华师大版初中数学八年级下册期末测试题
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形2、若一次函数与反比例函数的图象都经过点,则的值是()A.3B.-3C.5D.-53、已知x1, x2, x3的平均数=2,方差S2=3,则2x1, 2x2, 2x3的平均数和方差分别为()A.2,3B.4,6C.2,12D.4,124、下列运算中,正确的是()A.a 2•a 3=a 6B.(﹣a 2)3=a 6C.﹣3a ﹣2=﹣D.﹣a 2﹣2a 2=﹣3a 25、某鞋厂为提高市场占有率而进行调查时,他最应该关注鞋码的()A.平均数B.中位数C.众数D.方差6、如图,在▱ABCD中,AB=3,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则四边形ABEF的周长为()A.12B.14C.16D.187、如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为()A. B. C. D.8、若反比例函数的图象经过点(3,﹣2),则k的值为()A.﹣9B.3C.﹣6D.99、如图所示,平行四边形ABCD的对角线AC,BD交于点O,已知AD=16,BD=24,AC=12,则△OBC的周长为()A.26B.34C.40D.5210、若解关于x的方程时产生增根,那么常数m的值为()A.4B.3C.-4D.-111、7月23日,中国首颗火星探测器“天问一号”成功发射.2月10日,在经过长达七个月,475 000 000公里的漫长飞行之后,“天问一号”成功进入火星轨道.将475000000科学记数法表示应为()A. B. C. D.12、杨店桃花是全国著名的赏桃花胜地之一.近年来,种植规模不断扩大,新的品种不断出现,如今的杨店的桃树约15000株,这个数可用科学记数法表示为()A.0.15×10 4B.0.15×10 5C.1.5×10 4D.15×10 313、在函数y= 中,x的取值范围是()A.x≥1B.x≤1C.x≠1D.x<014、如图,要使▱ABCD成为菱形,则需添加的一个条件是()A.AC=ADB.BA=BCC.∠ABC=90°D.AC=BD15、若关于的一元一次不等式组的解集是,且关于的分式方程有非负整数解,则符合条件的所有整数的和为()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、若关于x的分式方程有增根,则________.17、如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD的中点,过点C作CP⊥AB 于点P.若CD=3,AB=5,PM最大值是________.18、已知在平面直角坐标系xOy中,过P(1,1)的直线l与x轴、y轴正半轴交于点A,点B,若三角形AOB的面积等于3,直线l的解析式为________19、若,则=________.20、顺次连接A,B,C,D得到平行四边形ABCD,已知AB=4,BC=6,∠B=60°.则此平行四边形面积是________.21、如果点P(a,2)在第二象限,那么点Q(﹣3,a)在________22、如图,在平面直角坐标系中,菱形在第一象限内,边与轴平行,,两点的纵坐标分别为,,反比例函数的图象经过,两点,菱形的面积为,则的值为________.23、如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F 关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE=________.24、当x=________时,分式无意义.25、计算一组数据的方差时,小明列了一个算式:,则这组数据的平均数是________.三、解答题(共5题,共计25分)26、解方程:.27、已知:如图,A、C是□DEBF的对角线EF所在直线上的两点,且AE=CF. 求证:四边形ABCD是平行四边形.28、化简求值:,其中x= +1.29、某单位计划组织部分员工到外地旅游,人数估计在10~25人之间.甲、乙两家旅行社的服务质量相同,且价格都是每人200元,但甲旅行社表示可给每位旅客七五折优惠,乙旅行社表示可先免去一位旅客的旅游费用,其余旅客八折优惠。
(华东师大版)八年级下期末考试数学试卷(含答案)
OCDBA八年级(下)期末考试数学试卷第Ⅰ卷(选择题,共36分)一、选择题(每题3分,共36分)1.若分式21x -无意义,则( ) A .1x ≥ B .1x ≠ C .1x ≥- D .1x = 2.在下列函数中,自变量x 的取值范围是3x ≥的函数是( )A .13y x =- B.y = C .3y x =- D.y = 3.如图,平行四边形ABCD 的周长为40,△BOC 的周长 比△AOB 的周长多10,则AB 为( ) A .20 B .15 C .10 D .5 4.下列约分正确的是( )A .632a a a = B .a x a b x b+=+ C .22a b a b a b +=++ D .1x y x y --=-+ 5.下列命题是假命题的是( )A .菱形的四条边都相等B .互为倒数的两个数的乘积为1C .若a ⊥b ,a ⊥c ,则b ⊥cD .两个负数的和仍然是负数6.计算:111xx x ---的结果为( ) A .1 B .2 C .1- D .2-7.分式2211,x x x x-+的最简公分母是( ) A .(1)(1)x x +- B .(1)(1)x x x +- C .2(1)(1)x x x +- D .2(1)x x -8.如图,已知:△ABC ≌△ADE ,BC 与DE 是对应边, 那么∠EAB=( )A .∠EACB .∠CADC .∠BACD .∠DAE9.在4月14日玉树发生的地震导致公路破坏,为抢修一段120米的公路,施工队每天比原来计划多修5米,结果提前4天通了汽车,问原计划每天修多少米?若设原计划每天修x 米,则所列方程正确的是( ) A .12012045x x -=+ B .1201204-= C .12012045x x -=- D 4= E CD BAOCDBA 10.函数k y x =的图象经过点(4-,6),则下列各点中,在函数k y x=图象上的是( ) A .(3,8) B .(3,8-) C .(8-,3-) D .(4-,6-) 11.若点P (3,21m -)在第四象限,则m 的取值范围是( )A .12m >B .12m <C .12m ≥-D .12m ≤12.一组数据3,2,1,2,2的众数、中位数、方差分别是( )A .2,1,0.4B .2,2,0.4C .3,1,2D .2,1,0.2第Ⅱ卷(非选择题,共84分)二、填空题(每题4分,共24分) 13.计算:25(3)a a ⋅=__________.14.某小食堂存煤25000千克,可使用的天数x 和平均每天的用煤m (千克)的函数关系式为:_____________________.15.已知梯形ABCD 中,AD ∥BC ,AD=AB ,BC=BD ,如果∠ABC=80°,那么∠BCD=_______. 16.四边形ABCD 中,已知AD ∥BC ,若要判定四边形ABCD 是平行四边形,则还需要满足的条件是:_______________.(只填写一个条件即可) 17.若2(3)310a b ++-=,则20092010ab ⋅=____________.18.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O , 若再补充一个条件能使菱形ABCD 成为正方形,则这个 条件是:___________________.(只填一个条件即可)三、解答题(19小题6分,20、21小题各7分,共20分)19.计算:2121()a a a a a-+-÷20.如图,已知△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD .(1)请用尺规作图的方法,过点D 作DM ⊥BE ,垂足为M ;(不写作法,保留作图痕迹) (2)求证:BM=EM .ECDBAFE C D B A21.如图,在平行四边形ABCD 中,E 、F 为BC 上两点,且BE=CF ,AF=DE .求证:(1)△ABF ≌△DCE ;(2)四边形ABCD 是矩形.四、本大题共3个小题,22、23小题各7分,24小题8分,共24分.22.先化简,再求值:231()11a a a a a a--⋅-+,其中2a =.23.今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?FEC DB A24.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.五、本大题共2个小题,25小题8分,26小题10分,共18分.25.如图,已知△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线,交CE 的延长线于点F ,且AF=BD ,连接BF . (1)求证:BD=CD ;(2)如果AB=AC ,试判断四边形AFBD 的形状,并证明你的结论.26.今年,我省部分地区出现持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池.该村共有243户村民,准元.(1)求y与x之间的函数关系式;(2)满足要求的方案各有几种;(3)在以上备选方案中,若平均每户捐2000元时,村里出资最多和最少分别是多少?八年级(下)期末考试数学试卷参考答案一、选择题1-5:DDDDC 6-10:CBBAB 11-12:BB二、填空题13.79a 14.25000x m = 15.70° 16.AB∥DC 等 17.13- 18.∠ABC=90°等三、解答题19.原式=22121a a a a a -⨯-+ =2(1)(1)(1)a a aa a +-⨯- =11a a +-20.①作图正确,保留作图痕迹,给满分.②证明:∵△ABC 是等边三角形,D 是AC 的中点 ∴BD 平分∠ABC(三线合一) ∴∠ABC=2∠DBC∵CE=CD ∴∠CED=∠CDE 又∵∠ABC=∠CED+∠CDE ∴∠ACB=2∠E又∵∠ABC=∠ACB ∴2∠DBC=2∠E ∴∠DBC=∠E ∴BD=ED ∵DM⊥BE ∴BM=EM21.证明:(1)∵BE=CF,BF=BE+EF ,CE=CF+EF ,∴BF=CE.∵四边形ABCD 是平行四边形, ∴AB=DC.在△ABF 和△DCE 中, ∵AB=DC,BF=CE ,AF=DE , ∴△ABF≌△DCE. (2)∵△ABF≌△DCE, ∴∠B=∠C∵四边形ABCD 是平行四边形, ∴AB∥CD.∴∠B+∠C=180°. ∴∠B=∠C=90°.∴四边形ABCD 是矩形.FE CDBA22.解:原式=3(1)(1)(1)(1)(1)(1)a a a a a a a a a+--+-⨯-+=3(1)(1)a a +--=24a +当2a =时,原式=242248a +=⨯+=23.解:设自行车的速度为x 千米/时,则汽车的速度为(x+60)千米/时.根据题意得:20162060x x -=+ 解得:x=15(千米/时)经检验,x=15是原方程的解.则汽车的速度为:60156075x +=+=(千米/时)答:汽车和自行车的速度分别是75千米/时、15千米/时.24.解:(1)当my x=经过点A (2-,1)时,可得2m =-, ∴反比例函数为:2y x-=当2y x-=经过点B (1,n )时,可得2n =-,∴点B 的坐标为:B (1,2-) 又∵直线经过A (2-,1)、B (1,2-)两点,∴122k b k b =-+⎧⎨-=+⎩解得11k b =-⎧⎨=-⎩∴一次函数的解析式为:1y x =--(2)由图象可知:当2x <-或01x <<时,一次函数的值大于反比例函数的值.25.证明:(1)∵AF∥BC,∴∠AFE=∠DCE ∵E 是AD 的中点,∴AE=DE.∵AFE DCE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEF≌△DEC∴AF=DC ∴AF=BD ∴BD=CD(2)四边形AFBD 是矩形.理由:∵AB=AC,D 是BC 的中点,∴AD⊥BC. ∴∠ADB=90° ∵AF=BD,AF∥BC∴四边形AFBD 是平行四边形又∵∠ADB=90° ∴四边形AFBD 是矩形26.解:(1)根据题意得:43(20)y x x =+-,即60y x =+(2)根据题意得:518(20)24346(20)106x x x x +-≥⎧⎨+-≤⎩解得:79x ≤≤故满足要求的方案有三种: ①新建7个,维护13个; ②新建8个,维护12个; ③新建9个,维护11个.(3)由60y x =+知y 随x 的增大而增大 当x=7时,y 最小=67万元 当x=9时,y 最大=69万元而村民捐款共2430.248.6⨯=(万元) 村里出资最多20.4万元,最少18.4万元.。
华师大版八年级下册数学期末测试卷及含答案A4版打印
