全国第十八届“华罗庚金杯”少年数学邀请赛通知
18届2013年小高组华杯赛竞赛题初赛 决赛A卷 B卷 C卷 完美版
![18届2013年小高组华杯赛竞赛题初赛 决赛A卷 B卷 C卷 完美版](https://img.taocdn.com/s3/m/ab61dd53804d2b160b4ec053.png)
第十八届华罗庚金杯少年邀请赛初赛试题A(小学高年级组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1.2012.25×2013.75-2010.25×2015.75=()。
A.5 B.6 C.7 D.82.2013年的钟声敲响了, 小明哥哥感慨地说: 这是我有生以来第一次将要渡过一个没有重复数字的年份。
已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是()岁。
A.16 B.18 C.20 D.223.一只青蛙8点从深为12米的井底向上爬, 它每向上爬3米, 因为井壁打滑, 就会下滑1米,下滑1米的时间是向上爬3米所用时间的三分之一。
8点17分时, 青蛙第二次爬至离井口3米之处, 那么青蛙从井底爬到井口时所花的时间为()分钟。
A.22 B.20 C.17 D.164.一个盒子里有黑棋子和白棋子若干粒, 若取出一粒黑子, 则余下的黑子数与白子数之比为9:7, 若放回黑子, 再取出一粒白子, 则余下的黑子数与白子数之比为7:5, 那么盒子里原有的黑子数比白子数多()个。
A.5 B.6 C.7 D.85. 右图ABCD 是平行四边形, M 是DC 的中点, E 和F 分别位于AB 和AD上, 且EF 平行于BD 。
若三角形MDF 的面积等于5平方厘米, 则三角形CEB 的面积等于( )平方厘米。
A .5B .10C .15D .206. 水池A 和B 同为长3米, 宽2米, 深1.2米的长方体。
1号阀门用来向A 池注水, 18分钟可将无水的A 池注满; 2号阀门用来从A 池向B 池放水, 24分钟可将A 池中满池水放入B 池。
若同时打开1号和2号阀门, 那么当A 池水深0.4米时, B 池有( )立方米的水。
A .0.9B .1.8C .3.6D .7.2二、填空题(每小题 10 分, 满分40分)7. 小明、小华、小刚三人分363张卡片, 他们决定按年龄比来分。
华罗庚金杯竞赛介绍
![华罗庚金杯竞赛介绍](https://img.taocdn.com/s3/m/525455584b73f242336c5f9c.png)
华罗庚金杯竞赛介绍
1)华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念和学习我国杰出的数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
——全免费
2)“华杯赛”一贯坚持“普及性、趣味性、新颖性”相结合的命题原则。
3)初赛:笔试,由“华杯赛”组委会办公室统一提供试题,在考试前3天内下发试卷电子版,由各参赛单位组织比赛和阅卷。
——近2年,都是在前一年的12月份举行(如2018年的第23届,初赛将于2017年12月9日,通常周六,上午10:00—11:00)。
4)决赛:3月份(星期六)上午10:00—11:30;比例:从参加初赛选手中选拔不超过30%的优胜者进入决赛。
形式:笔试,由“华杯赛”组委会办公室统一提供试题。
要求:在决赛阶段做到全市统一组织、统一阅卷、统一评奖。
学生报名人数及授奖情况——以市级为参赛单位独立统计,如广州市,官方指定“现代中小学生报”承办(组织)初赛和决赛——经费由官方提供,小高组初赛报名人数受总额限制(估计涉及到必要性和经费等)
1)从参加初赛选手中选拔不超过30%的优胜者进入决赛。
2)决赛设个人一、二、三等奖,比例为不超过本市参加决赛人数的36%。
其中:一等奖为不超过参加决赛人数的6%,二等奖不超过12%,三等奖不超过18%。
因此,大概可以认为,初赛总人数的前1.8%可获决赛一等奖(奖状),3.6%可获决赛二等奖(奖状),5.4%可获决赛二等奖(奖状)——奖状由(北京)华罗庚金杯少年数学邀请赛主办方统一提供。
2012年-2017年华罗庚金杯少年数学邀请赛初赛真题合集(小高组)附答案
![2012年-2017年华罗庚金杯少年数学邀请赛初赛真题合集(小高组)附答案](https://img.taocdn.com/s3/m/242f819f69dc5022abea0001.png)
目录第二十二届华罗庚金杯少年数学邀请赛 (1)第二十一届华罗庚金杯少年数学邀请赛 (3)第二十一届华罗庚金杯少年数学邀请赛 (5)第二十届华罗庚金杯少年数学邀请赛 (7)第二十届华罗庚金杯少年数学邀请赛 (9)第十九届华罗庚金杯少年数学邀请赛 (11)第十九届华罗庚金杯少年数学邀请赛 (13)第十八届华罗庚金杯少年数学邀请赛 (15)第十八届华罗庚金杯少年数学邀请赛 (17)第十七届华罗庚金杯少年数学邀请赛 (19)第十七届华罗庚金杯少年数学邀请赛 (21)第二十二届华罗庚金杯少年数学邀请赛答案 (23)第二十一届华罗庚金杯少年数学邀请赛答案 (24)第二十一届华罗庚金杯少年数学邀请赛答案 (25)第二十届华罗庚金杯少年数学邀请赛答案 (26)第二十届华罗庚金杯少年数学邀请赛答案 (27)第十九届华罗庚金杯少年数学邀请赛答案 (28)第十九届华罗庚金杯少年数学邀请赛答案 (29)第十八届华罗庚金杯少年数学邀请赛答案 (30)第十八届华罗庚金杯少年数学邀请赛答案 (31)第十八届华罗庚金杯少年数学邀请赛答案 (32)第十七届华罗庚金杯少年数学邀请赛答案 (33)第十七届华罗庚金杯少年数学邀请赛答案 (34)A B 第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间 2016 年 12 月 10 日 10:00-11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是 7 和 10,那么这两个有限小数的积的整数部分有( )种可能的取值.A .16B .17C .18D .192. 小明家距学校,乘地铁需要 30 分钟,乘公交车需要 50 分钟,某天小明因故先乘地铁,再换乘公交车,用了 40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了( )分钟. A .6 B .8 C .10 D .123. 将长方形 ABCD 对角线平均分成 12 段,连接成右图,长方形 ABCD 内部空白部分面积总和是 10 平方厘米,那么阴影部分面积总和是( )平方厘米.A .14B .16C .18D .204.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是( ).A .2986B .2858C .2672D .27545. 在序列 20170……中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是( )A .8615B .2016C .4023D .20176. 从 0 至 9 选择四个不同的数字分别填入方框中的四个括号中,共有( )种填法使得方框中话是正确的.× 71 0 2罗华金杯ABG FHDEC二、填空题.(每小题 10 分,共 40 分)7. 若( 1 5 245 3— )× 9 2 5 7 ÷ 2 +2.25=4,那么A 的值是 .3 34 1A8. 右图中,“华罗庚金杯”五个汉字分别代表 1-5 这五个不同的数字,将各线段两端点的数字相加得到五个和,共有 种情况使得这五个和恰为五个连续自然数.9. 右图中,ABCD 是平行四边形,E 为 CD 的中点,AE 和 BD 的交点为 F ,AC 和 BE 的交点为 H ,AC 和BD 的交点为 G ,四边形 EHGF 的面积是 15 平方厘米,则 ABCD 的面积是平方厘米.10. 若 2017,1029 与 725 除以 d 的余数均为 r ,那么 d -r 的最大值是 .庚第二十一届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组A 卷) (时间:2015 年 12 月 12 日 10:00~11:00一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. 算式999 9 × 999 9 的结果中含有( )个数字 0.2016个92016个9A .2017B .2016C .2015D .20142. 已知 A ,B 两地相距 300 米.甲、乙两人同时分别从 A 、B 出发,相向而行,在距 A 地 140 米处相遇;如果乙每秒多行 1 米,则两人相遇处距 B 地 180 米.那么乙原来的速度是每秒( )米.A . 2 2B . 2 4C .3D . 3 15 5 53. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,则这个七位数最大是( )A .9981733B .9884737C .9978137D .98717734. 将 1,2,3,4,5,6,7,8 这 8 个数排成一行,使得 8 的两边各数之和相等,那么共有( )种不同的排法. A .1152B .864C .576D .2885. 在等腰梯形 ABCD 中,AB 平行于 CD ,AB =6,CD =14,∠AEC 是直角,CE =CB ,则 AE 2 等于( )A .84B .80C .75D .646. 从自然数 1,2,3,…,2015,2016 中,任意取 n 个不同的数,要求总能在这 n 个不同的数中找到 5个数,它们的数字和相等.那么 n 的最小值等于( ). A .109 B .110 C .111 D .112EABD C二、填空题.(每小题 10 分,共 40 分)AP M O7. 两个正方形的面积之差为 2016 平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有对.8. 如下图,O ,P ,M 是线段 AB 上的三个点,AO = 4 AB ,BP = 2AB ,M 是 AB 的中点,且 OM =2,那5 3么 PM 长为 .9. 设 q 是一个平方数.如果 q -2 和 q +2 都是质数,就称 q 为 p 型平方数.例如,9 就是一个 p 型平方数.那么小于 1000 的最大 p 型平方数是 .10. 有一个等腰梯形的纸片,上底长度为 2015,下底长度为 2016.用该纸片剪出一些等腰梯形,要求剪出的梯形的两底边分别在原来梯形的底边上,剪出的梯形的两个锐角等于原来梯形的锐角,则最多可以剪出 个同样的等腰梯形.第二十一届华罗庚金杯少年数学邀请赛初赛试卷 B (小学高年级组)(时间:2015 年 12 月 12 日 10:00~11:00)一、选择题.(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内) 1. “凑 24 点”游戏规则是:从一副扑克牌中抽去大小王剩下 52 张,(如果初练也可只用 1 至 10 这 40 张牌)任意抽取 4 张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成 24.每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是 3,8,8,9,那么算式为(9- 8)×8×3 或(9-8÷8)×3 等.在下面 4 个选项中,唯一无法凑出 24 点的是( ). A .1,2,2,3 B .1,4,6,7 C .1,5,5,5 D .3,3,7,72. 有一种数,是以法国数学家梅森的名字命名的,它们就是形如 2n -1( n 为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如:22-1=3 就是一个梅森质数.第一个梅森合数是( ).A .4B .15C .127D .20473. 有一种饮料包装瓶的容积是 1.5 升.现瓶里装了一些饮料,正放时饮料高度为 20 厘米,倒放时空余部分的高度为 5 厘米,如下图.那么瓶内现有饮料( )升.A .1B .1.2C .1.25D .1.3754. 已知 a ,b 为自然数, 4 = 1 + 1,那么 a +b 的最小值是( ).15 a bA .16B .20C .30D .65. 