高中数学选修1-1教案 第二章 圆锥曲线与方程 2.2.2双曲线的简单几何性质
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2双曲线的简单几何性质
一、课前预习目标
理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.
二、预习内容
1、双曲线的简单几何性质及初步运用.
类比椭圆的几何性质.
2.双曲线的渐近线方程的导出和论证.
观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线.
课内探究
一、椭圆与双曲线的几何性质异同点分析
二、描述双曲线的渐进线的作用及特征
双曲线的范围在以直线
b
y x
a
=和
b
y x
a
=-为边界的平面区域内,那么从x,y的变化趋势
看,双曲线
22
22
1
x y
a b
-=与直线
b
y x
a
=±具有怎样的关系呢?
根据对称性,可以先研究双曲线在第一象限的部分与直线
b
y x
a
=的关系。
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.
在其他象限内也可以证明类似的情况.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字
母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精
再描几个点,就可以随后画出比较精确的双曲线.
三、描述双曲线的离心率的作用及特征
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.
这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.
四、例题
例.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.。