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、以方程组的解为坐标的点在()A.第一象限B.第二象限C.第三象限D.第四象限2、若平行四边形的一边长为10cm,则它的两条对角线的长度可以是()A.5cm和7cmB.18cm和28cmC.6cm和8cmD.8cm和12cm3、如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、三象限,那么k、b应满足的条件是()A. k>0且b>0B. k>0且b<0C. k<0且b>0D. k<0且b<04、如图,在平行四边形ABCD中,EF∥AB,DE:AE=2:3,△BDC的面积为25,则四边形AEFB的面积为()A.25B.9C.21D.165、在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大 C.在起跑后第180秒时,两人相遇 D.在起跑后第50秒时,乙在甲的前面6、如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC ④,正确的个数是()A.1B.2C.3D.47、如图,四边形ABCD为菱形,BF∥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:①△ABE≌△ADE;②∠CBE=∠CDF;③DE=FE;④S△BCE :S四边形ABFD=1:10.其中正确结论的个数是()A.1个B.2个C.3个D.4个8、学校广播站要招聘1名记者,小亮和小丽报名参加了3项素质测试,成绩如下:写作能力普通话水平计算机水平小亮90分75分51分小丽60分84分72分将写作能力、普通话水平、计算机水平这三项的总分由原先按3:5:2计算,变成按5:3:2计算,总分变化情况是()A.小丽增加多B.小亮增加多C.两人成绩不变化D.变化情况无法确定9、已知关于x的方程有正根,则实数a的取值范围是()A.a<0且a≠﹣3B.a>0C.a<﹣3D.a<3且a≠﹣310、如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A. B. C. D.11、如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(, 1),则点B的坐标为()A.(﹣1,+1)B.(﹣1,1)C.(1,+1)D.(﹣1,2)12、如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.13、下列判断错误的是()A.两组对边分别平行的四边形是平行四边形B.四个内角都相等的四边形是矩形 C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形14、若点M(﹣3,m)、N(﹣4,n)都在反比例函数y= (k≠0)图象上,则m和n的大小关系是()A.m<nB.m>NC.m=nD.不能确定15、如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值()A. B.2 C. D.二、填空题(共10题,共计30分)16、某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为________。
华师大版八年级下册数学期末测试卷【完整版】
华师大版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图所示,直线y=x与双曲线y=(k>0)的一个交点为A,且OA=2,则k的值为( )A.1B.2C.D.22、已知,则满足为整数的所有整数的和是( ).A.-1B.0C.1D.23、已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.8B.8C.4D.24、如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.55、在四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD AD∥BC②AB=CD AD=BC ③AO=CO BO=DO④AB∥CD AD=BC其中一定能判断这个四边形是平行四边形的共有().A.1组B.2组C.3组D.4组6、夏天,一杯开水放在桌子上,杯中水的温度T(℃)随时间t变化的关系的图象是().A. B. C. D.7、反比例函数图象上三个点的坐标为、、,若,则的大小关系是()A. B. C. D.8、已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x -2 0 2 4y甲 5 4 3 2y乙 6 5 3.5 0A.a<﹣2B.﹣2<a<0C.0<a<2D.2<a<49、下列说法中,错误的是()A.两组对边分别平行的四边形是平行四边形B.对角线互相平分且垂直的四边形是菱形C.一组对边平行另外一组对边相等的四边形是平行四边形 D.有一组邻边相等的矩形是正方形10、下列算式的运算结果为m2的是()A.m 4•m ﹣2B.m 6÷m 3C.(m ﹣1)2D.m 4﹣m 211、如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A.(2,)B.(1,2)C.(1,)D.(,1)12、计算2﹣1+(π﹣3)0的结果是()A. B. C. D.﹣113、下列两个变量之间的关系为反比例关系的是()A.匀速行驶过程中,行驶路程与时间的关系B.体积一定时,物体的质量与密度的关系C.质量一定时,物体的体积与密度的关系D.长方形的长一定时,它的周长与宽的关系14、如图,以数轴的单位长度为边作一个正方形,以数轴的原点为圆心,正方形对角线长为半径画圆,交数轴正半轴于点A,则点A表示的数是()A. B.1.4 C.D.15、增城市4月份前5天的最高气温如下(单位:℃):27,30,24,30,31,对这组数据,下列说法正确的是()A.平均数为28B.众数为30C.中位数为24D.方差为5二、填空题(共10题,共计30分)16、如图,在中,点在上,与相交于点,若,则________.17、在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm,当所挂物体质量为3kg时,弹簧长16.8cm.写出弹簧长度L (cm)与所挂物体质量x(kg)之间的函数表达式________.18、如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(﹣1,0),则点C的坐标为________.19、如图,在平面直角坐标系中,长方形OACB的顶点O在坐标原点,顶点A,B分列在x轴,y轴的正半轴上,OA=2,OB=4,D为边OB的中点,E是边OA上的一个动点,当CDE的周长最小时,点E的坐标为________.20、如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△PBG =2,则S四边形AEPH=________.21、如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________°.22、若(2x+1)0=1,则x的取值范围是________.23、定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{1,﹣3}=1,则max{x2+2x+3,﹣2x+8}的最小值是________.24、菱形的对角线长分别是5cm、12cm,则该菱形的面积为________25、如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为________.三、解答题(共5题,共计25分)26、计算:27、如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF ∶S△ABF=4∶25,求DE∶EC的值.28、已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=EC.29、列分式方程解应用题为了践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,某校决定为初三学生购进相同数量的《三国演义》和《红岩》,其中《三国演义》的单价比《红岩》的单价多28元,若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元?30、如图,在▱ABCD中,E是DC的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、C6、B7、B8、D9、C10、A11、C12、B13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
华师大版八年级下册数学期末测试卷及含答案(完整版)(精练)
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若分式的值为零,则x的值是()A.3B.-3C.D.02、若分式有意义,则x的取值范围是()A.x≠-1B.x≠1C.x≥-1D.x≥13、如图,在△ABC中,∠ACB=90°,AC=8,BC=7,以斜边AB为边向外作正方形ABDE,连接CE,则CE的长为()A.14B.15C.16D.174、如图,在正方形ABCD中,△ABE经旋转,可与△CBF重合,AE的延长线交FC于点M,以下结论正确的是()A.AM⊥FCB.BF⊥CFC.BE=CED.FM=MC5、若一个正比例函数的图象经过A(1,-2),B(2,b-1)两点,则b的值为()A.-3B.0C.3D.46、反比例函数y=-(k为常数,k≠0)的图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限7、在同一直角坐标系中反比例函数与一次函数的图象大致是()A. B. C.D.8、若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,B. ,3C.6,3D. ,9、小明在用图象法解二元一次方程组时所画图象如图,那么这个方程组的解是()A.x=2,y=1B.x=1,y=2 C.x=2,y=2 D.x=1,y=110、工程队进行河道清淤时,清理长度y(米)与清理时间x(时)之间关系的图像如图所示,下列说法不正确的是A.该工程队共清理了6小时B.河道总长为50米C.该工程队用2小时清理了30米D.该工程队清理了30米之后加快了速度11、如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是( )A.众数为30B.中位数为25C.平均数为24D.方差为8312、已知点P在第二象限,且到x轴的距离为3,到y轴的距离为5,则点P的坐标为()A.(-5,3)B.(3,5)C.(-3,-5)D.(5,-3)13、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 214、如图,在菱形 ABCD 中,M,N 分别在 AB、CD 上,且 AM=CN,MN 与 AC 交于点O,连接 BO.若∠DAC=28°,则∠OBC 的度数为()A.28°B.52°C.62°D.72°15、数据6,5,7.5,8.6,7,6的众数是()A.5B.6C.7D.8二、填空题(共10题,共计30分)16、已知点M(1-a,2)在第二象限,则a的取值范围是________17、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是________.18、已知双曲线y=与⊙O在第一象限内交于A,B两点,∠AOB=45°,则扇形OAB的面积是________.19、)如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形 ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6 ,则另一直角边BC的长为________.20、当m=________时,函数y=-(m-2)+(m-4)是关于x的一次函数.21、已知点在轴上,则________.22、如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为,则点E的坐标为________.23、数学活动中.张明和王丽向老师说明他们的位置(单位:m).张明:我这里的坐标是(﹣200,300);王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是________m.24、二次函数y=x2的图象如图所示,点A0位于坐标原点,点A1, A2,A 3,…,An在y轴的正半轴上,点B1, B2, B3,…,Bn在二次函数位于第一象限的图象上,点C1, C2, C3,…,Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形An﹣1BnAnCn都是菱形,∠AB1A1=∠A1B2A2=∠A2B3A3=…=∠An﹣1BnAn=60°,则A1点的坐标为________ ,菱形An﹣1BnAnCn的周长为________ .25、某段时间,小明连续7天测得日最高温度如下表所示,那么这7天的最高温度的平均气温是________ ℃.温度(℃)26 27 25天数 1 3 3三、解答题(共5题,共计25分)26、计算:.27、已知:正方形与正方形,点分别在边上,正方形的边长为,正方形的边长为,且。
华师大版八年级下册数学期末测试卷【及含答案】