如下图,平面上有 25 个点,每个点上都钉着钉子,形成 5×5 的正方形钉阵.现有足够多的橡皮筋,最多能套出( )种面积不同的正方形.A .4B .6C .8D .106. 在一个七位整数中,任何三个连续排列的数字都构成一个能被 11 或 13 整除的三位数,那么这个七位数最大是( ).A .9981733B .9884737C .9978137D .9871773二、填空题.(每小题 10 分,共 40 分)华 杯 赛 三 十 年× 杯 杯今 年 认 真 赛 好今 年 认 真 赛 好 三 十 年 华 杯 赛 好7. 计算:20152+20162-2014×2016-2015×2017= .8. 在下边的算式中,相同汉字代表相同数字,不同汉字代表不同数字.当杯代表 5 时,“华杯赛”所代表的三位数是 .9. 于 2015 年 10 月 29 日闭幕的党的十八届五中全会确定了允许普遍二孩的政策.笑笑的爸爸看到当天的新闻后跟笑笑说:我们家今年的年龄总和是你年龄的 7 倍,如果明年给妳添一个弟弟或妹妹,我们家 2020 年的年龄总和就是你那时年龄的 6 倍.那么笑笑今年 岁.10. 教育部于 2015 年 9 月 21 日公布了全国青少年校园足球特色学校名单,笑笑所在的学校榜上有名.为 了更好地备战明年市里举行的小学生足球联赛,近期他们学校的球队将和另 3 支球队进行一次足球友 谊赛.比赛采用单循环制(即每两队比赛一场),规定胜一场得 3 分,负一场得 0 分,平局两队各得 1分;以总得分高低确定名次,若两支球队得分相同,就参考净胜球、相互胜负关系等决定名次.笑笑学校的球队要想稳获这次友谊赛的前两名,至少要得 分.第二十届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 现在从甲、乙、丙、丁四个人中选出两个人参加一项活动,规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的两个人是( )A .甲、乙B .乙、丙C .甲、丙D .乙、丁2. 以平面上任意 4 个点为顶点的三角形中,钝角三角形最多有( )个.A .5B .2C .4D .33. 桌上有编号 1 至 20 的 20 张卡片,小明每次取出 2 张卡片,要求一张卡片的编号是另一张卡片的 2 倍多 2,则小明最多取出( )张卡片. A .12B .14C .16D .184. 足球友谊比赛的票价是 50 元,赛前一小时还有余票,于是决定降价,结果售出的票增加了三分之一, 而票房收入增加了四分之一,那么每张票售价降了( )元.A .10B . 25C . 50D .25235. 一只旧钟的分针和时针每重合一次,需要经过标准时间 66 分,那么,这只旧钟的 24 小时比标准时间的 24 小时( ).A .快 12 分B .快 6 分C .慢 6 分D .慢 12 分6. 在下图的 6×6 方格内,每个方格中只能填 A 、B 、C 、D 、E 、F 中的某个字母,要求每行、每列、每个标有粗线的 2×3 长方形的六个字母均不能重复.那么,第四行除了首尾两个方格外,中间四个方格填入的字母从左到右的顺序是( ).A .E 、 C 、 D 、 FB .E 、D 、C 、FC .D 、 F 、 C 、E D .D 、C 、F 、EB CA B D ABCE二、填空题(每小题 10 分,共 40 分) - - - = AFDPBEC7. 计算4811 + 265 1 + 904 129 41 55184160 7036 12 2030 42 568. 过正三角形 ABC 内一点 P ,向三边作垂线,垂足依次为 D 、E 、F ,连接 AP 、BP 、CP .如果正三角形ABC 的面积是 2028 平方厘米,三角形 PAD 和三角形 PBE 的面积都是 192 平方厘米,则三角形 PCF的面积为平方厘米.9. 自然数 2015 最多可以表示成 个连续奇数的和.10. 由单位正方形拼成的 15×15 网格,以网格的格点为顶点作边长为整数的正方形,则边长大于 5 的正方形有 个.第二十届华罗庚金杯少年数学邀请赛A BED H C 初赛 C 试卷(小学高年级组)(时间:2015 年 3 月 14 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:( 9 - 11 + 13 - 15 + 17 )×120- 1 ÷ 1=( )20 30 42 56 72 3 4A .42B .43C .15 1D .16 2332. 如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成 45 度角.最高的小树高 2.8 米,最低的小树高 1.4 米,那么从左向右数第 4 棵树的高度是( )米.A .2.6B .2.4C .2.2D .2.03. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生,事后,甲、乙、丙、丁 4 位同学有如下的对话: 甲:“丙、丁之中至少有 1 人捐了款.” 乙:“丁、甲之中至多有 1 人捐了款.” 丙:“你们 3 人中至少有 2 人捐了款.” 丁:“你们 3 人中至多有 2 人捐了款.” 已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ).A .甲、乙B .丙、丁C .甲、丙D .乙、丁4. 六位同学数学考试的平均成绩是 92.5 分,他们的成绩是互不相同的整数,最高的 99 分,最低的 76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94 B .95 C .96D .975. 如图,BH 是直角梯形 ABCD 的高,E 为梯形对角线 AC 上一点;如果△DEH 、△BEH 、△BCH 的面积依次为 56、50、40,那么△CEH 的面积是( ).A .32B .34C .35D .366. 一个由边长为 1 的小正方形组成的n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4 个角上的小正方形不全同色,那么正整数 n 的最大值是( ).A .3B .4C .5D .645°二、填空题(每小题10 分,共40 分)7.在每个格子中填入1 至6 中的一个,使得每行、每列及每个2×3 长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是3 月 1 4相约华杯8.整数n 一共有10 个约数,这些约数从小到大排列,第8 个数是n.那么整数n 的最大值是39.在边长为300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是厘米.(π取3.14)10.A 地、B 地、C 地、D 地依次分布在同一条公路上,甲、乙、丙三人分别从A 地、B 地C 地同时出发,匀速向D 地行进.当甲在C 地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9 分钟,乙也追上了丙,这时乙的速度减少25%;乙追上丙后再行50 米,三人同时到D 地.已知乙出发时的速度是每分钟60 米,那么甲出发时的速度是每分钟米,A、D 两地间的路程是米.第十九届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 某次考试有 50 道试题,答对一道题得 3 分,答错一道题扣 1 分,不答题不得分.小龙得分 120 分,那么小龙最多答对了( )道试题.A .40B .42C .48D .503. 用左下图的四张含有 4 个方格的纸板拼成了右下图所示的图形.若在右下图的 16 个方格分别填入 1、3、5、7(每个方格填一个数),使得每行、每列的四个数都不重复,且每个纸板内四个格子里的数也不重复,那么 A 、B 、C 、D 四个方格中数的平均数是( ).A . 4B . 5C D .74. 小明所在班级的人数不足 40 人,但比 30 人多,那么这个班男、女生人数的比不可能是( ).A .2︰3B .3︰4C .4︰5D .3︰75. 某学校组织一次远足活动,计划 10 点 10 分从甲地出发,13 点 10 分到达乙地,但出发晚了 5 分钟, 却早到达了 4 分钟.甲、乙两地之间的丙地恰好是按照计划时间到达的,那么到达丙地的时间是( ). A .11 点 40 分 B .11 点 50 分 C .12 点 D .12 点 10 分6. 如图所示,AF =7cm ,DH =4cm ,BG =5cm ,AE =1cm .若正方形 ABCD 内的四边形 EFGH 的面积为78 平方厘米,则正方形的边长为( )cm .A .10B .11C .12D .13ABA EDHF BC二、填空题(每小题 10 分,共 40 分)甲 乙7. 五名选手 A 、B 、C 、D 、E 参加“好声音”比赛,五个人站成一排集体亮相.他们胸前有每人的选手编号牌,5 个编号之和等于 35.已知站在 E 右边的选手的编号和为 13;站在 D 右边的选手的编号和为 31;站在 A 右边的选手的编号和为 21;站在 C 右边的选手的编号和为 7.那么最左侧与最右侧的选手编号之和是 .8. 甲、乙同时出发,他们的速度如下图所示,30 分钟后,乙比甲一共多行走了米.9. 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成方体(经过旋转得到相同的正方体视为同一种情况).种不同的 2×2×2 的正10. 在一个圆周上有 70 个点,任选其中一个点标上 1,按顺时针方向隔一个点的点上标 2,隔两个点的点上标 3,再隔三个点的点上标 4,继续这个操作,直到 1,2,3,…,2014 都被标记在点上.每个点可 能不止标有一个数,那么标记了 2014 的点上标记的最小整数是分分5 10 15 202530 5 10 15 202530第十九届华罗庚金杯少年数学邀请赛初赛 B 试卷(小学高年级组)(时间:2014 年 3 月 15 日 8:00—9:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 平面上的四条直线将平面分割成八个部分,则这四条直线中至多有( )条直线互相平行.A .0B .2C .3D .42. 在下列四个算式中: AB ÷ CD =2,E ×F =0,G -H =1,I +J =4,A ~J 代表 0~9 中的不同数字,那么两位数 AB 不可能是( ). A .54 B .58 C .92 D .963. 淘气用一张正方形纸剪下了一个最大的圆(如图甲),笑笑用一张圆形纸剪下了七个相等的最大圆(如图乙),在这两种剪法中,哪种剪法的利用率最高?(利用率指的是剪下的圆形面积和占原来图形面积的百分率)下面几种说法中正确的是( ).A .淘气的剪法利用率高B .笑笑的剪法利用率高C .两种剪法利用率一样D .无法判断4. 小华下午 2 点要到少年宫参加活动,但他的手表每个小时快了 4 分钟,他特意在上午 10 点时对好了表.当小华按照自己的表于下午 2 点到少年宫时,实际早到了( )分钟.A .14B .15C .16D .175. 甲、乙、丙、丁四个人今年的年龄之和是 72 岁.几年前(至少一年)甲是 22 岁时,乙是 16 岁.又知道,当甲是 19 岁的时候,丙的年龄是丁的 3 倍(此时丁至少 1 岁).如果甲、乙、丙、丁四个人的年龄互不相同,那么今年甲的年龄可以有( )种情况.A .4B .6C .8D .106. 有七张卡片,每张卡片上写有一个数字,这七张卡片摆成一排,就组成了七位数 2014315.将这七张卡片全部分给了甲、乙、丙、丁四人,每人至多分 2 张.他们各说了一句话: 甲:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 8 的倍数.” 乙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数仍不是 9 的倍数.” 丙:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 10 的倍数.” 丁:“如果交换我卡片上的 2 个数字在七位数中的位置,那么新的七位数就是 11 的倍数.” 已知四个人中恰好有一个人说了谎,那么说谎的人是( ).A .甲B .乙C .丙D .