徐水县第一中学2018-2019学年上学期高三期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐水县第一中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )
A .4
B .5
C .6
D .7
2. 函数f (x )=kx +b
x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )
A .-1
B .1
C .2
D .4
3. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( )
A .{x|﹣1≤x <2}
B .{﹣1,0,1}
C .{0,1,2}
D .{﹣1,1}
4. 双曲线E 与椭圆C :x 29+y 2
3=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
为π,则E 的方程为( ) A.x 23-y 2
3=1 B.x 24-y 2
2=1 C.x 25
-y 2
=1 D.x 22-y 2
4
=1 5. 已知全集U R =,{|239}x
A x =<≤,1
{|
2}2
B y y =<≤,则有( ) A .A ØB B .A B B =
C .()R A B ≠∅ð
D .()R A B R =ð
6. 设F 为双曲线22
221(0,0)x y a b a b
-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到
另一条渐近线的距离为
1
||2OF ,则双曲线的离心率为( )
A .
B .3
C .
D .3
【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 7. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
8. 1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆ )
C. 1
D. 1
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
9. 已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.
10.已知2,0()2, 0
ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )
A .716-
B .916-
C .12-
D .14
-
11.对于复数
,若集合具有性质“对任意,必有”,则当
时,等于 ( )
A1 B-1
C0 D
12.已知数列{}n a 的各项均为正数,12a =,114
n n n n
a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为5,
则n =( )
A .35
B . 36
C .120
D .121
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1
212
||z z z +在复平面内对应的点在
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 14.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________. 15.阅读如图所示的程序框图,则输出结果S 的值为 .
【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.
16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;
④若()
()0f x f x x
'+
>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()x
e x
f x f x x
'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.
其中所有正确结论的序号是 .
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.(本题满分15分)
设点P 是椭圆14
:2
21=+y x C 上任意一点,
过点P 作椭圆的切线,与椭圆)1(14:22222>=+t t y t x C 交于A ,B 两点.
(1)求证:PB PA =;
(2)OAB ∆的面积是否为定值?若是,求出这个定值;若不是,请说明理由.
【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.
18.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知
1cos )sin 3(cos 2
cos 22
=-+C B B A
. (I )求角C 的值; (II )若2b =,且ABC ∆的面积取值范围为3
[
,3],求c 的取值范围. 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.
19.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从 某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试 成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
20.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯列联表:
(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
21.(本小题满分12分)已知函数()2
ln f x ax bx x =+-(,a b ∈R ).
(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦
上的最大值和最小值;
(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求
出b 的值;若不存在,说明理由;
22.(本小题满分12分)设f (x )=-x 2+ax +a 2ln x (a ≠0). (1)讨论f (x )的单调性;
(2)是否存在a >0,使f (x )∈[e -1,e 2]对于x ∈[1,e]时恒成立,若存在求出a 的值,若不存在说明理由.
徐水县第一中学2018-2019学年上学期高三期中数学模拟题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】
【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;
第四次t =4,i =5,故输出的i =5. 2. 【答案】
【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),
则⎩
⎪⎨⎪⎧n =
km +b m +1
4-n =k (-2-m )+b -1-m ,恒成立.
由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,
∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,
∴b =1,故选B.
3. 【答案】B
【解析】解析:解:由A 中不等式解得:﹣1≤x ≤2,x ∈Z ,即A={﹣1,0,1,2}, ∵B={x|﹣2<x <2}, ∴A∩B={﹣1,0,1}, 4. 【答案】
【解析】选C.可设双曲线E 的方程为x 2a 2-y 2
b
2=1,
渐近线方程为y =±b
a
x ,即bx ±ay =0,
由题意得E 的一个焦点坐标为(6,0),圆的半径为1, ∴焦点到渐近线的距离为1.即
|6b |b 2
+a
2
=1,
又a 2+b 2=6,∴b =1,a =5,
∴E 的方程为x 25-y 2
=1,故选C.
5. 【答案】A
【解析】解析:本题考查集合的关系与运算.3(log 2,2]A =,1
(,2]2B =,∵331log 2log 2
>=,∴A ØB ,选A . 6. 【答案】B 【
解
析
】
7. 【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛
⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换. 8. 【答案】D
【解析】∵12
0PF PF ⋅=,∴12PF PF ⊥,即12PF F ∆为直角三角形,∴2222
12124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-,
2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径
12122PF PF F F r c +-=
=,外接圆半径R c =.c =,整理,得
2()4c
a
=+1e =,故选D. 9. 【答案】D
【解析】
{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.