华师大版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、数据501,502,503,504,505,506,507,508,509的方差是( )A. B. C. D.12、为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的方差是()A. B.10 C. D.3、用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A. B. C. D.4、如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线y=于点C,则△ADC的面积为()A.9B.10C.12D.155、下列计算或化简正确的是()A. B. C. D.6、下列说法正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线互相垂直平分C.一组对边平行,另一组对边相等的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形7、下列计算正确的是()A. B. C.D.8、等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形9、下列说法中错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的平行四边形是正方形10、如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为()A. B. C. D.11、下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②一元二次方程的根是,;③两个相似三角形的周长的比为,则它们的面积的比为;④对角线互相垂直的平行四边形为正方形;⑤对角线垂直的四边形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个12、下列语句中正确的是()A.四边都相等的四边形是矩形B.顺次连接矩形各边中点所得的四边形是菱形C.菱形的对角线相等D.对角线互相垂直的平行四边形是正方形13、如图,AB∥CD,AC∥DB,AD 与 BC 交于点 O,AE⊥BC 于点 E,DF⊥BC 于点 F,那么图中全等的三角形有( )对A.5B.6C.7D.814、若分式的值为0,则x的值为()A.-2B.3C.2D.-315、如图,点E是平行四边形ABCD中BC的延长线上的一点,连接AE交CD于F,交BD于M,则图中共有相似三角形(不含全等的三角形)( )对.A.4B.5C.6D.7二、填空题(共10题,共计30分)16、某校七年级(1)班 7 名女同学的体重(单位:kg)分别是:53、40、42、42、35、36、45 这组数据的中位数是________17、数据的平均数是2,x=________.18、如图,已知▱ABCD,∠A=45°,AD=4,以AD为直径的半圆O与BC相切于点B,则图中阴影部分的面积为________(结果保留π).19、如图所示,在正方形ABCD中,AO⊥BD,OE,FG,HI都垂直于AD,EF,=1,则正方形ABCD的面积为________.GH,IJ都垂直于AO,若已知S△AIJ20、2013•贺州)地球距月球表面约为383900千米,那么这个距离用科学记数法应表示为________千米.(结果保留三个有效数字)21、为解决都匀市停车难的问题,计划在一段长为56米的路段规划处如图所示的停车位,已知每个车位是长为5米,宽为2米的矩形,且矩形的宽与路的边缘成45°角,则该路段最多可以划出________个这样的停车位.(取=1.4,结果保留整数)22、如图,菱形的周长为8厘米,,点M为的中点,点N是边上任一点,把沿直线折叠,点A落在图中的点E处,当________厘米时,是直角三角形.23、平形四边形的三个顶点分别是(1,1),(2,2),(3,-1),则第四个顶点________24、代数式有意义的条件________.25、在菱形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合)。
华师大版数学八年级下册期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
(综合题)华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列算式中,你认为正确的是().A. B.1÷. =l C. D.2、某鞋店试销一种新款女鞋,销售情况如下表所示:型号22 22.5 23 23.5 24 24.5 25数量(双) 3 5 10 15 8 3 2鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差3、如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cmB.6cmC.4cmD.2cm4、下列式子从左至右变形错误的是( ) A. B. C. D.5、下列函数中,y 与x 的反比例函数是( )A.x(y -1)=1B. y =C. y =D. y =6、一元一次方程ax ﹣b=0的解x=3,函数y=ax ﹣b 的图象与x 轴的交点坐标为( )A.(3,0)B.(﹣3,0)C.(a ,0)D.(﹣b ,0)7、下列命题中,真命题是( )A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形8、如果代数式的值为0,那么实数x 满足( ) A. B. C. D. 9、已知点(x 1 ,-1),(x 2 , ),(x 3 ,3)都在反比例函数的图象上,则x 1 ,x 2,x 3的大小关系是( )A.x 1> x 2>x 3B.x 1>x 3>x 2C.x 2>x 1 >x 3D.x 3 >x 1>x 210、已知A ,B ,C 三点的坐标分别为(3,3),(8,3),(4,6),若以A ,B ,C ,D 四点为顶点的四边形是平行四边形,则D 点的坐标不可能是( )A.(﹣1,6)B.(9,6)C.(7,0)D.(0,﹣6)11、下列命题中真命题的是()A.有一组邻边相等的四边形是菱形B.对角线相等的四边形是矩形C.有一个角是直角的菱形是正方形D.有一组对边平行的四边形是梯形12、如下图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图像大致是()A. B. C.D.13、若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是()A. B. C. D.14、已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90°时,它是矩形D.当AC⊥BD时,它是菱形15、如果关于的方程有正整数解,且关于的不等式组,至少有两个偶数解,则满足条件的整数有()个A. B. C. D.二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB =S△ABC.其中正确的结论是________ (只填序号)17、如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB’C’D’.若点B的对应点B’落在边CD上,则B’C的长为________18、若顺次连接四边形ABCD四边中点形成的四边形为矩形,则四边形ABCD满足的条件为.________19、如图,矩形 ABCD 中,点 G 是 AD 的中点,GE⊥CG 交 AB 于 E,BE=BC,连接 CE 交 BG 于 F,则∠BFC 等于________.20、如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF.若∠EAF=70°,那么∠BCF=________度.21、四边形的对角线交点O,点分别为边的中点.有下列四个推断,①对于任意四边形,四边形都是平行四边形;②若四边形是平行四边形,则与交于点O;③若四边形是矩形,则四边形也是矩形;④若四边形是正方形,则四边形也一定是正方形.所有符合题意推断的序号是________.22、如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.23、如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为________.24、函数y=的自变量x的取值范围是________25、如图,四边形是正方形,延长到E,使,则________°.三、解答题(共5题,共计25分)26、计算:sin60°﹣4cos230°+sin45°•tan60°+()﹣2.27、如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD 于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.28、如图在△ABC中,ACB=90°,点D,E分别是AC、AB的中点,点F在BC的延长线上,且CDF= A.求证:四边形DECF是平行四边形.29、如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作▱ABDE,连接AD,EC.求证:四边形ADCE是矩形.30、在□ABCD中,对角线AC,BD相交于点O,点E,F在AC上且AE=CF,求证:DE=BF.参考答案一、单选题(共15题,共计45分)1、D2、B4、C5、D6、A7、C8、A9、B10、D11、C12、A13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
华师大版八年级下册数学期末复习测试题(含答案)
华师大版八年级下册数学期末复习测试题姓名: ,成绩: ;一、选择题(12个题,共48分) 1、有理式11249,(),,,,23313x x x yx y x m x x ++--中,分式有( )个 A、1 B、2 C、3 D、42、分式22x x -+有意义的条件是( ) A、2x ≠ B、2x ≠- C、2x ≠± D、2x >-3、点(-4,1)关于原点的对称点是( ) A、(-4,1) B、(-4,-1) C、(4,1) D(4,-1) 4、已知点(-1,m )和点(0.5,n )都在直线23y x b =-+上,则m 、n 的大小关系是( ) A、m n < B、m n > C、m n = D、无法判断 5、点(0,-2)在(B )A、X轴上 B、Y轴上 C、第三象限 D、第四象限 6、下列判断正确的是( ) A、平行四边形是轴对称图形 B、矩形的对角线垂直平分 C、菱形的对角线相等 D、正方形的对角线互相平分7、关于x 的分式方程232x mx +=-的解是正数,则m 可能是( ) A 、4- B 、5- C 、6- D 、7-8、顺次连接平行四边形各边中点所得到的四边形是( )A、平行四边形 B、矩形 B、菱形 D、正方形9、使关于x 的分式方程121k x -=-的解为非负数,且使反比例函数3ky x-=图象过第一、三象限时满足条件的所有整数k 的和为( )A .0B .1C .2D .310、平行四边形ABCD中,∠ADC的平分线与AB交于点E,若AE、EB是方程组32414113x y x y -=⎧⎪⎨+=⎪⎩的解,则平行四边形ABCD的周长为( )A、16 B、17 C、17或16 D、5.511、甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
2020年华东师大版数学八年级下册期末测试题附答案(共4套)
华东师大版数学八年级下册期末测试题(一)(时间:120分钟 分值:120分)一、选择题1.函数y =1x +2中,x 的取值范围是( )A .x ≠0B .x >-2C .x <-2D .x ≠-22.某超市某种商品的单价为70元/件,若买x 件该商品的总价为y 元,则其中的常量是( )A .70B .xC .yD .不确定3.在平面直角坐标系中,直线y =2x -6不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.计算:a 2-1a 2+2a +1÷a -1a ,其结果正确的是( )A.12B.aa +1 C.a +1a D.a +1a +25.如图,▱ABCD 中,∠C =108°,BE 平分∠ABC ,则∠ABE 等于( ) A .18° B .36° C .72° D .108°第5题图 第7题图6.若关于x 的分式方程mx -2+x +12-x=3有增根,则m 的值是( )A .m =-1B .m =2C .m =3D .m =0或m =37.如图,点P 为▱ABCD 的边AD 上一点,若△P AB ,△PCD 和△PBC 的面积分别为S 1、S 2和S 3,则它们之间的大小关系是( ) A .S 3=S 1+S 2 B .2S 3=S 1+S 2 C .S 3>S 1+S 2 D .S 3<S 1+S 28.某次列车平均提速20km/h ,用相同的时间,列车提速前行驶400km ,提速后比提速前多行驶100km ,设提速前列车的平均速度为x km/h ,下列方程正确的是( ) A.400x =400+100x +20 B.400x =400-100x -20 C.400x =400+100x -20 D.400x =400-100x +209.若式子k -1+(k -1)0有意义,则一次函数y =(k -1)x +1-k 的图象可能是( )10.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.以下说法错误的是( )A .加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是y =-8t +25B .途中加油21升C .汽车加油后还可行驶4小时D .汽车到达乙地时油箱中还余油6升二、填空题11.0.0000156用科学记数法表示为____________. 12.当x =________时,分式x -22x +5的值为0. 13.在反比例函数y =2x 图象的每一支上,y 随x 的增大而________(填“增大”或“减小”).14.如图,在▱ABCD 中,BE ⊥AB 交对角线AC 于点E ,若∠1=20°,则∠2的度数为________.第14题图 第16题图 第17题图15.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________. 16.如图,在四边形ABCD 中,AD ∥BC ,∠B =70°,∠C =40°,DE ∥AB 交BC 于点E .若AD =5cm ,BC =12cm ,则CD 的长是________cm.17.如图,在Rt △AOB 中,点A 是直线y =x +m 与双曲线y =mx 在第一象限的交点,且S △AOB =2,则m 的值是________.18.▱ABCD 的周长为40cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△BOC 的周长多4cm ,则AB =________cm ,BC =________cm.三、解答题19.计算或解方程:(1)20160-|-2|+(-3)2-⎝⎛⎭⎫14-1;(2)1x -3=3x.20.化简:2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.21.如图,在▱ABCD 中,点O 是对角线AC 和BD 的交点,OE ⊥AD 于E ,OF ⊥BC 于F . 求证:OE =OF .22.某种型号油电混合动力汽车,从A 地到B 地燃油行驶纯燃油费用为76元,从A 地到B 地用电行驶纯电费用为26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元. (1)求每行驶1千米纯用电的费用;(2)若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?23.如图,反比例函数y =kx 的图象与一次函数y =k ′x +b 的图象交于点A (1,4)、点B (-4,n ).