丁甲 乙二、填空题(每小题 10 分,共 40 分)13 ÷ 3 + 3 ÷ 2 1 + 17. 算式 1007× 4 44 3 ÷19 的计算结果是 .(1 + 2 + 3 + 4 + 5)⨯ 5 - 228. 海滩上有一堆栗子,这是四只猴子的财产,它们想要平均分配,第一只猴子来了,它左等右等别的猴子都不来,便把栗子分成四堆,每堆一样多,还剩下一个,它把剩下的一个顺手扔到海里,自己拿走了四堆中的一堆.第二只猴子来了,它也没有等到别的猴子,于是它把剩下的栗子等分成四堆,还剩下一个,它又扔掉一个,自己拿走一堆.第三只猴子也是如此,等分成四堆后,把剩下的一个扔掉, 自己拿走一堆;而最后一只猴子来,也将剩下的栗子等分成了四堆,扔掉多余的一个,取走一堆.那 么这堆栗子原来至少有 个.9. 甲、乙二人同时从 A 地出发匀速走向 B 地,与此同时丙从 B 地出发匀速走向 A 地.出发后 20 分钟甲与丙相遇,相遇后甲立即掉头;甲掉头后 10 分钟与乙相遇,然后甲再次掉头走向 B 地.结果当甲走到 B 地时,乙恰走过 A 、B 两地中点 105 米,而丙离 A 地还有 315 米.甲的速度是乙的速度的 倍,A 、B 两地间的路程是 米.10. 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组成的等差数列中包含 1 的有 种取法;总共有 种取法.第十八届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.) 1. 2012.25×2013.75-2010.25×2015.75=( )A .5B .6C .7D .82. 2013 年的钟声敲响了,小明哥哥感慨地说:这是我有生以来第一次将要渡过一个没有重复数字的年份.已知小明哥哥出生的年份是 19 的倍数,那么 2013 年小明哥哥的年龄是( )岁.A .16B .18C .20D .223. 一只青蛙 8 点从深为 12 米的井底向上爬,它每向上爬 3 米,因为井壁打滑,就会下滑 1 米,下滑 1 米的时间是向上爬 3 米所用时间的三分之一.8 点 17 分时,青蛙第二次爬至离井口 3 米之处,那么青蛙从井底爬到井口时所花的时间为( )分钟.A .22B .20C .17D .164. 一个盒子里有黑棋子和白棋子若干粒,若取出一粒黑子,则余下的黑子数与白子数之比为 9︰7,若放回黑子,再取出一粒白子,则余下的黑子数与白子数之比为 7︰5,那么盒子里原有的黑子数比白子数多( )个.A .5B .6C .7D .85. 图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF 平行于 BD .若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )平方厘米.A .5B .10C .15D .206. 水池 A 和 B 同为长 3 米,宽 2 米,深 1.2 米的长方体.1 号阀门用来向 A 池注水,18 分钟可将无水的A 池注满;2 号阀门用来从 A 池向B 池放水,24 分钟可将 A 池中满池水放入 B 池.若同时打开 1 号和2 号阀门,那么当 A 池水深 0.4 米时,B 池有( )立方米的水.A .0.9B .1.8C .3.6D .7.2D F MCAEB二、填空题(每小题 10 分,共 40 分)D E AFB7. 小明、小华、小刚三人分 363 张卡片,他们决定按年龄比来分.若小明拿 7 张,小华就要拿 6 张;若小刚拿 8 张,小明就要拿 5 张.最后,小明拿了 张;小华拿了张.张;小刚拿了8. 某公司的工作人员每周都工作 5 天休息 2 天,而公司要求每周从周一至周日,每天都至少有 32 人上班,那么该公司至少需要名工作人员.9. 如图,AB 是圆 O 的直径,长 6 厘米,正方形 BCDE 的一个顶点 E 在圆周上,∠ABE =45°.那么圆 O中非阴影部分的面积与正方形 BCDE 中非阴影部分面积的差等于 平方厘米(取 π=3.14)10. 圣诞老人有 36 个同样的礼物,分别装在 8 个袋子中.已知 8 个袋子中礼物的个数至少为 1 且各不相 同.现要从中选出一些袋子,将选出的袋子中的所有礼物平均分给 8 个小朋友,恰好分完(每个小朋 友至少分得一个礼物).那么,共有 种不同的选择.第十八届华罗庚金杯少年数学邀请赛AB 初赛 B 试卷(小学高年级组)(时间:2013 年 3 月 23 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 一个四位数,各位数字互不相同,所有数字之和等于 6,并且这个数是 11 的倍数,则满足这种要求的四位数共有( )个.A .6B .7C .8D .92. 2+2×3+2×3×3+……+2× 3 ⨯ 3 ⨯⨯ 3 个位数字是( ). 9个3A .2B .8C .4D .63. 在下面的阴影三角形中,不能由下图中左面的阴影三角形经过旋转、平移得到的是图( )中的三角形.ABCD4. 某日,甲学校买了 56 千克水果糖,每千克 8.06 元.过了几日,乙学校也需要买同样的 56 千克水果糖,不过正好赶上促销活动,每千克水果糖降价 0.56 元,而且只要买水果糖都会额外赠送 5%同样的水果糖.那么乙学校将比甲学校少花( )元.A .20B .51.36C .31.36D .10.365. 甲、乙两仓的稻谷数量一样,爸爸、妈妈和阳阳单独运完一仓稻谷分别需要 10 天、12 天和 15 天.爸爸、妈妈同时开始分别运甲、乙两仓的稻谷,阳阳先帮妈妈,后帮爸爸,结果同时运完两仓稻谷.那么阳阳帮妈妈运了( )天. A .3B .4C .5D .66. 如图,将长度为 9 的线段 AB 分成 9 等份,那么图中所有线段的长度的总和是( ).A .132B .144C .156D .165二、填空题(每小题10 分,共40 分)7.将乘积0.2˙43˙×0.32˙5233˙化为小数,小数点后第2013 位的数字是.8.一只青蛙8 点从深为12 米的井底向上爬,它每向上爬3 米,因为井壁打滑,就会下滑1 米,下滑1 米的时间是向上爬3 米所用时间的三分之一.8 点17 分时,青蛙第二次爬至离井口3 米之处,那么青蛙从井底爬到井口时所花的时间为分钟.9.一个水池有三个进水口和一个出水口.同时打开出水口和其中的两个进水口,注满整个水池分别需要6 小时、5 小时和4 小时;同时打开出水口和三个进水口,注满整个水池需要3 小时.如果同时打开三个进水口,不打开出水口,那么注满整个水池需要小时.10.九个同样的直角三角形卡片,用卡片的锐角拼成一圈,可以拼成类似下图所示的平面图形.这种三角形卡片中的两个锐角中较小的一个的度数有种不同的可能值.(下图只是其中一种可能的情况)第十七届华罗庚金杯少年数学邀请赛初赛 A 试卷(小学高年级组)(时间:2012 年 3 月 17 日 10:00—11:00)一、选择题(每小题 10 分,共 60 分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1. 计算:[(0.8+ 1 )×24+6.6]÷ 9-7.6=( ).5 14A .30B .40C .50D .602. 以平面上 4 个点为端点连接线段,形成的图形中最多可以有( )个三角形.A .3B .4C .6D .83. 一个奇怪的动物庄园里住着猫和狗,狗比猫多 180 只.有 20%的狗错认为自己是猫;有 20%的猫错认为自己是狗.在所有的猫和狗中,有 32%认为自己是猫,那么狗有( )只.A .240B .248C .420D .8424. 下图的方格纸中有五个编号为 1,2,3,4,5 的小正方形,将其中的两个涂上阴影,与图中阴影部分正好组成正方体的展开图,这两个正方形的编号可以是( )A .1,2B .2,3C .3,4D .4,55. 在下图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是( ) A .369B .396C .459D .5496. 下图是由相同的正方形和相同的等腰直角三角形构成,则正方形的个数为( )A .83B .79C .72D .651 253 4A B C + D E F H IJ二、填空题(每小题 10 分,共 40 分)百十个百 十 个A EC HFB7. 如图的计数器三个档上各有 10 个算珠,将每档算珠分成上下两部分,得到两个三位数.要求上面部分是各位数字互不相同的三位数,且是下面三位数的倍数,则上面部分的三位数是.8. 四支排球队进行单循环比赛,即每两队都要赛一场,且只赛一场.如果一场比赛的比分是 3:0 或 3:1.则胜队得 3 分,负队得 0 分;如果比分是 3:2,则胜队得 2 分,负队得 1 分.比赛的结果各队得分恰好是四个连续的自然数,则第一名的得分是 分.9. 甲、乙两车分别从 A 、B 两地同时出发,且在 A 、B 两地往返来回匀速行驶.若两车第一次相遇后,甲车继续行驶 4 小时到达 B ,而乙车只行驶了 1 小时就到达 A ,则两车第 15 次(在 A ,B 两地相遇次数不计)相遇时,它们行驶了 小时.10. 正方形 ABCD 的面积为 9 平方厘米,正方形 EFGH 的面积为 64 平方厘米.如图所示,边 BC 落在 EH上.己知三角形 ACG 的面积为 6.75 平方厘米,则三角形 ABE 的面积为 平方厘米.。
第十八届华杯赛
![第十八届华杯赛](https://img.taocdn.com/s3/m/d1176763af1ffc4ffe47ac32.png)
第十八届“华罗庚金杯”少年数学邀请赛天津赛区报名通知
第十八届全国“华罗庚金杯”少年数学邀请赛将于2013年3月如期举行。
天津市晟嘉培训中心作为“华罗庚金杯”少年数学邀请赛天津地区管委会,现将本次大赛的相关事宜通知如下,诚邀同学们积极报名参加。
一、活动宗旨
弘扬华罗庚教授的爱国主义精神,学习华罗庚教授勤奋学习、献身科学的优秀品质;激发广大中、小学生学习数学的兴趣、提高数学素质、开发智力、培养人才。
二、参赛原则:自愿参赛。
三、组别设置
小学中年级组:三、四年级小学高年级组:五、六年级
初中一年级组:七年级学生初中二年级组:八年级学生。
四、参赛对象:三至八年级学生
五、赛程安排
初赛:2013年3月23日(星期六)上午10:00—11:00
决赛:2013年4月20日(星期六)上午10:00—11:30
总决赛:2013年7月(待定)
六、报名办法
1.报名截止日期:2012年12月22日至2013年1月20日17:00止,逾期不予受理。
2.报名费:免费
3.考生报名时须认真填写《报名登记表》,其表内各项信息要真实准确,不得误填漏填。
由此带来的不良后果考生自行承担。
4.报名时请提交:(1)考生有效证件(身份证或户口簿)的复印件一份。
(2)考生近期一寸彩色免冠证件照(背景为任意纯色)3张,(其中一张贴在报名表上,另两张请在照片背面写上考生的姓名、年级、组别)。
5.准考证领取日期:请及时关注晟嘉网站相关信息。
第十八届华杯赛考试说明考前必读
![第十八届华杯赛考试说明考前必读](https://img.taocdn.com/s3/m/ea78e41e0b4e767f5acfce3b.png)
第十八届华罗庚金杯少年数学邀请赛考前必读zhanglongjun【杯赛宗旨】教育广大青少年从小学习和弘扬华罗庚教授的爱国主义思想、刻苦学习的品质、热爱学习的精神;激发广大中小学生学习数学的兴趣,开发智力,普及数学科学。
【比赛时间】初赛:2013年3月23日(星期六)决赛:2013年4月20日(星期六)【命题原则】普及性、趣味性和新颖性。
普及性:要求试题要面向小学和初一绝大多数学生,使他们用相应阶段的知识就可以给出试题的解答。
趣味性:要求试题能启迪同学的数学兴趣,有益于提高应用数学知识去解决实际问题的能力,在潜移默化中理解数学的重要作用。
新颖性:要求试题中数学的内核是基础的知识,但是内容或形式上要有所创新。
【命题范围】一、小学中年级组(三、四年级)1、数。
整数的四则运算、运算定律、简便计算,等差数列求和,整除概念,数的整除特征,带余除法,平均数,整数的奇偶性质,小数的意义、性质和加减法,分数的初步认识(不要求运算) ,数位,十进制表示法。
2、几何。
基本图形,图形的拼组(分、合、移、补),图形的变换,折叠与展开, 角的概念和度量,长方形、正方形的周长和面积,平行四边形、梯形的概念和周长计算,轴对称现象、画对称轴。
3、应用题。
植树问题, 年龄问题, 鸡兔同笼, 盈亏问题, 行程问题。