10.【答案】C
【解析】解析: 当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线
2(2)y x =--与函数2y ax x =+图象相切时,
9
16
a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)
时,1
a =-
,观察图象可得1
a ≤-,选
C . ,所以
12.【答案】C
【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114
n n n n
a a a a ++-=
+得
2214n n
a a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴2
44(1)4n a n n =+-=,由0n a >得n a =111
2n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭
的前n 项和为
1111
1)(1)52222
n +++==,∴120n =,选C . 二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】D 【
解
析
】
14.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b c A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.
15.【答案】2017
2016 【解析】根据程序框图可知,其功能是求数列})
12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 2017
2016. 16.【答案】②④⑤
【解析】解析:构造函数()()x g x e f x =,()[()()]0x g x e f x f x ''=+>,()g x 在R 上递增,
∴()x f x e -<()1x e f x ⇔<()(0)g x g ⇔<0x ⇔<,∴①错误; 构造函数()()x f x g x e =,()()()0x
f x f x
g x e '-'=>,()g x 在R 上递增,∴(2015)(2014)g g >, ∴(2015)(2014)f ef >∴②正确;
构造函数2()()g x x f x =,2()2()()[2()()]g x xf x x f x x f x xf x '''=+=+,当0x >时,()0g x '>,∴1(2)(2)n n g g +>,∴1(2)4(2)n n f f +>,∴③错误; 由()()0f x f x x '+>得()()0xf x f x x '+>,即()()0xf x x
'>,∴函数()xf x 在(0,)+∞上递增,在(,0)-∞上递减,∴函数()xf x 的极小值为0(0)0f ⋅=,∴④正确; 由()()x e xf x f x x '+=得2()()x e xf x f x x
-'=,设()()x g x e xf x =-,则()()()x g x e f x xf x ''=--(1)x x
x e e e x x x
=-=-,当1x >时,()0g x '>,当01x <<时,()0g x '<,∴当0x >时,()(1)0g x g ≥=,即()0f x '≥,∴⑤正确.
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】(1)详见解析;(2)详见解析.
∴点P 为线段AB 中点,PB PA =;…………7分 (2)若直线AB 斜率不存在,则2:±=x AB ,与椭圆2C 方程联立可得,)1,2(2--±t A ,)1,2(2-±t B ,故122-=∆t S OAB ,…………9分
若直线AB 斜率存在,由(1)可得
148221+-=+k km x x ,144422221+-=k t m x x ,1
41141222212+-+=-+=k t k x x k AB ,…………11分 点O 到直线AB 的距离2221141k k k m d ++=+=
,…………13分 ∴122
12-=⋅=∆t d AB S OAB ,综上,OAB ∆的面积为定值122-t .…………15分 18.【答案】 【解析】(I )∵1cos )sin 3(cos 2cos 22
=-+C B B A , ∴0cos sin 3cos cos cos =-+C B C B A , ∴0cos sin 3cos cos )cos(=-++-C B C B C B , ∴0cos sin 3cos cos sin sin cos cos =-++-C B C B C B C B , ∴0cos sin 3sin sin =-C B C B ,因为sin 0B >,所以3tan =C
又∵C 是三角形的内角,∴3π
=C .
19.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
20.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.
21.【答案】
【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.
(2)当0a =时,()ln f x bx x =-.
假设存在实数b ,使()(]()
ln 0,e g x bx x x =-∈有最小值3, 11()bx f x b x x
-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e ==-==
(舍去).………8分 ②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤ ⎥⎝⎦
上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭
,满足条件.……………………………10分 ③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,e
f x
g b b ==-==(舍去),………11分 综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分
22.【答案】
【解析】解:(1)f (x )=-x 2+ax +a 2
ln x 的定义域为{x |x >0},f ′(x )=-2x +a +a 2x
=-2(x +a 2)(x -a )x
. ①当a <0时,由f ′(x )<0得x >-a 2
, 由f ′(x )>0得0<x <-a 2
. 此时f (x )在(0,-a 2
)上单调递增, 在(-a 2,+∞)上单调递减; ②当a >0时,由f ′(x )<0得x >a ,
由f ′(x )>0得0<x <a ,
此时f (x )在(0,a )上单调递增,在(a ,+∞)上单调递减.
(2)假设存在满足条件的实数a ,
∵x ∈[1,e]时,f (x )∈[e -1,e 2],
∴f (1)=-1+a ≥e -1,即a ≥e ,①
由(1)知f (x )在(0,a )上单调递增,
∴f (x )在[1,e]上单调递增,
∴f (e )=-e 2+a e +e 2≤e 2,即a ≤e ,②
由①②可得a =e ,
故存在a=e,满足条件.。