(1)求一次函数和反比例函数的解析式; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.24.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2h ,并且甲车途中休息了0.5h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象. (1)求出图中m ,a 的值;(2)求出甲车行驶路程y (km)与时间x (h)的函数解析式,并写出相应的x 的取值范围; (3)当乙车行驶多长时间时,两车恰好相距50km?参考答案一、选择题1.D 2.A 3.B 4.B 5.B6.C 7.A 8.A 9.A10.C 解析:设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系式为y =kt +b .将(0,25),(2,9)代入,得⎩⎪⎨⎪⎧b =25,2k +b =9,解得⎩⎪⎨⎪⎧k =-8,b =25.所以y =-8t +25,故A 正确;由图象可知,途中加油30-9=21(升),故B 正确;由图可知汽车每小时用油(25-9)÷2=8(升),所以汽车加油后还可行驶的时间为30÷8=334<4(小时),故C 错误;∵汽车从甲地到达乙地,所需时间为500÷100=5(小时),∴5小时耗油量为8×5=40(升).又∵汽车出发前油箱有油25升,途中加油21升,∴汽车到达乙地时油箱中还余油25+21-40=6(升),故D 正确.故选C.二、填空题11.1.56×10-5 12.2 13.减小 14.110° 15.y =2x -2 16.7 17.418.12 8 解析:∵▱ABCD 的周长为40cm ,∴BC +AB =20cm.又∵△AOB 的周长比△BOC 的周长多4cm ,∴AB -BC =4cm ,解得AB =12cm ,BC =8cm.三、解答题19.解:(1)原式=1-2+3-4=-2.(2)方程两边同乘以x (x -3),得x =3(x -3),解得x =92.检验:当x =92时,x (x -3)≠0,∴x =92是原方程的根.20.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2x x +1-2x -2x +1=2x -2x +2x +1=2x +1.∵不等式x ≤2的非负数解是0,1,2,又(x +1)(x -1)≠0,x +2≠0,∴x ≠±1,x ≠-2,∴x =0或2. 当x =0时,原式=2.21.证明:∵四边形ABCD 是平行四边形,∴OA =OC ,AD ∥BC ,∴∠EAO =∠FCO . ∵OE ⊥AD ,OF ⊥BC ,∴∠AEO =∠CFO =90°. 在△AEO 和△CFO 中,⎩⎪⎨⎪⎧∠EAO =∠FCO ,∠AEO =∠CFO ,OA =OC ,∴△AEO ≌△CFO ,∴OE =OF .22.解:(1)设每行驶1千米纯用电的费用为x 元,依题意得76x +0.5=26x ,解得x =0.26.经检验,x =0.26是原分式方程的解.答:每行驶1千米纯用电的费用为0.26元.(2)设从A 地到B 地油电混合行驶时用电行驶y 千米, 依题意得0.26y +⎝⎛⎭⎫260.26-y (0.26+0.50)≤39,解得y ≥74. 答:至少用电行驶74千米.23.解:(1)∵点A (1,4)在反比例函数y =k x 上,∴k =1×4=4,∴y =4x.∵点B (-4,n )在反比例函数y =4x 中,∴n =4-4=-1,即点B 的坐标为(-4,-1).将A (1,4),B (-4,-1)代入一次函数y =k ′x +b 中,得⎩⎪⎨⎪⎧k ′+b =4,-4k ′+b =-1,解得⎩⎪⎨⎪⎧k ′=1,b =3.∴一次函数的解析式为y =x +3.(2)令y =0,则x +3=0,解得x =-3,∴一次函数y =x +3与x 轴交于点(-3,0). ∵A (1,4),B (-4,-1),∴A 到x 轴的距离为4,B 到x 轴的距离为1, ∴S △OAB =12×3×(4+1)=152.(3)x >1或-4<x <0.24.解:(1)由题意得,m =1.5-0.5=1,v 甲=120÷(3.5-0.5)=40(km/h),∴a =40.(2)当0≤x <1时,y =40x ;当1≤x <1.5时,y =40;当x ≥1.5时,设y =kx +b ,由图象可知,直线经过点(1.5,40),(3.5,120),∴⎩⎪⎨⎪⎧1.5k +b =40,3.5k +b =120,解得⎩⎪⎨⎪⎧k =40,b =-20.∴y =40x -20. 综上所述,y =⎩⎪⎨⎪⎧40x (0≤x <1),40(1≤x <1.5),40x -20(x ≥1.5).(3)设y 乙=ax +b ,由图象可知,直线经过(2,0)和(3.5,120),∴⎩⎪⎨⎪⎧2a +b =0,3.5a +b =120,解得⎩⎪⎨⎪⎧a =80,b =-160, ∴y 乙=80x -160.由图象可知,甲、乙两车相距50km 时,有如下两种情形:①y 甲-y 乙=50,即40x -20-(80x -160)=50,解得x =2.25,此时乙车行驶时间为2.25-2=0.25(h);②y 乙-y 甲=50,即80x -160-(40x -20)=50,解得x =4.75,此时乙车行驶时间为4.75-2=2.75(h), 即当乙车行驶0.25h 或2.75h 时,两车恰好相距50km.华东师大版数学八年级下册期末测试题(二)(时间:120分钟 分值:120分)一、选择题1.函数y =xx -2的自变量x 的取值范围是( )A .x ≥0且x ≠2B .x ≥0C .x ≠2D .x >22.H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为( )A .0.1×10-7B .1×10-7C .0.1×10-6D .1×10-63.已知点P (x ,3-x )在第二象限,则x 的取值范围为( ) A .x <0 B .x <3 C .x >3 D .0<x <34.2016则这11名队员身高的众数和中位数分别是(单位:cm)( ) A .180,182 B .180,180 C .182,182 D .3,25.如图,在平行四边形ABCD 中,下列结论中错误的是( ) A .∠1=∠2B .∠BAD =∠BCDC .AB =CD D .AC ⊥BD第5题图 第8题图6.已知分式(x -1)(x +2)x 2-1的值为0,那么x 的值是( )A .-1B .-2C .1D .1或-27.一次函数y =-2x +1和反比例函数y =3x的大致图象是( )8.如图,在菱形ABCD 中,AC =8,菱形ABCD 的面积为24,则其周长为( ) A .20 B .24 C .28 D .409.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第9题图 第10题图10.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论:①点G 是BC 中点;②FG =FC ;③S △FGC =910.其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题11.化简:(x 2-9)·1x -3=________.12.若点(-2,1)在反比例函数y =kx 的图象上,则该函数的图象位于第________象限.13.一组数据5,-2,3,x ,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是________.14.如图,在矩形纸片ABCD 中,AB =12,BC =5,点E 在AB 上,将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为_________.第14题图 第18题图15.直线y =3x +1向右平移2个单位,再向下平移3个单位得到的直线解析式为________________.16.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是________.17.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数是甲车的2倍,则甲车单独运完此堆垃圾需要运的趟数为________.18.甲、乙两地相距50千米,星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x (小时)之间的函数关系如图所示,小明父亲出发______小时,行进中的两车相距8千米.三、解答题19.计算或解方程: (1)-22+⎝⎛⎭⎫13-2-|-9|-(π-2016)0;(2)2+x 2-x +16x 2-4=-1.20.先化简:x 2-1x 2-2x +1÷x +1x ·⎝⎛⎭⎫x -1x ,然后x 在-1,0,1,2四个数中选一个你认为合适的数代入求值.21.如图,四边形ABCD 是平行四边形,点E ,F 是对角线BD 上的点,∠1=∠2.求证: (1)BE =DF ; (2)AF ∥CE .22.如图,在平面直角坐标系中,直线y =2x +b (b <0)与坐标轴交于A ,B 两点,与双曲线y =kx (x >0)交于D 点,过点D 作DC ⊥x 轴,垂足为C ,连接OD .已知△AOB ≌△ACD . (1)如果b =-2,求k 的值;(2)试探究k 与b 的数量关系,并求出直线OD 的解析式.23.)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手的成绩较为稳定.24.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(千米)与小明离家的时间x(小时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.25.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A为多少度时,四边形BECD是正方形?请说明你的理由.参考答案一、选择题1.A 2.B 3.A 4.B 5.D 6.B 7.D 8.A 9.D10.B 解析:∵四边形ABCD 是正方形,∴AB =AD =DC =3,∠B =D =90°.∵CD =3DE ,∴DE =1,则CE =2.∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =1,AD =AF ,∠D =∠AFE =90°,∴∠AFG =90°,AF =AB .在Rt △ABG 和Rt △AFG 中,⎩⎪⎨⎪⎧AG =AG ,AB =AF ,∴Rt △ABG ≌Rt △AFG (HL),∴BG =FG ,∠AGB =∠AGF .设BG =x ,则CG =BC -BG =3-x ,GE =GF +EF =BG +DE =x +1.在Rt △ECG 中,由勾股定理得CG 2+CE 2=EG 2.即(3-x )2+22=(x +1)2,解得x =1.5,∴BG =GF =CG =1.5,①正确,②不正确.∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同.∴S △CFG S △CEG =FG GE =1.52.5=35,∵S △GCE =12×1.5×2=1.5,∴S △CFG =35×1.5=910,③正确.故选B. 二、填空题11.x +3 12.二、四 13.2 14.103 15.y =3x -8 16.5 17.1518.23或43解析:由图可知,小聪及父亲的速度为36÷3=12(千米/时), 小明的父亲速度为36÷(3-2)=36(千米/时).设小明的父亲出发x 小时两车相距8千米,则小聪及父亲出发的时间为(x +2)小时 根据题意,得12(x +2)-36x =8或36x -12(x +2)=8, 解得x =23或x =43,所以,出发23或43小时时,行进中的两车相距8千米.三、解答题19.解:(1)原式=-4+9-3-1=1.(2)方程的两边同乘(x -2)(x +2),得-(x +2)2+16=4-x 2,解得x =2. 检验:当x =2时,(x -2)(x +2)=0,所以原方程无解.20.解:原式=(x +1)(x -1)(x -1)2·x x +1·x 2-1x =x x -1·(x +1)(x -1)x =x +1. ∵x -1≠0,x +1≠0,x ≠0,∴x ≠1,x ≠-1,x ≠0,∴在-1,0,1,2四个数中,使原式有意义的值只有2, ∴当x =2时,原式=2+1=3.21.证明:(1)∵四边形ABCD 为平行四边形, ∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF . ∵∠1=∠2,∴∠AEB =∠CFD .在△ABE 与△CDF 中,⎩⎪⎨⎪⎧∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF ,∴BE =DF .(2)∵△ABE ≌△CDF ,∴AE =CF .∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 为平行四边形,∴AF ∥CE . 22.解:(1)当b =-2时,y =2x -2.令y =0,则2x -2=0,解得x =1; 令x =0,则y =-2,∴A (1,0),B (0,-2).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点D 的坐标为(2,2). ∵点D 在双曲线y =kx(x >0)的图象上,∴k =2×2=4.(2)直线y =2x +b 与坐标轴交点的坐标为A ⎝⎛⎭⎫-b2,0,B (0,b ). ∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点D 的坐标为(-b ,-b ). ∵点D 在双曲线y =kx( x >0)的图象上,∴k =(-b )·(-b )=b 2.即k 与b 的数量关系为k =b 2.23.解:(1)从左到右,从上到下,依次为85,85,80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下,中位数高的初中部成绩好些.