4、几何计数(数图形)。
加法原理,乘法原理,抽屉原理,找规律,归纳,统计,数字谜。
5、生活数学。
钟表,时间,人民币,位置与方向,长度、质量的单位。
二、小学高年级组(五、六年级)1、数。
整数、分数、小数概念和性质,四则运算,速算,数列(等比、等差),取整运算,新运算,数字谜, 数阵图。
2、数论。
约数,倍数,质数,合数,质因数分解,最大公约数,最小公倍数,互质,奇偶,整除带余除法,抽屉原理。
3、应用题。
植树、和差、倍数、盈亏、鸡兔同笼、平均、归一、还原、年龄、行程、钟表、工程、溶液等问题,简易方程。
4、平面几何。
简单平面图形(点、直线、线段、圆、圆弧、角、三角形、四边形、多边形),对称,勾股定理,图形的度量。
奥数四大杯赛介绍
![奥数四大杯赛介绍](https://img.taocdn.com/s3/m/aa80046ca0116c175e0e483e.png)
1、华杯赛权威性:★★★★★难易度:★★★★☆参赛对象:小学五、六年级学生、初中一年级学生初赛时间:每年3月中、下旬复赛时间:每年4月中、下旬全国总决赛:一般每年七月份在广东省举行,由于总决赛时间太晚,故对小升初作用不大。
竞赛特色:设置主观题,第十一届以前初赛通过电视直播的形式进行考核,从十一届开始开始采取试卷答题。
报名截止时间:每年12月底华罗庚金杯少年数学邀请赛(简称“华杯赛”)是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动,由中国少年报社(现为中国少年儿童新闻出版社)、中国优选法、统筹法与经济数学研究会、中央电视台青少中心等单位联合发起主办的。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
第一届华杯赛甚至在人民大会堂颁奖,其权威性可见一斑!但比较尴尬的是由于华杯难度大,进入复赛和总决赛的人数较少,就小升初角度来说,华杯参考范围也就相对小了很多。
因此现在很多家长觉得华杯赛对小升初作用不大,其实这绝对是一个误解。
华杯赛获奖对小升初作用非常大,只是获奖难度较大、人数较少而已。
所以事实上只要您的孩子奥数够强,华杯赛将是他证明奥数能力的最优途径。
有一个最好的证明就是:人大附中每年都要抄录华杯赛复赛一等奖名单,然后私下联系签约!华杯赛作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
2008年华杯赛北京赛区一、二、三等奖的获奖同学受到了人大附中、北京四中、实验中学、清华附中、101中学等名校的青睐,甚至单凭优异的华杯赛获奖成绩就可以顺利进入这些名校。
2、走进美妙的数学花园(3-6年级)权威性:★★★★☆举办方:中国少年科学院;中国青少年发展服务中心;全国“青少年走进科学世界”科普活;动指导委员会办公室;走进美妙的数学花园”中国青少年数学论坛组委会。
难易度:★★★★★参赛对象:从小学三年级到初中三年级学生笔试时间:每年3月中、上旬获奖率:一等奖5%,二等奖10%,三等奖15%。
五大奥数比赛
![五大奥数比赛](https://img.taocdn.com/s3/m/3de9f074aef8941ea66e0579.png)
“华罗庚金杯”少年数学邀请赛(难度星级★★★★)“华杯赛”是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
参赛时间:初赛在每年3月初;复赛在每年4月初。
总决赛在7月进行;进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)。
参赛年级:小学组(五、六年级)、初中组(初一年级)杯赛特色及作用:1、“华杯赛”是唯一一个具有初赛、复赛、总决赛三轮严格选拔的全国性数学赛事。
2、“华杯赛”是唯一一个具有多项配套活动的系列数学竞赛。
包括全国总决赛、“两岸四地华杯精英赛”、“华杯冬令营”等活动3、“华杯赛”作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
华杯赛初赛考试时间短、题量少、难度低,难度梯度也小,所以考试平均分偏高,进入复赛分数线也高。
但是华杯决赛试题梯度宽、难度大,题量多,所以考试时间也长(一个半小时),但是华杯赛的的奖项含金最高、升学保障最稳,赛题水准最高、决赛规模最大。
“华杯赛”是优秀中小学生必参与、重点中学必关注、小升初必参考的重大赛事之一。
数学解题能力展示(迎春杯)(难度星级★★★★★)“迎春杯”是北京市的一项传统中小学赛事,对激发学生学习数学的兴起,发现优秀的数学特长生,推动北京中、小学数学教学改革等主面都起了很大的作用。
后更名为数学解题能力展示。
参赛时间:初赛在每年的12月初复赛在第二年的2月初参赛年级:小学中年级组(三、四年级)学生、小学高年级组(五、六年级)学生。
杯赛特色及作用:1、低年级夺奖难度降低:很多低年级家长并没有意识到竞争的压力,此时如果能够先人一步,在竞赛奖项上取得一些优异的成绩,不仅可以增加竞争的砝码,更重要的是可以增加孩子的学习信心,提高学习的兴趣,进而获得持续的进步空间。
2、迎春杯是很多重要比赛的资格赛:如去年参加的“华杯赛”两岸四地的精英邀请赛、走美的全国总决赛、日本算术奥林匹克等国内国际的比赛,其参赛标准就是需要获得迎春杯三等奖以上的成绩。
18届华杯赛七年级试题(ab卷)卷 初赛 决赛综合版讲课教案
![18届华杯赛七年级试题(ab卷)卷 初赛 决赛综合版讲课教案](https://img.taocdn.com/s3/m/575c624c964bcf84b9d57b60.png)
2013年18届华杯赛七年级试题(A B卷)卷初赛决赛综合版第十八届华罗庚金杯少年邀请赛初赛试题A (初一组)(时间2013年3月23日10:00~11:00)一、选择题(每题10分,满分60分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1. 下列的结论中, 正确的有( )个:① 两个正数的和一定是正数; ② 两个正数的差可以是正数;③ 两个负数的和一定是负数; ④ 两个负数的差可以是负数。
A .1B .2C .3D .42. 从—6,—4,—3,—2,—1,3,6中任取两个数相乘, 所得积中的最大值记为a , 最小值记为b , 那么b a 的值为( )。
A .32- B .43- C .-1 D .323.将••••⨯352323.0342.0乘积化为小数, 小数点后第2014位数字是( )。
A .0B .7C .9D .14.如果a 、b 、c 都是大于21-的负数, 那么下列式子成立的是( )。
A .a+c-b<0B .a 2-b 2-c 2>0C .abc>81-D .∣abc ∣81>5.在方格的每个格中填上数字1,2,3,4中的一个, 要求每行、每列和每条对角线上所填的数字各不相同。
右图中已经填好了3个数字,请完成填数, 那么两个阴影方格中所填数的乘积最小值为( )。
A .5B .4C .3D .26.满足不等式m 3n 532<<的有序整数对(m ,n )的个数是( ) A .12B .13C .14D .15二、填空题(每小题 10 分, 满分40分)7. 如果x=3,y=1时, 代数式ax+by 的值等于9, 那么x=-3,y=-1时代数式ax+by+9的值等于________.8.一个水池有甲、乙、丙三个进水口和一个出水口。
同时打开出水口和其中的两个进水口, 注满整个水池分别需要6小时、5小时和4小时;同时打开出水口和三个进水口, 注满整个水池需要3小时。
“华罗庚金杯”少年数学邀请赛(口试)试题1-10届
![“华罗庚金杯”少年数学邀请赛(口试)试题1-10届](https://img.taocdn.com/s3/m/64d188acdd3383c4bb4cd2b3.png)
华罗庚金杯少年数学邀请赛口试试题第01届华罗庚金杯少年数学邀请赛口试试题1. 这是七巧板拼成的正方形,正方形边长20厘米,问七巧板中平行四边形的一块(如右图中阴影部分)的面积是多少?2.从所有分母小于10的真分数中,找出一个最接近0.618的分数。
3.有49个小孩子,每人胸前有一个号码,号码从1到49各不相同,请你挑选出若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,你最多能挑选出多少个小孩子?4.有一路公共汽车,包括起点和终点站共有15个车站,如果有一辆车,除终点到站外,每一站上车的乘客中,恰好各有一位乘客从这一站到以后的每一站,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?5.正方形的树林每边长1000米,里面有白杨树和榆树,小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰见一株榆树就往正东走,最后他走了东北角上,问:小明一共走了多少米的距离?6.自然数按从小到大的顺序排成螺旋形,在2处拐第一个弯,在3处拐第二个弯,在5处拐第三个弯……问拐第二十个弯的地方是哪一个数?第02届华罗庚金杯少年数学邀请赛口试试题1、如下图是一个对称的图形,黑色部分面积大还是阴影部分面积大?2、你能不能将自然数1到9分别填入右面的方格中,使得每个横格中的三个数之和都是偶数?3、司机开车按顺序到五个车站接学生到学校(如下图),每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,车到学校时,车上最少有多少学生?4、如图中五个正方形的边长分别是1米、2米、3米、4米、5米。
问:白色部分面积与阴影部分面积之比是多少?5、用1、2、3、4、5这五个数两两相乘,可以得到10个不同的乘积,问乘积中是偶数多还是奇数多?6、7、将右边的硬纸片沿虚线折起来,便可作成一个正方体,问:这个正方体的2号面对面是几号面?(如下图)8、下面是一个11位数,它的每三个相邻数之和都是20,你知道打“?”的数字是几?9、有八张卡片,右图分别写着自然数1到8,从中取出三张,要使这三张卡片上的数字之和为9,问有多少种不同的取法?第03届华罗庚金杯少年数学邀请赛团体决赛口试1.一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如右图阴影所示部分,红条宽都是2厘米.问:这条手帕白色部分的面积是多少?2.伸出你的左手,从大拇指开始如图所示的那样数数字,1,2,3,……,问:数到1991时,你数在那个手指上?3.有3个工厂共订300份吉林日报,每个工厂订了至少99份,至多101份.问:一共有多少种不同的订法?4.图上有两条垂直相交的直线段AB、CD,交点为E(如下图).已知:DE=2CE,BE=3AE.在AB和CD上取3个点画一个三角形.问:怎样取这3个点,画出的三角形面积最大?5.如下图中有两个红色的圆,两个蓝色的圆,红色圆的直径分别是1992厘米和1949厘米,蓝色圆的直径分别是1990厘米和1951厘米.问:红色二圆面积大还是蓝色二圆面积大?6.在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来(如下图),填在这个方格中,例如a=5+3=8.问:填入的81个数字中,奇数多还是偶数多?7.能不能在下式:1□2□3□4□5□6□7□8□9=10的每个方框中,分别填入加号或减号,使等式成立?8.把一个时钟改装成一个玩具钟(如右图),使得时针每转一圈,分针转16圈,秒针转36圈.开始时3针重合.问:在时针旋转一周的过程中,3针重合了几次?(不计起始和终止的位置).9.将1,2,3,4,5,6,7,8这8个数分成3组,分别计算各组数的和.已知这3个和互不相等,且最大的和是最小的和的2倍.问:最小的和是多少?10.这是一个棋盘,将一个白子和一个黑子放在棋盘线交叉点上,但不能在同一条棋盘线上.问:共有多少种不同的放法(如下图)?11.这是两个圆,它们的面积之和为1991平方厘米,小圆的周长是大圆周长的90%(如右图).问:大圆的面积是多少?12.有一根1米长的木条,第一次去掉它的,第二次去掉余下木条的;第三次又去掉第二次余下木条的,等等;这样一直下去,最后一次去掉上次余下木条的.问:这根木条最后还剩下多长?13.这是一个楼梯的截面图(如下图),高2.8米,每级台阶的宽和高都是20厘米.问:此楼梯截面的面积是多少?14.请找出6个不同的自然数,分别填入6个括号中,使这个等式成立.第04届华罗庚金杯少年数学邀请赛团体决赛口试1.2×3×5×7×11×13×17这个算式中有七个数连乘,请回答:最后得到的乘积中,所有数位上的数字和是多少?请讲一讲你是怎样算的?2.这是一个中国象棋盘(图中小方格都是相等的正方形,“界河”的宽等于小正方形边长),黑方有一个“象”,它只能在1,2,3,4,5,6,7位置中的一个,红方有两个“相”,它们只能在8,9,10,11,12, 13,14中的两个位置.问:这三个棋子(一个“象”和两个“相”)各在什么位置时,以这三个棋子为顶点构成的三角形的面积最大?3.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种形状的短管(加工损耗忽略不计)问:剩余部分的管子最少是多少厘米?4.乙两人同时从A出发向B行进,甲速度始终不变,乙在走前面路程时,速度为甲的2倍,而走后面路程时,速度是甲的,问甲、乙二人谁选到B?请你说明理由。
