A、B、
=CD=DE=EF,然后将薄木板倾斜放置于长木板上并形成斜面,斜面的A点与长木板接触;C.将物块分别从斜面上各点由静止释放,并分别记下物块在长木板上停止的
某研究性学习小组利用如图甲所示装置测量弹簧的弹性势能和物块与桌面间的动摩擦因数,实验步骤如下:
①将一长直木板上端斜靠在桌边右端点O,长木板下端固定在水
⑤根据得到一系列的滑块质量m与在长木板上落点与
图象如图乙所示.
数值计算的题,答案中必须明确写出数值和单位.
如图所示,一不可伸长的轻绳一端固定于
的小球,光滑定滑轮
保持轻绳绷直,
设小球静止时与竖直方向夹角为
当小球摆到定滑轮的正下方时,轻绳的弹力为
)
银河系的恒星中大约四分之一是双星.某双星由质
构成,两星在相互之间的万有引力作用下绕两
做匀速圆周运动.由天文观察测得它们的运动周
如图所示,光滑固定斜面倾角θ=30°,一轻质弹簧底端固定,
相连,初始时B静止,
=10 cm处由静止释放,物体
发生碰撞,碰撞时间极短,碰撞后粘在一起,已知碰后
cm至最低点,弹簧始终处于弹性限度内,
求物块滑到B点时对轨道压力的大小;
若平板车上表面粗糙,物块最终没有滑离平板车,求物块最
若将平板车固定且在上表面铺上一种动摩擦因数逐渐增大的物块在平板车上向右滑动时,所受摩擦力f随它距
=+
2
J
物块在平板车上滑动过程中,由动能定理得。