(3)∵s 2初=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s 2高=15[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,∴s 2初<s 2高,∴初中代表队选手的成绩较为稳定. 24.解:(1)20÷1=20(千米/时),2-1=1(小时),即小明的骑车速度为20千米/时,在南亚所游玩的时间为1小时.(2)从南亚所到湖光岩的路程为20×⎝⎛⎭⎫2560-1060=5(千米),20+5=25(千米),116+2560=94(小时),则点C 的坐标为⎝⎛⎭⎫94,25. 设直线CD 的解析式为y =kx +b ,把点⎝⎛⎭⎫94,25,⎝⎛⎭⎫116,0代入得⎩⎨⎧25=94k +b ,0=116k +b ,解得⎩⎪⎨⎪⎧k =60,b =-110.故CD 所在直线的解析式为y =60x -110. 25.(1)证明:∵DE ⊥BC ,∴∠DFB =90°. 又∵∠ACB =90°,∴AC ∥DE .∵AD ∥CE ,∴四边形ADEC 为平行四边形,∴CE =AD .(2)解:当D 在AB 中点时,四边形BECD 为菱形.理由如下: ∵D 为AB 中点,∴AD =BD .∵CE=AD,∴CE=BD.∵CE∥BD,∴四边形BDCE为平行四边形.∵DE⊥CB,∴四边形BECD为菱形.(3)解:若D为AB中点,当∠A=45°时,四边形BECD为正方形.理由如下:由(2)得四边形BECD为菱形.∵∠A=45°,∠ACB=90°,∴∠ABC=90°-45°=45°,∴△ACB为等腰直角三角形.∵D为AB中点,∴∠CDB=90°,∴四边形BECD为正方形.华东师大版数学八年级下册期末测试题(三)(时间:120分钟分值:120分)一、选择题1.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是() A.11.6 B.2.32 C.23.2 D.11.52.我市欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和6和4的权.根据四人各自的平均成绩,将录取()A.甲 B.乙 C.丙 D.丁3.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小4.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.方差 C.中位数 D.众数5.图①、图②分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b,中位数分别为c、d,则下列关于a、b、c、d的大小关系,正确的是()A .a >b ,c >dB .a >b ,c <dC .a <b ,c >dD .a <b ,c <d6.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等C .对角线互相平分D .两组对角分别相等7.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于E ,F ,那么阴影部分的面积是矩形ABCD 面积的( ) A.15 B.14 C.13 D.310第7题图 第8题图8.如图,在菱形ABCD 中,AC ,BD 是对角线,若∠BAC =50°,则∠ABC 等于( ) A .40° B .50° C .80° D .100°9.正方形ABCD 的面积为36,则对角线AC 的长为( )A .6B .6 2C .9D .9 2 10.下列命题中,真命题是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形 二、填空题11.2016年南京3月份某周7天的最低气温分别是-1℃,2℃,3℃,2℃,0℃,-1℃,2℃,则这7天最低气温的众数是________℃. 12年龄 13 14 15 16 频数 1 2 5 4则该校女子排球队队员的平均年龄为________岁.13.某学习小组在“世界读书日”统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x ,15,16,13,若这组数据的平均数为16,则这组数据的中位数是________. 14.已知一组数据:3,3,4,7,8,则它的方差为________. 15.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为____________.第15题图第16题图16.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD,CB为边作平行四边形CDEB,当AD=________时,平行四边形CDEB为菱形.17.如图,已知双曲线y=kx(x>0)经过矩形OABC边AB的中点F,交BC于点E,且四边形OEBF的面积为6,则k=________.第17题图第18题图18.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F.若AB=6,BC=10,则FD的长为________.三、解答题19.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD,BC于点E,F(保留作图痕迹,不写作法和证明);(2)连接BE,DF,问四边形BEDF是什么四边形?请说明理由.21.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE ,CF . (1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.22.已知一组数据x 1,x 2,…,x 6的平均数为1,方差为53.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).23.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分.前6项目序号1 2 3 4 5 6笔试成绩/分 85 92 84 90 84 80 面试成绩/分 90 88 86 90 80 85100分).(1)这6名选手笔试成绩的中位数是分,众数是分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)在(2)的条件下,求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.参考答案一、选择题1.A2.B3.C4.B 5.A 6.B 7.B 8.C 9.B 10.C 二、填空题11.2 12.15 13.16 14.4.4 15.(2+2,2) 16.7517.6 解析:设F ⎝⎛⎭⎫a ,k a ,则B ⎝⎛⎭⎫a ,2ka ,因为S 矩形ABCO =S △OCE +S △AOF +S 四边形OEBF , 所以12k +12k +6=a ·2ka,解得k =6.18.256 解析:连接EF ,∵E 是AD 的中点,∴AE =DE . ∵△ABE 沿BE 折叠后得到△GBE , ∴AE =EG ,BG =AB =6,∴ED =EG . ∵在矩形ABCD 中,∠A =∠D =90°,∴∠EGF =90°.在Rt △EDF 和Rt △EGF 中,⎩⎪⎨⎪⎧ED =EG ,EF =EF ,∴Rt △EDF ≌Rt △EGF (HL),∴DF =FG .设DF =x ,则BF =BG +GF =6+x ,CF =CD -DF =6-x .在Rt △BCF 中,BC 2+CF 2=BF 2,即102+(6-x )2=(6+x )2,解得x =256.即DF =256.三、解答题19.证明:∵AD ∥BC ,∴∠BAD +∠B =180°.∵∠BAD =∠BCD ,∴∠B +∠BCD =180°,∴AB ∥CD ,∴四边形ABCD 为平行四边形, ∴∠B =∠D .∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°. 在△ABM 与△ADN 中,⎩⎪⎨⎪⎧∠AMB =∠AND ,∠B =∠D ,AM =AN ,∴△ABM ≌△ADN ,∴AB =AD ,∴四边形ABCD 是菱形. 20.解:(1)如图所示,EF 为所求直线. (2)四边形BEDF 为菱形.理由如下:∵EF 垂直平分BD ,∴BF =DF ,BE =DE ,∠DEF =∠BEF .∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF . ∵BF =DF ,∴BE =ED =DF =BF ,∴四边形BEDF 为菱形.21.(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°. ∵△EBF 是等腰直角三角形,其中∠EBF =90°,∴BE =BF ,∠EBC +∠FBC =90°. 又∵∠ABF +∠FBC =90°,∴∠ABF =∠CBE . 在△ABF 和△CBE 中,有⎩⎪⎨⎪⎧AB =CB ,∠ABF =∠CBE ,BF =BE ,∴△ABF ≌△CBE (SAS).(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180°-∠BFE =135°. 又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,∴∠CEF =∠CEB -∠FEB =135°-45°=90°,∴△CEF 是直角三角形.22.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6. 又∵方差为53,∴s 2=16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=16[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=16(x 21+x 22+…+x 26-2×6+6)=16(x 21+x 22+…+x 26)-1=53,∴x 21+x 22+…+x 26=16. (2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,∴x 7=1.∵16[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=53,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10, ∴s 2=17[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=17[10+(1-1)2]=107.23.解:(1)84.5 84(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得⎩⎪⎨⎪⎧x +y =1,85x +90y =88,解得⎩⎪⎨⎪⎧x =0.4,y =0.6,即笔试成绩和面试成绩各占的百分比是40%,60%. (3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.华东师大版数学八年级下册期末测试题(四)(时间:120分钟 分值:120分)一、选择题1.四边形ABCD 的对角线AC =BD ,AC ⊥BD ,分别过A ,B ,C ,D 作对角线的平行线,所成的四边形EFMN 是( ) A .正方形 B .菱形 C .矩形 D .任意四边形2.如图,菱形ABCD 中,∠A =60°,周长是16,则菱形的面积是( ) A .16 B .16 2 C .16 3 D .8 3第2题图 第4题图 第5题图3.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下列结论正确的有( ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④4.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长为( ) A .4 B .6 C .8 D .105.如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥AB .下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90°,那么四边形AEDF 是矩形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是菱形.其中,正确的有( ) A .1个 B .2个 C .3个 D .4个6.一组数据6,3,9,4,3,5,12的中位数是( ) A .3 B .4 C .5 D .67.明明班里有10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)如下:10,12,13.5,40.8,19.3,20.8,25,16,30,30.这10名同学平均捐款()A.25 B.23.9 C.19.04 D.21.748.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.809.某校七年级有13名同学参加百米跑竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数 B.众数C.平均数 D.最大值与最小值的差10.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1甲乙丙丁方差0.2930.3750.3620.398由上可知射击成绩最稳定的是()A.甲 B.乙 C.丙 D.丁二、填空题11.顺次连接矩形四边中点所形成的四边形是________.12.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=________.第12题图第14题图13.已知▱ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件____________使其成为一个菱形(只添加一个即可).14.