第18届华杯赛决赛小中组卷及参考答案
![第18届华杯赛决赛小中组卷及参考答案](https://img.taocdn.com/s3/m/7a2c0ec2f01dc281e43af08c.png)
第十八届华罗庚金杯少年数学邀请赛决赛(A)卷【小中组】一、填空题(每小题10分,共80分)1.计算:(2014×2014+2012)-2013×2013=________.2.将长方形的纸片ABCD按右图的方式折叠后压平,使三角形DCF落在三角形DEF的位置,顶点E恰落在边AB上.已知∠1=20°,那么∠2是________度.3.鸡兔同笼,共有40个头,兔脚的数目比鸡脚的数目的10倍少8只,那么兔有________只.4.第一次操作将图a左下角的正方形分为四个小正方形,见图b;第二次操作再将图b左下角的小正方形分为四个更小的正方形,见图c;这样继续下去,当完成第六次操作时,得到的图形中共有________个正方形.图a图b图c5.右面的加法竖式中,相同的汉字代表1至9中的相同数字,而不同的汉字代表不同的数字.则竖式中的“数学”所表示的两位数共有________个.6.大小两个正方体积木粘在一起,构成右图所示的立体图形,其中小积木的下底面的四个顶点,恰好是大积木的上底面各边的中点.如果大积木的棱长为2,那么这个立体图形的表面积是________.7.某班学生人数大于20而小于30,其中女同学的人数是男同学的2倍.全班报名参加“华杯赛”的人数是未报名人数的3倍少1人.这个班有学生________名.8.见右图,图形内的数字分别表示所在的矩形或三角形的面积,那么阴影三角形的面积为________.二、简答题(每小题15分,共60分,要求写出简要过程)9.用4个数码4和一些加、减、乘、除号和小括号,写出值分别等于2、3、4、5、6的五个算式.10.右图是U,V,W,X四辆不同类型的汽车每百千米的耗油量.如果每辆车都有50升油,那么这四辆车最多可行驶的路程总计是多少千米?11.某商店卖出一支钢笔的利润是9元,一个小熊玩具的进价为2元.一次,商家采取“买4支钢笔赠送一个小熊玩具”的打包促销,共获利润1922元.问这次促销最多卖出了多少支钢笔?12.编号从1到10的10个白球排成一行,现按照如下方法涂红色:1)涂2个球;2)被涂色的2个球的编号之差大于2,求不同的涂色方法有多少种?第十八届华罗庚金杯少年数学邀请赛决赛(A )卷参考答案【小中组】一、填空题(每小题10分,共80分)1.解析:【知识点】运算律,平方差公式原式6039201240272012)20132014()20132014(20122013201422=+=+-⨯+=+-=2.解析:【知识点】平面几何o 201=∠=∠CDF ,DCF ∠与CDF ∠互余,则o o o 702090=-=∠DFC ,o 70=∠=∠DFC DFE ,o o o o 4070701802=--=∠。
华杯赛赛前教程
![华杯赛赛前教程](https://img.taocdn.com/s3/m/7c3f49c02cc58bd63186bd59.png)
前言“华罗庚金杯”少年数学邀请赛(简称华杯赛)是以华罗庚名字命名的数学竞赛,始于1986年,是为了纪念我国著名数学家华罗庚,由中国优选法统筹法和经济数学研究会、中国少年报社、中国数学会和中央电视台青少中心等单位发起和组织的一项全国少年学生数学竞赛,至2008年,“华杯赛”共举行了十三届,已经成为一项重要的、有影响的和全国性的少年科技教育和普及活动.为了配合第十四届“华杯赛”,帮助学生提高数学的水平和素质,在“华杯赛”中取得优秀成绩,华杯赛主试委员会组织编写了第十四届“华罗庚金杯少年数学邀请赛”赛前教程(小学册),简称为“赛前教程”.“赛前教程”共有五章,第一章是数的运算,由卢振虎主笔;第二章是整除和带余除法,由王世坤、卢振虎、赵小峰和陈平等编写,王世坤和陶小勇主编.“赛前教程”每一章有三节和一套练习题,每一节大致包含三部分内容:第一部分简要地介绍一些基本概念和知识;第二部分是“说明”,主要介绍一些扩展的知识、与该节有关的数学的思想和应当注意的问题,个别内容较深,仅供辅导老师和家长参考;第三部分是“例题讲解”,是该节的核心部分,含有本书作者精心选择和编制的十个例题,其中多数是“华杯赛”常见和典型的问题,并且做了细致的解答,有的例题附有“说明和评注”,更深入地介绍了解题的方法和思想.“赛前教程”每一章均有30道练习题,它们选自“华杯赛”的试题、其它数学竞赛的试题和辅导材料,其中有一些是本书作者编制的新题. “赛前教程”附有三套初赛测试题和三套决赛测试题,由“华杯赛”主试委员会卢振虎、朱华伟、那吉生、余其煌、连四请、周春荔和闫桂英编制,由闫桂英统编,是本书非常重要的内容. 全书由主编王世坤做了适当的修改和编辑.“华杯赛”主试委员会主试委员秉承“华杯赛”普及性、趣味性和新颖性命题的原则,编排了六套测试题,它们连同精心选择的各节的例题以及各章练习题,基本上覆盖了“华杯赛”命题的思想和试题的类型,是第十四届“华杯赛”命题重要的参考. 一般而言,多做练习题是学好数学和在数学竞赛中取得优异成绩必须做的努力. 但是,“题海训练”,过多的赛前“冲刺”等,既消耗了学生过多的时间和精力,效果也未必令人满意. 而且,有的“模拟试题”或者“练习题”粗制滥造,偏离学习数学基本的规律,会误导学生,对学生没有太多的益处.我们相信,只要细致阅读本书,认真完成“赛前教程”中的练习题和测试题,读者会加深对课堂知识的理解,会增长应用数学知识去解决实际问题的能力和提高数学的素质,会在“华杯赛”中取得优秀成绩.这本“赛前教程”虽然是为了配合第十四届“华杯赛”,但是,其内容基本上覆盖了小学数学的主要知识,可以作为一本小学数学的复习教程.一般而言,一本优秀的数学的复习教程,应当以更高的角度来归纳和总结数学的知识,就像登山,途中,只能看到局部的风景,登至山顶,从高处浏览周围的风景,就会更深地了解,你走过的路和周围“景致”的关系,就会有“一览众山小”的感觉.复习就要做到登高望远,能够梳理出原来学过的数学知识之间的内在的联系,发现这些知识原来很“简单”.这本教程遵循这个原则,对小学数学知识做了深入的归纳和总结,提供了许多典型的例题和练习题.所以,即使不参加“华杯赛”,如果能认真阅读本书,细细体会其中的精髓,定有收获.学习数学,既要学习数学的知识,同时,也要特别注意数学的思想和方法对人的智力的巨大的影响.这本教程无论是从小学数学知识的总结和归纳,例题的认真选择和讲解,还是练习题的安排,都特别注重启迪同学们的数学兴趣和开发他们的智力,都非常强调帮助学生建立和提高应用数学知识去解决实际问题的能力,增强他们数学的能力.所以,将这本教程作为一册数学课外的读物,细致地钻研,初步理解一些数学的思想和方法,就能提高数学的素质和水平,为进一步的学习奠定扎实的基础.第十四届“赛前教程”和十三届“赛前教程”比较,书中不仅提供了全新的测试题,而且,修改了十三届“赛前教程”部分内容、大多数的例题和练习题,焕然一新了.虽然“赛前教程”的编写者是“华杯赛”主试委员和华杯赛教练员,他们具有扎实的数学的修养和造诣,又有从事数学教育和数学竞赛丰富的经历、经验和成就,他们编写的这本教程会受到读者的欢迎.但是,限于他们的水平和时间,书中仍然有许多不完善和考虑欠周的地方,也难免有错误.十三届“赛前教程”出版后,受到广大读者的欢迎,一些热心的读者也指出了一些错误和疏漏漏,“赛前教程”编著者向他们表示感谢,同时,诚挚地希望和欢迎读者一如既往,指出本书的不足和错误,提供修改的宝贵意见.本书由包善贤老师做了二校,他非常细心和认真的工作使本书增益不少,“赛前教程”编著者表示忠心的感谢.“华罗庚金杯”少年数学邀请赛的宗旨和目的是弘扬华罗庚教授的爱国主义精神,引导少年学生学习华罗庚教授勤奋学习、献身科学的优秀品质,激发他们学习数学的兴趣、开发他们的智力,提高他们的数学素质. 我们希望本书,即“第十四届华罗庚金杯少年数学邀请赛赛前教程”能体现这个宗旨,对读者有所帮助.第十三届“华杯赛”主试委员会,2008年7月目录第一章数的运算第1节整数、分数和小数第2节四则运算第3节数字谜和数阵图第一章练习题第二章整除和带余除法第1节整数和整除第2节带余数除法(1)第3节带余数除法(2)第二章练习题第三章应用问题第1节应用问题(1)第2节从算术到代数第3节方程的概念和解法第4节应用问题(2)第三章练习题第四章图形知识第1节简单平面图形第2节平面几何图形第3节简单立体图形第四章练习题第五章综合问题选讲第1节最大和最小第2节分类和计数第3节整数综合问题第五章练习题模拟测试题初赛测试题(1)初赛测试题(2)初赛测试题(3)决赛测试题(1)决赛测试题(2)决赛测试题(3)附录1练习题参考答案和提示附录2 模拟测试题答案和提示第一章 数的运算数是人类长期实践活动中产生和发展的, 整数、小数和分数及其四则混合运算是小学数学的重要内容,这些知识及相应的扩展是“华杯赛”和一些数学竞赛必考的部分. 这一章将复习这些知识,举例说明一些运算的技巧、相关思维的方法,并且渗透一些简单的数学思想.第1节 整数、分数和小数(一) 基本知识1.整数 ● 整数的认识我们在数物体的时候,用来表示物体个数的1,2,3,4,5 ……都是自然数. 一个物体也没有,可以用0表示,0也是自然数. 自然数可以用来表示事物的多少,也可以用来编号,表示事物的次序. 当用来表示事物的数量,即被数的物体有“多少个”时,叫做自然数的基数意义;当用来表示事物的次序,即最后被数的物体是“第几个”时,叫做自然数的序数意义.引入负数后,“1,2,3,4,5 ……”叫做正整数,“-1,-2,-3,-4,-5 …………”叫做负整数. 非负整数是0和正整数的统称,也就是自然数. 整数是正整数,负整数和零的统称.在这本书中,整数特指是正整数和零. ● 整数的大小位数越多的整数越大;如果两个整数位数相同,就从最高位依次比起.2.分数 ● 分数的概念把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数. 把单位“1”等分后,表示其中一份的数,叫做这个分数的分数单位. 两个整数相除,它们的商可以用分数表示,即:a ÷b =)0(≠b b a. 也可以直接把符号m n(m 、n 都是整数,且n ≠0)定义为分数,其中符号“-”称为分数线.当n =1时,m n=1m =m ,即任何整数m 都可以用分数1m 表示. ● 百分数表示一个数是另一个数百分之几的数,叫做百分数,也叫百分率或百分比. 百分数通常不写成分数形式,而用百分号“%”来表示. 如百分之九十六写作96%,百分之零点6写为0.6%. 由于百分数便于比较,所以在生产和日常生活中有着广泛的应用.● 分数的分类分子小于分母的分数叫做真分数,真分数比1小. 分子大于或等于分母的分数,叫做假分数,假分数大于或者等于1. 一个整数和一个真分数合成的数,叫做带分数, 带分数只是假分数的另一种形式. 严格的说,分数只能分为真分数、假分数两类.一个分数,如果分子和分母除了1之外,没有其他公共的约数(见37页约数),则称为最简分数.● 分数的运算一个分数,总是可以约分为最简分数;一个带分数可以转化为假分数,假分数也可化为带分数或整数;两个分数,通过通分做加法,通过转化为假分数做乘法.● 分数的性质和大小分数的分子和分母同时乘以或除以相同的不为0的数,分数的大小不变.分母相同,分子越小的分数值越小;分子相同,分母越小的分数值越大. 任何假分数都大于真分数.3.小数 ● 小数的概念分母是10、100、1000…… 的分数,改写成不带分母形式的数就是小数,如,把103改写成0.3. 符号“.”称为小数点,小数点左端的数是整数部分,右端是小数部分.整数部分为0的小数叫做纯小数,纯小数比1小.● 小数的分类及性质小数部分的位数有限时,称为有限小数. 另外还有一些小数的小数部分位数是无限多的,叫做无限小数. 无限小数又可分为循环小数和非循环小数. 在一个数的小数部分中,从某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数. 例如,0.888……、3.15353……都是循环小数. 其中,0.888……的循环节是“8”,可以记作08.∙,它是纯循环小数. 3.15353……的循环节是“53”,可以记作3153.∙∙,它是混循环小数. 一个无限小数,从小数部分起各位数字的排列没有一定的规律,这样的无限小数叫做非循环小数. 例如圆周率π就是非循环小数.在小数的末尾添上“0”或者去掉“0”,小数的大小不变.整数部分越大的小数越大. 如果整数部分相同,则从十分位依次比起. 4.小数和分数的互化● 分数化小数:直接用分子除以分母,除不尽时,可以化为循环小数,或者根据需要用四舍五入法取近似值.● 小数化分数:有限小数化为分数. 原来有几位小数,就在1后面写几个零作为分母,原来的小数去掉小数点作分子,能约分的要约分. 例如:0.37 =37100,14652931.4651000200==.纯循环小数化为分数. 分子是一个循环节的数字所组成的数;分母的各位数字都是9,9的个数与循环节的数字的个数相同. 例如:310.393∙==,4730.473999∙∙=;混循环小数化为分数. 分子是小数点后面第一个数字到第一个循环节末端的数字所组成的数减去不循环数字所组成的数的差;分母的头几位上的数字是9,末几位上的数字是0,9的个数与循环节中的数字的个数相同,0的个数和不循环部分的数字的个数相同. 例如:1311220.13909015∙-===,1759117582930.1759999099901665∙∙-===. 由此可知,任何一个循环小数都可化为分数.非循环小数无法化为分数.(二) 说明1.负数在小学阶段所说的整数、小数及分数主要指正数和0,在以后的学习中数的范围会扩大到负数. 因为人们在生活中经常会遇到各种相反意义的量. 比如,记帐时,有余有亏;在计算粮仓库存米时,有时要记进库粮食,有时要记出库粮食. 为了方便,人们就考虑了用相反意义的数来表示. 于是人们引入了负数这个概念,把余钱、进库粮食记为正,把亏钱、出库粮食记为负. 为了使“数”能蕴涵相反的含义,就在前面添加一个符号“-”,称为负数,符号“-”称为负号. 如果原来的“数”是整数,但不是零,添加负号之后,称为负整数,原来的整数则称为正整数. 如果原来的“数”是分数,添加负号之后,则称为负分数,原来的分数则称为正分数. 正整数和正分数统称为正数,用符号“+”来表示正数,例如:+5、+16,符号“+”称为正号,有时候省略正号“+”不写.2.用字母表示数用字母表示数,是对数的认识的一个飞跃,既可以表示一些不好写出和表达的数(例如圆周率π),也可以表示一类数或具有某种相同性质的数(例如字母v 代表速度,N 表示自然数等),为计算和解决问题带来了极大的方便.3.繁分数本书将分子和分母中还含有分数、小数或四则混合运算的“分数”叫做繁分数. 繁分数是分数形式的数,但不是分数. 前面在介绍分数的概念时提到可以直接把符号m n(m 、n 都是整数,且n ≠0)定义为分数,显然繁分数并不满足这一定义,所以说繁分数不是分数. 在一个繁分数里,最长的分数线叫做繁分数的主分数线,主分数线上下不管有多少个数或运算,都把它们分别看作是繁分数的分子和分母.把繁分数化为最简分数或整数的过程,叫做繁分数的化简. 繁分数的化简一般采用以下两种方法.(1)先找出主分数线,确定分子部分和分母部分,然后这两部分分别进行计算,每部分的计算结果能约分的要约分,最后形成“分子部分÷分母部分”的形式,再求出结果.(2)根据分数的基本性质,将繁分数的分子部分和分母部分同时扩大相同的倍数(这个倍数可以是分子部分与分母部分所有分母的最小公倍数),从而去掉分子部分和分母部分的分母,然后通过计算化为最简分数或整数.4.取整运算当只关心某数的整数部分时,规定][x 表示不超过x 的最大整数,称为高斯符号,或称为取整运算.又记][}{x x x -=,即{}x 为x 的小数或真分数部分,如3]14.3[=,14.0}14.3{=.显然有{}01x ≤<,当x 为整数时,等号成立.5.数的表示形式和转化可以将分数、带分数、假分数、小数、百分数甚至繁分数和字母代表数等等,理解为数的各种不同的表达“形式”, 例如:1可以表达为循环小数09.∙,2可以表达为假分数42,等等.至于整数是否是特殊的分数和小数,并不太重要,重要的是深入理解数的各种表达“形式”蕴涵的数学意义和掌握它们相互转化的方法,例如:2和2.0, 在科学和技术中,它们是有重大区别的.因为科学和技术的测量总是有误差的,2.0可能是2.03要求精确到小数点后1位,舍弃了0.03后, 这样,2.0就蕴涵了精确度,所以2和2.0是不同的.但是,在小学数学中,它们是相同的数,依照数学表达简洁化的原则,2最好不要写成2.0, 0.3一般不要表达为030.∙.尽管小学阶段遇到数学概念比较少,但是,准确理解数学概念和相近数学概念细小的差别还是比较重要的.唯有如此,养成良好的数学习惯,现在和将来,才能学好数学.(三) 例题讲解1. 选择题例1下面是6个等式: ① 0301230423...∙∙∙∙+=; ② 6255062510008.==;③533581142142162++===+;④ 102 1314 2235 323 4546.,.,,.,.,.∙∙∙∙∙∙中有2个纯循环小数; ⑤ 1991.∙∙=9999911;⑥ 31334127535⨯=;其中正确的命题是( ).(A )①与② (B )②、④与⑤ (C )①与④ (D )②、⑤和⑥ 答案:B.理由:①不正确,因为03012304231...∙∙∙∙+=;②正确;③不正确,因为521521136114141477++===;④正确,因为10166.∙=,是混循环小数;⑤正确;⑥不正确,因为31242150414341475753535⨯=⨯==.例2下面是6个命题:① 两个真分数之间至少有1个真分数; ② 两个分数之间至少有1个真分数; ③ 两个分数之间有无穷多个分数; ④ 圆周率π可以化为一个分数; ⑤ 总可以将一个分数化为有限小数; ⑥ 无限循环小数不能化为分数;其中正确的命题是( ).(A )①与③ (B )②与③ (C )①与④ (D )⑤与⑥答案:A .理由:①正确,理由是:设ab 和c d是真分数,并且a c bd<,则有a a c c bb dd+<<+;②不正确,因为真分数小于1,例如:32和52之间没有真分数;③正确,理由是:如①所述理由,两个不同的分数之间有1个分数,则可以推出有无穷多个分数;④不正确,因为圆周率π是无限不循环小数,不能化为分数;⑤不正确,例如17化为小数时,是无限循环小数;⑥不正确,无限循环小数能化为分数,例如:10.33∙=.2. 填空题例3在混循环小数9617472.∙的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大. 这个新的循环小数是( ).答案:9617472.∙∙.理由:要求新产生的循环小数尽可能大,实际上是要求组成循环节的前几位数字尽可能大.首先,要选择好循环节的首位数,一定要是小数点以后最大的一个数字.在这道题里,最大的数是7,表示循环的圆点应该点在7上. 可是,题目里有两个7,点在哪个7上呢?哪个7后面的数字大,就点在哪个7上,所以,新的循环小数是9617472.∙∙.例4分母为2009的所有最简真分数之和为( ). 答案:740.理由:因为20097741=⨯⨯,所以分母是2009的最简真分数,分子不能是7、41和它们的倍数. 因此,分母为2009的所有最简真分数之和为()()()()1741S=122008122861248200920092009741 1262009+++-+++-+++⨯++++ ,因为()()()12200812008220071004100520091004122862871431248492412673,,,,+++=++++++=⨯+++=⨯+++=⨯+++=⨯所以2009100472872434149247417320092009200920091004243243740S ⨯⨯⨯⨯⨯⨯⨯⨯=--+=--+=例5 记1111112021223839S =+++++,[]S =( ).答案:1.理由:先估算分母的大小,因为111120120213920+++<⨯=…,且111120202021393939+++>⨯=…,所以1<原式<3920=1.95,[]S =1.说明和评注:解决这种估算类题目的关键是放缩,即找到所求值的范围,这一方法在比较分数大小时也经常会用到.3. 解答题例6计算:123369714211453121572835⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯=?解答:原式=)541(7)541(3541)321(7)321(33213333⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯+⨯⨯=)731(541)731(3213333++⨯⨯⨯++⨯⨯⨯=123145⨯⨯⨯⨯=310.例7 有红、蓝、黄、绿4种卡片,每种3张,相同颜色的卡片上写有相同的整数,不同颜色卡片上的整数互不相同,由小到大依次为红、蓝、黄、绿. 现在把这些卡片分给6名同学,每人得到颜色不同的两张,六名同学分别求和,得到6个和数:88,121,129,143,154,187. 其中一个错了,则这4个整数分别是多少?解答:设这四个整数分别为a <b <c <d ,因为6个和数分别为88,121,129,143,154,187,显然a+b =88,a+c =121,b+d =154,c+d =187而a+b+c+d =88+187=121+154≠129+143,所以错误的和数为129或143,a+b+c+d =275. 又因为c -b =187-154=33,所以b+c 为奇数.若错误的和数为129,则实际应为275-143=132,即b+c =143,a+d =132,解得a =33,b =55,c =88,d =99;若错误的和数为143,则实际应为275-129=146,即b+c==129,a+d =146,解得a =40,b =48,c =81,d =106.例8 将2009个分数21,31,41,…,12009,12010化成小数,共有多少个有限小数?解答:一个有限小数化为最简分数时,其分母只含质因数2或5.反之,也成立.1011882627343544245220102 5220105252201052 5220105252201052 520105,,,,,,<<⨯<<⨯⨯<<⨯⨯<<⨯⨯<<⨯<< 上面的六个不等式意味着:小于2011的整数中,只含质因数2的整数有10个;只含质因数2和仅有1个质因数5的整数有8个; 只含质因数2和仅有2个质因数5的整数有6个; 只含质因数2和仅有3个质因数5的整数有4个; 只含质因数2和仅有4个质因数5的整数有1个; 只含质因数5的整数有4个,所以,共有10+8+6+4+1+4=33个有限小数. 例9 A ,B ,C 为正整数,满足算式111524+++=C B A ,则C B A 32++的值是多少.解答: 将245表示为连分数形式:131114411144514544524+++=++=+=+=,则有:A =4,B =1,C =3,所以,153312432=⨯+⨯+=++C B A .例10求1411421497149833333333⨯⨯⨯⨯⎡⎤⎡⎤⎡⎤⎡⎤++++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦的和. 解答:已知: 对121004k ,,,= ,()()()141414333333149914991499, 333333k k k ,k k k ⨯⨯⨯⎧⎫⎡⎤=+⎨⎬⎢⎥⎩⎭⎣⎦⨯-⨯-⨯-⎧⎫⎡⎤=+⎨⎬⎢⎥⎩⎭⎣⎦所以,()()()14991499149914141442333333333333k k k k k k ⨯-⨯-⨯-⎧⎫⎡⎤⨯⨯⨯⎧⎫⎡⎤=+=+++⎨⎬⎨⎬⎢⎥⎢⎥⎩⎭⎣⎦⎩⎭⎣⎦, 并且上式中,()1499143333k k ⨯-⎡⎤⨯⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦的和是整数,所以,()1499143333k k ⨯-⎧⎫⨯⎧⎫+⎨⎬⎨⎬⎩⎭⎩⎭的和应当是整数.