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为________度时,两条对角线长度相等.15.一组正整数2,3,4,x是从小到大排列的,已知这组数据的中位数和平均数相等,那么x的值是5.16.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是________(填“小明”或“小华”).17.为实现“畅通重庆”,加强交通管理,严防“交通事故”,一名警察在高速公路上随机观察6车序号12345 6车速(千米/时)8610090827082则这618.已知一组数据5x1-2,5x2-2,5x3-2,5x4-2,5x5-2的方差是5,那么另一组数据x1,x2,x3,x4,x5的方差是________.三、解答题19.在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图所示,求这四个小组回答正确题数的平均数.20.四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)图①中m的值是________;(2)求本次调查获取的样本数据的平均数、众数和中位数.21.甲、乙两名同学进入九年级后,某科6次考试成绩如图:(1)平均数方差中位数众数甲7575乙33.3(2)①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?22.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.23.如图,在菱形ABCD中,AB=4,点E为BC的中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.24.如图,在△ABC 中,D 是BC 边上的一点,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF .(提示:在直角三角形中,斜边的中线等于斜边的一半)(1)试判断线段BD 与CD 的大小关系;(2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论;(3)若△ABC 为直角三角形,且∠BAC =90°时,判断四边形AFBD 的形状,并说明理由.参考答案一、选择题1.A2.D3.B4.C 5.D 6.C 7.D 8.B 9.A 10.A二、填空题11.菱形 12.112.5° 13.AC ⊥BD (答案不唯一)14.90 15.5 16.小明17.16618.15解析:∵一组数据5x 1-2,5x 2-2,5x 3-2,5x 4-2,5x 5-2的方差是5.∴设数据5x 1,5x 2,5x 3,5x 4,5x 5的平均数为5x ,则方差是15[(5x 1-5x )2+(5x 2-5x )2+(5x 3-5x )2+(5x 4-5x )2+(5x 5-5x )2]=15[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2+(x 5-x )2]×25=5,∴另一组数据x 1,x 2,x 3,x 4,x 5的方差是s 2=15[(x 1-x )2+(x 2-x )2+(x 3-x )2+(x 4-x )2+(x 5-x )2]=15.三、解答题19.解:(6+12+16+10)÷4=44÷4=11,∴这四个小组回答正确题数的平均数是11.20.解:(1)32(2)x =150(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16. ∵在这组样本数据中,10出现次数最多,∴这组数据的众数为10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为12(15+15)=15. 21.解:(1)从上到下,从左往右,依次为125 75 75 72.5 70(2)①甲、乙两同学平均分相同,乙的方差小,说明乙的成绩较稳定;②甲的成绩越来越好,而乙的成绩起伏不定.22.(1)证明:∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,∴∠BAD =∠DAC .∵AE 平分∠CAM ,∴∠CAE =∠EAM ,∴∠DAE =∠DAC +∠CAE =12(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形.(2)解:当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形.证明如下∵∠BAC =90°,∴∠DAC =∠DCA =45°,∴AD =CD .又∵四边形ADCE 为矩形,∴四边形ADCE 为正方形.23.解:(1)连接AC ,BD ,并且AC 和BD 相交于点O .∵AE ⊥BC 且E 为BC 的中点,∴AC =AB .∵四边形ABCD 为菱形,∴AB =BC =AD =DC ,AC ⊥BD ∴△ABC 和△ADC 都是正三角形,∴AB =AC =4.∴AO =12AC =2,∴BO =AB 2-AO 2=23, ∴BD =43,∴菱形ABCD 的面积是12AC ·BD =8 3. (2)∵△ADC 是正三角形,AF ⊥CD ,∴∠DAF =30°.∵CG ∥AE ,BC ∥AD ,AE ⊥BC , ∴四边形AECG 为矩形,∴∠AGH =90°,∴∠AHC =∠DAF +∠AGH =120°.24.解:(1)BD =CD .∵AF ∥BC ,∴∠F AE =∠CDE .∵点E 是AD 的中点,∴AE =DE .在△AEF 和△DEC 中, ⎩⎪⎨⎪⎧∠F AE =∠CDE ,AE =DE ,∠AEF =∠CED ,∴△AEF ≌△DEC (ASA),∴AF =CD .∵AF =BD ,∴BD =CD .(2)四边形AFBD 是矩形.证明如下:∵AF ∥BC ,AF =BD ,∴四边形AFBD 是平行四边形.∵AB =AC ,BD =CD ,∴AD ⊥BC ,∴∠ADB =90°,∴四边形AFBD 是矩形.(3)四边形AFBD 为菱形,理由如下:∵∠BAC =90°,BD =CD ,∴BD =AD .同(2)可得四边形AFBD 是平行四边形,∴四边形AFBD 是菱形.。
【华东师大版】八年级数学下期末试卷(带答案)
一、选择题1.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交CD 边于E ,AD =3,EC =2,则AB 的长为( )A .1B .2C .3D .52.如图,已知ABC ∆周长为1,连接ABC ∆三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依此类推,则第2020个三角形的周长是( )A .201912 B .202012 C .12019 D .120203.一个多边形每个外角都等于30°,则这个多边形是几边形( )A .9B .10C .11D .124.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x += D .6060855x x +=+- 5.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510y y a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3 C .6 D .116.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 7.下列四个多项式:①-a 2+b 2;②-x 2-y 2;③1-(a -1)2;④x 2-2xy +y 2,其中能用平方差公式分解因式的有( )A .4个B .3个C .2个D .1个8.下列各式从左到右因式分解正确的是( )A .()26223x y x y -+=-B .()22121x x x x -+=-+C .()2242x x -=-D .()()311x x x x x -=+- 9.下列各式由左到右的变形中,属于分解因式的是( ) A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an10.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 11.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .212.如图,P 为ABC 的边BC 上一点,且2PC PB =,已知45ABC ∠=︒,60APC ∠=︒,则ACB ∠的度数为( )A .75︒B .80︒C .85︒D .88︒二、填空题13.如图,Rt △ABC 中,∠C =90°,∠A =30°,AB =20,点P 是AC 边上的一个动点,将线段BP 绕点B 顺时针旋转60°得到线段BQ ,连接CQ ,则在点P 运动过程中,线段CQ 的最小值为_____.14.如图,已知矩形ABCD 中,6cm AB =,8cm BC =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于_____cm .15.计算2216816a a a -++÷428a a -+=__________. 16.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 17.若x ﹣y =2,xy =3,则x 2y ﹣xy 2=____.18.点P (m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =_____. 19.若关于x 的不等式组121x m x m ≤+⎧⎨-⎩>无解,则m 的取值范围是________ 20.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D ,有下列结论:①EF BE CF =+;②点O 到ABC 各边的距离相等;③1902BOC A ∠=+∠︒;④()12AD AB AC BC =+-.其中正确的结论是______(把你认为正确结论的序号都填上).三、解答题21.如图1在Rt △ABC 中,∠ACB =90°,CA =CB =2,P 为AB 上一个点,将线段CP 绕点C 逆时针旋转90°得到线段CD ,连接PD ,BD .(1)判断BD 与AP 的关系,并证明你的结论.(2)如图2,设点B 关于直线CP 的对称点为E ,连接BE ,CE .① 依题意补全图2;② 证明:BE ∥CD ;③ 当四边形CDBE 为平行四边形时,求AP 的长.22.某校组织八年级学生外出去博物馆参观,一部分学生步行,一部分学生骑车.已知骑车的路程是12km .而步行路程是骑车路程的23.若骑车的速度是步行学生速度的2倍,且骑车时间比步行所需时间少用20分钟,求骑车的平均速度.23.因式分解:(1)228x -;(2)3244x x x ++.24.将两块大小相同的含30角的直角三角板(30BAC B A C ''∠=∠=︒)按图①的方式放置,固定三角板A B C '',然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90︒)至图②所示的位置,AB 与A C '交于点E ,AC 与A B ''交于点F ,AB 与A B ''交于点O .(1)求证:BCE B CF '△≌△;(2)当旋转角等于30时,AB 与A B ''垂直吗?请说明理由.25.列方程解应用题:七年级1班计划购买一批书包和词典作为“迎新知识竞赛”活动奖品,了解到每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)求每个书包和每本词典的价格;(2)若该班计划用900元购买40份(即书包、词典的总数量)奖品,设其中购买了m 个书包,请写出余下的钱的代数式,当余下的钱为最小值时,问该班购买书包和词典的数量各是多少?26.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F .(1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.2.A解析:A【分析】根据三角形的中位线定理建立周长之间的关系,按规律求解.【详解】根据三角形中位线定理可得第二个三角形的各边长都等于最大三角形各边的一半,那么第二个三角形的周长=△ABC的周长1111222⨯=⨯=,第三个三角形的周长=△ABC 的周长2211112222⎛⎫⨯⨯== ⎪⎝⎭, ,第n 个三角形的周长112n -=, ∴第2020个三角形的周长201912=. 故选:A .【点睛】本题考查了三角形的中位线定理,解决本题的关键是利用三角形的中位线定理得到第n 个三角形的周长与第一个三角形的周长的规律.3.D解析:D【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数计算即可.【详解】∵一个多边形的每个外角都等于30°,外角和为360°,∴n=360°÷30°=12,故选D .【点睛】本题主要考查了多边形外角和、利用外角求正多边形的边数的方法,解题的关键是掌握任意多边形的外角和都等于360度.第II 卷(非选择题)请点击修改第II 卷的文字说明4.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 5.B解析:B【分析】根据分式方程的解为正整数解,即可得出a=0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a<5,找出a的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x=121a+,∵x≠3,∴121a+≠3,即a≠3,又∵分式方程有正整数解,∴a=0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51 yy a≤⎧⎨-⎩>,∴a−1<4,解得,a<5,∴a=0,1,2,∴0+1+2=3,故选:B.【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.6.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.7.C【分析】根据平方差公式特点:①两项,②都可以写成平方的形式,③平方前面是异号,可以得到答案.