并且,既然对于任何整数n ,{}1n <,就有()149914013333k k ⨯-⎧⎫⨯⎧⎫<+=⎨⎬⎨⎬⎩⎭⎩⎭.所以,()149914413333k k ⨯-⎡⎤⨯⎡⎤+=⎢⎥⎢⎥⎣⎦⎣⎦1411421497149833333333141149814214971449145033333333333341492009.⨯⨯⨯⨯⎡⎤⎡⎤⎡⎤⎡⎤++⋯++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⨯⨯⨯⨯⨯⨯⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++++ ⎪⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭=⨯= .第2节四则运算(一)基本知识1.四则混合运算●运算法则在一个算式里,如果含有两种或两种以上的运算,通常就称为混合运算. 加、减、乘、除的混合运算也叫四则混合运算.在数的运算中,加法和减法叫做第一级运算,乘法和除法叫做第二级运算,乘方和开方叫做第三级运算. 第三级运算是第二级运算的高级运算,第二级运算是第一级运算的高级运算;反之,第一级运算是第二级运算的低级运算,第二级运算是第三级运算的低级运算.如果一个算式里含有不同级的运算,那么就先做高级运算,后做低级运算. 在有括号的情况下,要按照从里到外的顺序,先算小括号里的,再算中括号里的,然后算大括号里的,最后算括号外面的.●运算定律加法交换律. 两个数相加,交换加数的位置,它们的和不变. 即a+b=b+a.加法结合律. 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变. 即(a+b)+c=a+(b+c).加法交换律和结合律的推广:几个数相加,任意交换加数的位置,或者先把其中几个数结合成一组相加,它们的和不变.乘法交换律. 两个数相乘,交换因数的位置,它们的积不变. 即a×b=b×a.乘法结合律. 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变. 即(a×b)×c=a×(b×c).乘法交换律和结合律的推广:几个数相乘,任意交换因数的位置,或者先把其中几个数结合成一组相乘,它们的积不变.乘法分配律. 两个数的和与某个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加,所得的结果不变. 即(a+b)×m=a×m+b×m.2.速算法在进行数的运算时,根据数的特点,结合和、差、积、商的变化,运用运算定律、性质,进行简便、迅速的运算,叫做速算,常用的速算法有:(1)分组法. 把算式中能凑成整十、整百、整千的数先算,以便于后面的计算. 例如:869+27+131+73=(869+131)+(27+73)=1000+100=1100; 167-(89+67)=167-67-89 =100-89=11.(2)补数法. 对接近整百、整千的数,可以补上一个数使它成为整百、整千数,使计算简便. 例如:1453-397=1453-(400-3)=1453-400+3 =1056.(3)分解法. 有些乘除计算,可把已知数适当进行分解,然后应用运算性质,使计算简便. 例如:25×32=25×4×8=100×8=800.此外还有基准数加法、公式法等,其本质都是对数的特征和运算定律的灵活运用.(二) 说明1.数列按照一定顺序排列的一列数叫做数列,通常记作a 1,a 2,… a n , …,简记为{ a n }. 数列中的每一个数都叫做这个数列的项,其中a n 表示数列{ a n }的通项. 如果一个数列{ a n }的第n 项a n 与项数n 之间的关系可以用一个关于n 的公式来表示,我们就把这个公式叫做这个数列的通项公式. 如数列1,4,9,16,…,通项公式为a n =n 2. 如果数列只有有限个项,将第一项称为首项,最后一项称为末项(a n ),项的总数叫做项数,求数列中所有的项的和,称为数列求和.“华杯赛”和其他一些重要的小学数学竞赛中常常出现两类数列:等差和等比数列. 等差数列是从第二项起,每一项减去它的前一项,所得的差为定值的数列,这个差叫做公差,记作d ,即21321n n a a a a a a d --=-==-= . 由公差的定义,可以推出等差数列{ a n }的通项公式:a n =1a +(n-1)×d ,或a n = a m +(n-m )×d . 用两种方法求等差数列{ a n }前n 项的和:121121n n n n n n S a a a a S a a a a ,--=++++=++++将上面两个式子相加,因为121112n n n n a a a a a a a a --+=+==+=+ ,得等差数列{ a n }前n 项求和公式:S n =(a 1+ a n )×n ÷2. 这种求和方法叫做倒序相加法.⏹ 等比数列是后一项与前一项的商(后一项除以前一项)为一个固定的数的数列,这个商叫做公比,记作q ,即a 2÷1a = a 3÷a 2= a 4÷a 3=……= a n ÷1n a -=q . 由公比的定义,可以推出等比数列{ a n }的通项公式:11n n a a q -=. 等比数列的前n 项和:S n =1(1)1na q q--等比数列{ a n }的前n 项和:S n =a 1+a 2+……+a n ①等号两边同时乘以公比q ,得到qS n =qa 1+qa 2+…+qa n ,即qS n =a 2+a 3+……+a n +a n+1 ②①-②得(1-q )S n = a 1- a n+1,而a n+1=q n a 1,得到等比数列{ a n }前n 项求和公式:(1-q )S n =(1- q n)a 1,即S n =1(1)1na q q--.这种求和方法叫做错位相减法. ⏹ 数列求和除了前面介绍的倒序相加法和错位相减法外,在求数列和时,经常应用“裂项法”.“裂项法”的基本思想是()()()112211n n n n n a a a a a a a a ---=-+-++-+ . 这个方法可以简化计算过程,其最基本的形式是111(1)1n n n n =-+-,例如:11111 122334899101111111111()()()()()12233489910191.1010+++++⨯⨯⨯⨯⨯=-+-+-++-+-=-= 2.新的运算以四则运算为基础,可以定义新的运算,例如:用符号&表示一个二元运算:35a &b a b b =⨯⨯⨯+,对于这个&运算,446577337&3=+⨯⨯⨯=.可以验证,当a b ≠时,a&b b&a≠,即没有交换律.3.运算能力做有理数四则运算题目,当运算式子中有带分数、假分数、小数甚至百分数、大小括号和繁分数,即式子比较复杂时,有些同学很难给出正确解答. 做这种题目,需要多练习,细心严谨,才能正确和快速给出答案. 除此之外,如何避免出错呢?这里介绍几个注意要点,供读者参考.●先乘(除)后加(减),是指运算式子中,只有一个“加”和一个“乘”时应当遵守的规则,例如:3124491136111121107878-⨯=-⨯=-=-先做乘运算. 当算式同时有括号、多个乘和多个加时,在同级运算中,如何确定运算次序呢?建议的原则是:第一,使运算和随后的运算尽量“整数化”,遇到分数,尽量转化为分母更小一些的分数;第二,使运算式子尽量“简洁化”,如将有的除法转换为乘法,或者将带分数、小数等转化为既约分数等,但是注意不要增加后面运算的难度;第三,建立你自已的原则来确定运算的顺序,例如:你的原则是先将所有的带分数都化为假分数,哪怕实际运算时要复杂一些,也没有关系. 因为运算时“心中有序”了,习惯了,就不易出现错误,这点很重要.●计算的每一步骤,即每个等号后为一个步骤,所做运算不易太多,确保每个步骤的运算都是比较简单的运算,步步为营,稳答稳扎. 计算一道较为复杂的四则计算题时,要大致浏览一下,看看题目有何特点,以便确定计算的顺序和策略.●做计算题,难免出现错误,重要的是需要掌握一些查错法,例如“估值”和“消9”查错法等,很简单,多数情况很起作用. 但需要注意,它们仅仅是查错法,不是查对法.四则运算是小学数学重要内容,是其他复杂运算的基础,计算要准确和快速,是小学学好数学和在“华杯赛”中取得好成绩的要求.小学高年级学生要善于根据数的特征,灵活运用运算定律和性质,选择恰当的方法进行计算. 长此以往,可以全面提高学生的计算能力. 计算能力不仅是学生学好数学的基础,更是学好数学的保证(三)例题讲解1.选择题。
第十八届华罗庚金杯少年数学邀请赛
![第十八届华罗庚金杯少年数学邀请赛](https://img.taocdn.com/s3/m/98c80b72bed5b9f3f80f1c40.png)
客服电话:400 650 0888
j 14 或 k 14, 不妨设 j 14 . A 组的 30 个盒子分到这不超过 14 个组中去, 必 有一组至少有三个盒子, 这三个盒子里的红球数相同并且黄球数也相同.
“华杯赛”官网四大类网络课程 √ 专题讲座 √ 赛前串讲 √ 真题详解 √ 月月练讲解
第2页 共2页
9. 解答:其中的五个算式如下
44(4) 4 5, (4)4(4) 4 5, 4 (4) (4) 5,
4 (4)(4) 4 5,
4 444 5
4
10. 答案: x 25 , 27 , 29 18 18 18
11. 答:144 平方厘米.
客服电话:400 650 0888
第十八届华罗庚金杯少年数学邀请赛 决赛试题 A 参考答案(初一组)
一、填空(每题 10 分, 共 80 分)
题号
1
2
3
答案
8
129 61
2727
4
5
6
7
8
21
660 9000 85Leabharlann 24437
9
二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)
12. 答案:13.
三、解答下列各题(每小题 15 分, 共 30 分, 要求写出详细过程)
13. 答案:42 cm2
14. 答案:(1)30 (2) 不妨设 a1 30 , 记这 30 个盒子的组为 A 组. 因为 i j k 30 , 必有
“华杯赛”官网四大类网络课程 √ 专题讲座 √ 赛前串讲 √ 真题详解 √ 月月练讲解
第十八届华杯赛·小学高年级组·武汉
![第十八届华杯赛·小学高年级组·武汉](https://img.taocdn.com/s3/m/df7db66a27d3240c8447ef1d.png)
【分析】 原式
2.
3.
4.
5.
【考点】勾股定理 【答案】 110 【分析】 直角边有 101 条,斜边有 9 条,一共 110 条. 【考点】计数 【答案】 B 【分析】 和是 12,有 1 种;和是 10 有 1 种;和是 8,有 2 种;和是 6 有 2 种;和是 4, 有 1 种,一共 7 种,选 B. 【考点】完全平方数 【答案】 9 【分析】 5ab 4 是完全平方数,那么这个数末位是 2 或 8,在判断首位只能是 7,验证 722 5184 满足,那么 a b 9 【考点】容斥 【答案】 140 【分析】 5,8 40 个一周期,去的时候一共标记 40 个,回来时标记 25 个,重复标记 5 个,没有被标记的一共有 200 40 25 5 140 个.
一、填空题 1. 【考点】计算 【答案】2013
2012 2013 2007 2014 2013 . 2007 2012 2014 【考点】扶梯问题 【答案】36 2 【分析】 小孩的速度: 60 90 (米/秒) ,自动扶梯的速度是: 60 60 1 (米/秒) , 3 2 需要: 60 1 36 (秒) 3 【考点】行程 【答案】 3 : 40 【分析】 骑车 A:10 分钟共走 3 千米,骑车 B:10 分钟走 40 千米,速度比等于路程 比是 3 : 40 . 【考点】比例应用题 【答案】20 5 4 【分析】 猴大:猴二:猴三= 5 : 4 : 4 45 : 20 :16 ,则猴二为 9 9 20 29 45 16 20 .
A G F E
B
D
C
11. 影院正在放映《玩具总动员》 、 《冰河世纪》 、 《怪物史莱克》 、 《齐天大圣》四部动漫电影, 票价分别为 50 元、55 元、60 元、65 元。来影院的观众至少看一场,至多看两场。因 时间关系《冰河世纪》与《怪物史莱克》不能观看,若今天必有 200 人看电影所花的钱 一样多,则影院今天至少接待观众多少人?