【详解】解:①-a 2+b 2;③1-(a -1)2;符合平方差特点;④x 2-2xy +y 2,②-x 2-y 2;不符合平方差特点;故选:C .【点睛】此题主要考查了平方差公式特点,把握公式特点是解题的关键.8.D解析:D【分析】根据提公因式法可判断A 项,根据公式法可判断B 、C 两项,根据提公因式法和平方差公式可判断D 项,进而可得答案.【详解】解:A 、()262231x y x y -+=-+,所以本选项因式分解错误,不符合题意; B 、()22211x x x -+=-,所以本选项因式分解错误,不符合题意;C 、()()2422x x x -=-+,所以本选项因式分解错误,不符合题意; D 、()()()32111x x x x x x x -=-=+-,所以本选项因式分解正确,符合题意. 故选:D .【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题的关键. 9.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.10.D解析:D根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k的取值范围,再结合选项解答.【详解】解:根据图象,得2k<6,3k>5,解得k<3,k>53,所以53<k<3.只有2符合.故选:D.【点睛】利用数形结合法,根据图象列出不等式求k的取值范围是解题的关键.12.A解析:A【分析】根据三角形内角和定理求出∠DCP=30°,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用△BPD是等腰三角形,然后可得AD=DC,∠ACD=45°从而求出∠ACB的度数.【详解】解:过C作AP的垂线CD,垂足为点D.连接BD;∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=45°-15°=30°,∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°,故选A.【点睛】此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质等知识点,综合性较强,有一定的拔高难度,属于难题.二、填空题13.5【分析】将Rt△ABC绕B点顺时针旋转60°得到Rt△EBD首先证明Q随着P的运动在ED上运动然后求解CQ的最小值即为求C到ED的距离当CQ⊥ED时CQ的长度即为最小结合题意求解即可【详解】如图所解析:5【分析】将Rt△ABC绕B点顺时针旋转60°得到Rt△EBD,首先证明Q随着P的运动在ED上运动,然后求解CQ的最小值即为求C到ED的距离,当CQ⊥ED时,CQ的长度即为最小,结合题意求解即可.【详解】如图所示,将Rt△ABC绕B点顺时针旋转60°得到Rt△EBD,则此时E、C、B三点在同一直线上,∵∠ABC=60°,∠PBQ=60°,∴∠ABP=∠EBQ,随着P的运动,总有AB=EB,PB=QB,∴总有△APB≌△EQB(SAS),即:E、Q、D三点在同一直线上,∴Q 的运动轨迹为线段ED ,∴当CQ ⊥ED 时,CQ 的长度最小,∵Rt △ABC 中,∠C =90°,∠A =30°,AB =20,∴BC =BD =10,EC =10,即:C 为EB 的中点,∵CQ ⊥ED ,∠D=90°,∴CQ ∥BD ,CQ 为△EBD 的中位线, ∴152CQ BD ==, 故答案为:5.【点睛】本题考查了旋转的性质,三角形的中位线定理等,解题关键是能够熟练运用旋转的性质,确定点Q 的轨迹在线段ED 上.14.20【分析】连接ACBD 根据三角形的中位线求出HGGFEFEH 的长再求出四边形EFGH 的周长即可【详解】如图连接ACBD 四边形ABCD 是矩形AC =BD =8cmEFGH 分别是ABBCCDDA 的中点HG解析:20【分析】连接AC 、BD ,根据三角形的中位线求出HG ,GF ,EF ,EH 的长,再求出四边形EFGH 的周长即可.【详解】如图,连接AC 、BD ,四边形ABCD 是矩形,AC =BD =8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,HG =EF =12AC =4cm ,EH =FG =12BD =4cm , 四边形EFGH 的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半. 15.-2【分析】原式利用除法法则变形约分即可得到结果【详解】解:原式==-2故答案为:-2【点睛】本题考查了分式的除法熟练掌握运算法则是解本题的关键解析:-2【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=2(4)(4)2(4)(4)4a a a a a-++-⋅+-=-2, 故答案为:-2.【点睛】本题考查了分式的除法,熟练掌握运算法则是解本题的关键.16.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 17.6【分析】原式提取xy 利用提公因式法因式分解将各自的值代入计算即可求出值;【详解】解:∵x-y=2xy=3∴原式=xy (x-y )==6【点睛】此题考查了提公因式法因式分解熟练掌因式分解是解本题的关键解析:6【分析】原式提取xy ,利用提公因式法因式分解,将各自的值代入计算即可求出值;【详解】解:∵x-y=2,xy=3,∴原式=xy (x-y )=32⨯=6.【点睛】此题考查了提公因式法因式分解,熟练掌因式分解是解本题的关键.18.-3【详解】点P (m+22m+1)向右平移1个单位长度后正好落在y 轴上则故答案为:-3解析:-3【详解】点P (m+2,2m+1)向右平移1个单位长度后(3,21)m m ++ ,正好落在y 轴上,则30,3m m +==-故答案为:-319.m≥2【解析】试题解析:m≥2【解析】试题由于不等式组121x m x m ≤+⎧⎨-⎩>无解, 所以2m-1≥m+1,解得:m≥2.故答案为m≥2.20.①②③④【分析】由在△ABC 中∠ABC 和∠ACB 的平分线相交于点O 根据角平分线的定义与三角形内角和定理即可求得③正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+解析:①②③④【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF=BE+CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④根据求得答案,即可得到④正确.【详解】解:∵在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确.∴AM=AD,BM=BN,CD=CN,∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC-BC)故④正确,故答案为:①②③④.【点睛】此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.三、解答题21.(1)BD⊥AP,BD=AP,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP=BD,然后根据对称可求解.【详解】解:(1)结论:BD⊥AP,BD=AP证明:∵∠ACB=90°,∠PCD=90°∴∠ACP=∠BCD ,∠A=∠ABC =45°∵AC=BC,PC=DC∴△ACP ≌△BCD∴BD=AP,∠A=∠CBD =45°∴∠ABD=∠ABC+∠CBD=90°∴BD⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E ∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵ 四边形CDBE 为平行四边形∴ BD=CE由(1)可得AP =BD∵ B 、E 关于直线CP 的对称∴ BC =CE∴ AP =BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.22.骑车学生的平均速度是12千米/小时.【分析】设步行学生的速度是x 千米/小时,则骑车的平均速度是2x 千米/小时,由题意得出等量关系为:步行所用时间-骑车所用时间=20分钟,由此列出分式方程,解方程后即可得出结论.【详解】解:设步行学生的速度是x 千米/小时,则骑车的平均速度是2x 千米/小时,12×23=8, 依题意得:81220260x x -=, 解得:x =6,经检验:x =6是所列方程的解,且符合题意,则2x =12,答:骑车学生的平均速度是12千米/小时.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 23.(1)()()222x x +-;(2)()22x x +. 【分析】(1)先提取公因式2,再利用平方差公式分解因式即可得;(2)先提取公因式x ,再利用完全平方公式分解因式即可得.【详解】(1)原式()224x =-, ()()222x x =+-;(2)原式()244x x x =++, ()22x x =+.【点睛】本题考查了综合利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握各方法是解题关键. 24.(1)证明见解析;(2)AB 与A B ''垂直,理由见解析.【分析】(1)根据题意可知∠B=∠B′,BC=B′C ,∠BCE=∠B′CF ,利用ASA 即可证出△BCE ≌△B′CF ; (2)由旋转角等于30°得出∠ECF=30°,所以∠FCB′=60°,根据四边形的内角和可知∠BOB′的度数,最后计算出∠BOB′的度数即可.【详解】解:(1)证明:∵''BCA B CA ∠=∠,∴''BCA ACE B CA ACE ∠-∠=∠-∠,即'BCE B CF ∠=∠,又∵''B B BC B C ∠=∠=,,∴'BCE B CF ≌(2)AB 与A B ''垂直.理由如下:若旋转角等于30,即30ECF ∠=︒,∴'60FCB ∠=︒,∴'150BCB ∠=︒又∵'60B B ∠=∠=︒根据四边形的内角和得'360606015090BOB ∠=︒-︒-︒-︒=︒,∴''AB A B ⊥.【点睛】此题考查了旋转的性质,解题时要根据旋转的性质求出角的度数,要与全等三角形的判定和四边形的内角和定理相结合是解题的关键.25.(1)每个书包价格为28元,每本词典价格为20元;(2)购买方案为购买书包12个,词典28本.【分析】(1)设每个书包价格为x 元,则每本词典价格为(x-8)元,根据用124元恰好可以买到3个书包和2本词典,列方程组求解;(2)设购买书包m 个,则购买词典(40-m )个,根据“余下的钱最少”列不等式求解即可.【详解】(1)设每个书包价格为x 元,则每本词典价格为(8)x -元,根据题意得32(8)124x x +-=,解得28x =,则28820-=(元),答:每个书包价格为28元,每本词典价格为20元;(2)设购买书包m 个,则购买词典(40)m -个,余下的钱为900[2820(40)]m m -+-1008m =-,由题意知10080m -,即12.5m ≤,当12m =时,1008m -为最小的正整数4,答:购买方案为购买书包12个,词典28本.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.26.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可; (2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中,AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A. B. C.D.2、若点(x1, y1)、(x2, y2)和(x3, y3)分别在反比例函数的图象上,且x1<x2<0<x3,则下列判断中正确的是()A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y13、对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=()A.(5,﹣9)B.(﹣9,﹣5)C.(5,9)D.(9,5)4、一组数据4,3,6,9,6,5的极差和众数分别是()A.5和5.5B.5.5和6C.5和6D.6和65、参加第六届京津冀羽毛球冠军挑战赛的一个代表队的年龄分别是49,20,20,25,31,40,46,20,44,25,这组数据的平均数,众数,中位数分别是()A.33,21,27B.32,20,28C.33,49,27D.32,21,226、某市今年约有140000人报名参加初中学业水平考试,用科学记数法表示140000为()A.14×10 4B.14×10 3C.1.4×10 4D.1.4×10 57、如果把分式中的x、y同时扩大为原来的2倍,那么该分式的值()A.不变B.扩大为原来的2倍C.缩小为原来的D.缩小为原来的8、如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09、如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cmB.6cmC.8cmD.10cm10、已知四边形的对角线互相垂直,则顺次连接该四边形各边中点所得的四边形是()A.梯形B.矩形C.菱形D.正方形11、如图,在菱形中,点在轴上,点的坐标为,点的坐标为,则点的坐标为()A. B. C. D.12、在平面直角坐标系xOy中,如图,四边形ABCD是菱形,∠DAB=60°,点P是边CD的中点,如果菱形的周长为16,那么点P的坐标是()A.(4,4)B.(2,2)C.(,1)D.(,1)13、函数y= 中,自变量x的取值范围是( )A.x≠1B.x>0C.x≥1D.x>114、如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论正确的是()A.△EBF≌△DFCB.四边形ADFE为矩形C.四边形ADFE为菱形 D.