第十八届“华杯赛”笔试初赛试题
![第十八届“华杯赛”笔试初赛试题](https://img.taocdn.com/s3/m/32dda72dccbff121dd368381.png)
第十八届华罗庚金杯少年数学邀请赛初赛试题C (小学高年级组)(时间: 2013 年3月23日)一、选择题 (每小题 10 分, 满分60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 如果mn =+⨯⨯20122014201420132013(其中m 与n 为互质的自然数), 那么m +n 的值是( ). (A )1243 (B )1343 (C )4025 (D )4029解答:B 。
在考试中,选择恰当的方法很重要。
这道题,看到这道题后,我第一个想法就是归纳。
2222315=+、2231422=+、2244537=+、2255648=+、写完前三个,发现第二个算式很不和谐,又写出了第四个,仔细一想,原来第二个可以写成2233426=+,规律找到了,分子是原式中分子部分的一个因数,分母比分子大3!答案一定是20132016,很简单,第一题是很容易的年份题,等等,年份2013这个数是我们非常熟悉的,2013=3×11×61,是3的倍数,那么加3不还是3的倍数么?可以约分,所以最后的答案是20136712016672=所以选B ! 如果本题需要详细的过程,那么用规纳的方法是不合适的,因为这是不完全归纳法,你这么知道前几个适用的情况下,最后的2013也适用呢,所以最正确的方法是这样思考:如果这道题直接计算,分别算出分子分母,然后必然需要一个约分的过程(从选项可以看出),那么就太麻烦了,如果不计算出最后结果就可以约分,是件好事儿,那么转化分子还是转化分母呢?我们都知道,当分子分母都是乘法的形式,是比较好约分的,所以要转化分母,要在分母中“凑”出2013.具体过程是这样的:201320132014(20131)2012201320132014201320142012201320132014201320132201320132013671,2013(20142)2016672⨯=⨯++⨯=⨯++⨯=⨯+⨯⨯===⨯+原式 6716721343.m n +=+=这个题做完了,很容易得分的一道题,也是容易马虎的一个题,如果不仔细读题,忽略了“m 与n 为互质的自然数”,那么就容易把答案写成D 。
第18届华杯赛(小学高年级组)试题及讲解
![第18届华杯赛(小学高年级组)试题及讲解](https://img.taocdn.com/s3/m/3f9851180b4e767f5acfcee1.png)
《18届华罗庚金杯少年数学邀请赛小学高年级教程》经典分析P155:初赛模拟测试题(1)6:一副扑克牌54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()牌。
教程答案:29。
我的答案:28因为:54张牌用最坏情况,2张大小王,4组A—6,4×6,再抽一张7,这时最坏情况抽完,然后再抽一张,就可以这些最坏情况的某一张,加起来和等于14点。
所以总共要抽:2+4×6+1+1=28张。
所以最低要取出28张牌。
P159:决赛模拟测试题(1)5:7098能表示成----种若干个(至少两个)连续非零自然数之和。
教程里的答案是12,这个答案和P19页,例1的答案是矛盾的。
而且教程中说这类题要穷举。
我的答案:11【7098=2×3×7×13²,共有(1+1)×(1+1)×(1+1)×(2+1)=12个奇因数,12-1=11】原因,例:把18、27分成两个或两个以上连续正整数之和,共有多少种不同的拆法。
18=2×3²即18=3×6,那么以6为中心,分别向两边扩1个数,和6总共是3个数:5、6、7 又18=9×2,那么以2为中心,分别向两边扩4个数,和6总共是9个数:-2、-1、0、1、2、3、4、5、6,其中在相加过程中-2、-1、0、1、2相抵消,剩余3、4、5、6又18=1×18,这里不能以1为中心,把18-1=17两边平均分,以18为中心的1个数没意义。
所以18=5+6+7=3+4+5+6,有两种不同的拆法在18=2×3²中奇数的个数是2+1=3个,(1,3,6)其中是3个以6为中心的连续数,和6个以3为中心的连续数。
但是1不可以拆分,所以要3-1=2,即只要两种拆法。
小学 五大奥数竞赛杯赛介绍
![小学 五大奥数竞赛杯赛介绍](https://img.taocdn.com/s3/m/f6a394e91eb91a37f0115c63.png)
小学五大奥数竞赛杯赛介绍(1)“华罗庚金杯”少年数学邀请赛(华杯赛)“华杯赛”是为了纪念我国杰出数学家华罗庚教授,于1986年始创的全国性大型少年数学竞赛活动。
华杯赛堪称国内小学阶段规模最大、最正式也是难度最高的比赛。
参赛时间:初赛在每年3月初;复赛在每年4月初。
总决赛在7月进行;进入总决赛的另一途径:报名参加华杯赛冬令营(在每年1月份进行,一等奖可以直接进入华杯赛全国个人总决赛)。
参赛年级:小学组(五、六年级)、初中组(初一年级)杯赛特色及作用:1、“华杯赛”是唯一一个具有初赛、复赛、总决赛三轮严格选拔的全国性数学赛事。
2、“华杯赛”是唯一一个具有多项配套活动的系列数学竞赛。
包括全国总决赛、“两岸四地华杯精英赛”、“华杯冬令营”等活动3、“华杯赛”作为目前全国最权威的小学数学比赛,备受北京市各重点中学的认可。
(2) 学而思杯"学而思杯"综合素质测评是学而思推出的旨在帮助优秀学生了解自己在优秀学生群体中定位的测评。
在09年11月举办的六年级“学而思杯”中,报名人数突破6000人,影响力深远,涌现出来的优秀学员更是受到了各重点中学的青睐。
参赛时间:一~五年级的“学而思杯”在每年的4或5月份举行六年级的“学而思杯”在每年的11月举行参赛年级:小学1~6年级杯赛特色及作用:1、作为京城最权威、参赛人数最多的综合性杯赛,学而思杯能最为准确的反映出孩子在京城优秀学生中的准确定位。
2、入选学而思超常班(原竞赛班):学而思超常班是北京市顶级数学超常儿童的培养基地,其学员更是深得北京最一流中学的青睐!3、参加学而思各类活动的依据:在2010年小升初中,累计共有近1万人次参与了学而思组织的近五十场相关活动。
而参加学而思各类活动最重要的参考依据是"学而思杯"。
(3) 数学解题能力展示(迎春杯)迎春杯”是北京市的一项传统中小学赛事,对激发学生学习数学的兴起,发现优秀的数学特长生,推动北京中、小学数学教学改革等主面都起了很大的作用。
第18届华罗庚金杯赛答案
![第18届华罗庚金杯赛答案](https://img.taocdn.com/s3/m/8ab7008802d276a200292e88.png)
1 23第十八届华罗庚金杯赛少年数学邀请赛初赛试卷B (小学高年级组)二、详解 1、6个。
分析与解:①数字和是6,且数字各不相同的四位数,只能由数字0、1、2、3组成; ②能被11整除的数的特征是:奇数位上的数字与偶数位上的数字和的差能被11整除,因此,只能0、3一组,1、2一组。
分别在奇数位和偶数位上。
③它们是 1023、1320、2013、2310、3102、3201,共6个。
2、8.分析与解:利用尾数的性质,得:2×(1+31+32+33+34+35+36+37+38+39) 尾数分别为:2×(1+3 + 9+ 7+ 1+ 3 + 9 + 7 + 1 +1) 尾数分别为:2×4=8. 3、 B分析与解:将已知三角形按长短标上1、2、3,按顺时针旋转后平移,可得图形A 、C 、D 。
而图形B 无法得到。
4、51.36. 分析与解:①总价:56×8.06=451.36元。
②解:设买x 千克后,加赠送的5%,就刚好等于56千克。
x ×(1+5%)=56 x=211120③211120×(8.06-0.56)=400元 ④451.36-400=51.36元 5、5天分析与解:阳阳先帮妈妈再帮爸爸,总的来讲,三人完成两个仓库的搬运中都没有休息。
同时完成,则可看成他们同时完成两个仓库的搬运工作。
则:设一仓库的稻谷为“1”,两个仓库则为“2”。
①2÷(101+121+151)=8天 ②1-121×8=32 ③31÷151=5天 6、165。
分析与解:从A 出发的线段长度之和为:9+8+7……+2+1=45同理可得,总线段长度之和为:45+36+28+21+15+10+6+3+1=165 7、9分析与解:先将循环小数化成分数,然后进行约分,得出一个循环小数。
0. 2·43· ×0.32·533·=999243×9999903325233 ,约分后得9999907911=0.0·7911·。
18届华杯赛小中组试题及答案详解
![18届华杯赛小中组试题及答案详解](https://img.taocdn.com/s3/m/1920c46371fe910ef02df82f.png)
第十八届华罗庚金杯少年数学邀请赛(中年级)试卷分析与详解一、选择题1.45与40的积的数字和是().(A)9 (B)11 (C)13 (D)15【答案】A【解析】45×40=1800,1+8=9【难度】☆【知识点】两位数乘法计算2.在下面的阴影三角形中, 不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.(A)(B)(C)(D)【答案】B【解析】由观察可得:A、C、D都可通过旋转得到,而B是通过原图翻转得到。
【难度】☆☆【知识点】图形的旋转、平移3.小东、小西、小南、小北四个小朋友在一起做游戏时, 捡到了一条红领巾, 交给了老师. 老师问是谁捡到的?小东说不是小西;小西说是小南;小南说小东说的不对;小北说小南说的也不对. 他们之中只有一个人说对了, 这个人是().(A)小东(B)小西(C)小南(D)小北【答案】C【解析】小东:不是小西。
小西:是小南。
小南:小东说的不对。
小北:小南说的也不对。
从对话中可看出小南与小北说的话是相互矛盾的,所以两人中一定有一个人说的是正确的,那么小东必然说的不对,既然小东说的不对,也就是小南说对了。
【难度】☆☆【知识点】逻辑推理4.2013年的钟声敲响了, 小明哥哥感慨地说:这是我有生以来遇到的第一个没有重复数字的年份。
已知小明哥哥出生的年份是19的倍数, 那么2013年小明哥哥的年龄是()岁。
(A)16 (B)18 (C)20 (D)22【答案】B【解析】2013÷19=105…18,因为小明哥哥出生的年份是19的倍数,所以小明的哥哥出生年份=2013-18-19n。
当n=0时,小明哥哥出生年份=1995;当n=1时,小明哥哥出生年份=1976,但是显然小明哥哥如果1976年出生,2013绝对不会是他有生以来遇到的第一个没有重复数字的年份,比如1978就是没有重复数字的年份。
所以小明哥哥出生年份只能是1995,那么小明哥哥2013的年龄=2013-1995=18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国第十八届“华罗庚金杯”少年数学邀请赛
通知
各县(市)区教研室、市区各初(完)中:
经研究决定,我市应邀参加第十八届全国“华罗庚金杯”少年数学邀请赛。
现将有关事宜通知如下:
一、参加对象
按照参赛选手所在年级设立以下四个组别:
1、小学中年级组:2013年9月前不高于小学四年级的学生;
2、小学高年级组:2013年9月前不高于小学六年级的学生;
3、初中一年级组:2013年9月前不高于初中一年级的学生;
4、初中二年级组:2013年9月前不高于初中二年级的学生
参赛原则:自愿参赛。
二、竞赛日程
1、初赛时间:2013年3月23日(星期六)上午10:00—11:00
2、决赛时间:2013年4月20日(星期六)上午10:00—11:30
三、纪律
各参赛组织单位务必严格考试纪律、严格试卷保密制度、严格考试时间,做到公平竞赛。
不得泄题、不得自行更改考试时间,一经发现,取消比赛资格,并追究相关人员责任。
四、奖励
1、决赛设个人一、二、三等奖,经审批后由“华杯赛”组委会颁发奖励证书。
决赛获奖比例为参赛人数的20%,其中一等奖为参加决赛人数的4%,二等奖为参加决赛人数的6%,三等奖为参加决赛人数10%。
2、获决赛二等奖以上选手的辅导教师(每个获奖选手限一名辅导教师)颁发“优秀辅导教师奖”。
五、时间安排
1、初赛
报名时间:2013年3月10—11日。
试卷领取时间:城市四区及市属中学:2013年3月23日上午8:00—9:00
其它县区:2013年3月22日
地点:洛阳市教研室117室。
2、决赛:
报名时间:2013年3月28—29日
报名人数:各单位初赛人数的10%
报名材料:
⑴决赛名单excel电子稿(见附表),并发送至:sxhhbs@
⑵考场、考点安排。
试卷领取时间:城市四区及市属中学试卷考前专人送达;其它县、区各于2013年4月19日领取决赛试卷。
地点:洛阳市教研室117室。
洛阳市数学会
2013年12月22日
附表: 请以电子表格上报
第十八届华杯赛报名表(样表)
单位:_____________ 组别:______________。