当AB=AC,∠BAC=120°时,四边形ADFE是正方形15、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( ).A.2.25B.2.5C.2.95D.3二、填空题(共10题,共计30分)16、化简:________.17、计算:(﹣3)0÷(﹣2)2=________.18、分式的值为0,则x=________.19、小明租用共享单车从家出发,匀速骑行到相距2400米的图书馆还书.小明出发的同时,他的爸爸以每分钟96米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线OABD、线段EF分别表示、与t之间的函数关系的图象.小明从家出发,经过________分钟在返回途中追上爸爸.20、如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y= (x>0)的图象经过A点,则k=________.21、将140000用科学记数法表示为________.22、已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=________23、甲、乙两名同学在射击选拔比赛中,各射击10次,平均成绩都是是7.5环,方差分别是,则在本次测试中,成绩更稳定的同学是________(填“甲”或“乙”).24、如图, M、N分别是边BC、CD的中点,若∠MAN=∠B,则的值为 ________.25、如图,在平面直角坐标系中,等腰△OBC的边OB在x轴上,OB=CB,OB边上的高CA与OC边上的高BE相交于点D,连接OD,AB=,∠CBO=45°,在直线BE上求点M,使△BMC与△ODC相似,则点M的坐标是________.三、解答题(共5题,共计25分)26、先化简,再从,2,0和4选一个合适的值代入.27、已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.28、先化简,再求值:(1﹣)÷ ,再从﹣2≤x<2中选一个合适的整数代入求值.29、为纪念中华人民共和国成立70周年,某商家用1000元购进了一批文化衫,上市后供不应求,商家又用2300元够进了第二批这种文化衫,所购数量是第一批购进量的2倍,但单价贵了3元,该商家购进的第一批文化衫是多少件.30、如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.参考答案一、单选题(共15题,共计45分)2、B3、D4、D5、B6、D7、C8、C9、D10、B11、D12、D13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
华师大版初中数学八下期末测试试题试卷含答案
期末测试一、选择题(共10小题). 1.下列各数中最小的数是( ) A .1B .12C .02D .122.成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为( ) A .74610 B .74.610 C .64.610D .50.46103.下列所述图形中,仅是中心对称图形的是( ) A .等边三角形B .平行四边形C .矩形D .菱形4.下列等式成立的是( )A .22b b a a B .22b b a a C .22b b a a D .22b b a a 5.学校志愿者队的6位同学在一次垃圾分类活动中捡废弃塑料袋的个数分别为6,4,5,10,15,15,这组数据的中位数、众数分别为( ) A .15,15B .10,15C .8,8D .8,156.已知点 ,24P m m 在x 轴上,则点 1,Q m m 在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.函数ky x与 0y kx k k 在同一平面直角坐标系中的图象可能是( )ABCD8.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能判定ABCD 是菱形的只有( )A .AC BDB .AB BC C .AC BDD .129.如图,在矩形ABCD 中,分别以点A ,C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N 作直线MN ,交BC 于点E ,交AD 于点F ,若3BE ,5AF ,则矩形的周长为( )A .24B .12C .8D .3610.如图,在矩形ABCD 中,2AB ,3BC ,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )ABCD二、填空题(每小题3分,共15分) 11.若分式4aa 有意义,则实数a 的取值范围是_________. 12.如图ABCD ,点M 是边AD 上的一点,且BM 平分ABC ,MN CD 于点N ,若30DMN ,则BMN 的度数为_________.13.若点 12,y , 21,y , 33,y 在双曲线 0ky k x<上,则1y ,2y ,3y 的大小关系是_________. 14.如图,四边形ABCD 是边长为2的正方形,BPC 是等边三角形,则图中阴影部分的面积为_________.15.如图,在矩形ABCD 中,5AD ,8AB ,点E 为射线DC 上一个动点,把ADE △沿直线AE 折叠,当点D 的对应点F 刚好落在线段AB 的垂直平分线上时,则DE 的长为_________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简:22144114x x x x,再从1 ,0,1和2中选一个你认为合适的数作为x 的值代入求值.17.(9分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如图所示的统计图和统计表:(1)这次接受调查的学生总人数是_________人.(2)频数分布表中m _________,扇形统计图中n _________. (3)这次测试成绩的中位数落在_________组.(4)若该校共有3000名学生,请计算成绩在80~100分的人数.18.(9分)如图,在ABC △中,D 是BC 边上的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥,连结BF ,CE .(1)求证:四边形BECF 是平行四边形; (2)填空:①若5AB ,则AC 的长为_________时,四边形BECF 是菱形; ②若5AB ,6BC 且四边形BECF 是正方形,则AF 的长为_________.19.(9分)已知反比例函数12my x(m 为常数)的图象在第一、三象限. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过ABOD 的顶点D ,点A ,B 的坐标分别为 0,3, 2,0 . ①求出该反比例函数的解析式;②若点P 在x 轴上,当3ODP S △时,则点P 的坐标为_________.20.(9分)某运动鞋专卖店通过市场调研,准备销售A 、B 两种运动鞋,其中A 种运动鞋的进价比B 运动鞋的进价高20元,已知鞋店用3 200元购进A 运动鞋的数量与用2 560元购进B 运动鞋的数量相同. (1)求两种运动鞋的进价;(2)若A 运动鞋的售价为250元/双,B 运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设A运动鞋进货m 双,且90105m ≤≤,要使该专卖店获得最大利润,应如何进货?21.(10分)某校八年级“数学兴趣小组”尝试对函数212y x的图象和性质进行探究,探究过程如下: (1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m _________.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画该函数图象的另一部分.(3)若直线y kx b 与函数212y x的图象交于点11,2A 、93,2B,请结合图象直接写出: ①方程组212y kx by x的解为_________;②不等式212kx b x >的解集为_________.22.(10分)已知四边形ABCD 和AEFG 均为正方形. (1)观察猜想如图①,当点A ,B ,G 三点在一条直线上时,连结BE ,DG ,则线段BE 与DG 的数量关系是_________,位置关系是_________. (2)类比探究如图②,将正方形AEFG 在平面内绕点A 逆时针旋转到图②时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由; (3)拓展延伸在(2)的条件下,将正方形AEFG 在平面内绕点A 任意旋转,若2AE ,5AB ,则BE 的最大值为_________,最小值为_________.23.(11分)如图,在平面直角坐标系中,一次函数y kx b 与x 轴交于点 4,0A 与y 轴交于点 0,8B . (1)求这个一次函数的解析式;(2)若点P 是线段AB 上一动点,过点P 作PC x 轴于点C ,PD y 轴于点D ,当四边形PCOD 的邻边之比为2:1时,求线段PC 的长.(3)若点Q 是平面内任意一点,是否存在以A ,O ,B ,Q 为顶点的四边形是平行四边形,若存在请直接写出点Q 的坐标,若不存在,请说明理由.期末测试 答案解析一、 1.【答案】A【解析】021 ∵,1122, 0112212>>>∴.故最小的数为:1 . 故选:A . 2.【答案】C【解析】60.0 000 046 4.610 . 故选:C . 3.【答案】B【解析】A 、等边三角形不是中心对称图形,是轴对称图形,故本选项不合题意; B 、平行四边形是中心对称图形,不是轴对称图形,故本选项符合题意; C 、矩形既是中心对称图形,又是轴对称图形,故本选项不合题意; D 、菱形既是中心对称图形,又是轴对称图形,故本选项正确. 故选:B . 4.【答案】B【解析】A .2222b ab b b a a ab a ,故不成立;B .22b b a a ,故成立;C .22b b a a ,故不成立;D .22b b a a ,故不成立. 故选:B . 5.【答案】D【解析】将这组数据重新排列为4,5,6,10,15,15, 所以这组数据的中位数为61082,众数为15, 故选:D . 6.【答案】C【解析】由点 ,24P m m 在x 轴上,得240m ,解得2m ,11m ∴,2m ,1,Q m m ∴在第三象限.故选:C . 7.【答案】A【解析】A 、∵由反比例函数的图象在二、四象限可知,0k <,0k ∴>-,∴一次函数y kx k 的图象经过一、二、四象限,故本选项正确;B 、∵由反比例函数的图象在二、四象限可知,0k <,0k ∴>,∴一次函数y kx k 的图象经过一、二、四象限,故本选项错误;C 、∵由反比例函数的图象在一、三象限可知,0k >,0k ∴<,∴一次函数y kx k 的图象经过一、三、四象限,故本选项错误;D 、∵由反比例函数的图象在一、三象限可知,0k >,0k ∴<,∴一次函数y kx k 的图象经过一、三、四象限,故本选项错误; 故选:A . 8.【答案】C【解析】A 、正确.对角线垂直的平行四边形的菱形. B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形. 故选:C . 9.【答案】A【解析】∵四边形ABCD 是矩形,AD BC ∴,AD BC ∥, FAC ECA ∴,根据作图过程可知:MN 是AC 的垂直平分线,90FOA EOC ∴,AO CO ,在△AFO 和△CEO 中,FAC ECA FOA EOC AO CO, AFO CEO AAS △≌△∴,AF CE ∴,连接AE ,AE CE ∵, 5AE CE AF ∴, 358BC BE CE ∴,在Rt ABE △中,根据勾股定理,得4AB ,∴矩形的周长为 224824AB BC .故选:A . 10.【答案】D【解析】由题意当03x ≤≤时,3y , 当35x <<时, 131535222y x x . 故选:D . 二.11.【答案】4a【解析】由题意可知:40a ,4a ∴,故答案是:4a . 12.【答案】120°【解析】MN CD ∵于点N ,30DMN ,903060D ∴,∵四边形ABCD 是平行四边形,120A ∴,60ABCBM ∵平分ABC ,30ABM ∴,1801203030AMB ∴, 1803030120BMN ∴,13.【答案】312 y y y <<【解析】∵点 12,y , 21,y , 33,y 在双曲线 0ky k x<上, 12,y ∴, 21,y 分布在第二象限, 33,y 在第四象限,每个象限内,y 随x 的增大而增大, 312y y y ∴<<.故答案为312y y y <<.141 【解析】如图,过P 作PE CD ,PF BC ,∵正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ∴,2PB PC BC CD , 30PCE ∴,sin 602PF PB ∴,sin301PE PC , 11121222121222BCDPBC PDC BCD PBCD S S S S S S △△△△阴影四边形故答1. 15.【答案】52或10 【解析】分两种情况:①如图,当点F 在矩形内部时,∵点F 在AB 的垂直平分线MN 上,4AN ∴;由勾股定理得3FN ,2FM ∴,设DE 为y ,则4EM y ,FE y ,在EMF △中,由勾股定理得: 22242y y , 52y ∴, 即DE 的长为52. ②如图,当点F 在矩形外部时,同①的方法可得3FN ,8FM ∴,设DE 为z ,则4EM z ,FE z ,在EMF △中,由勾股定理得: 22248z z , 10z ∴,即DE 的长为10.综上所述,点F 刚好落在线段AB 的垂直平分线上时,DE 的长为52或10 故答案为:52或10. 三. 16.【答案】22144114x x x x 121(2)(2)1(2)x x x x x 2212x x x x2=1x x , ∵当1x ,2或2 时,原分式无意义,当0x 时,原式02=201. 17.【答案】(1)200(2)3019%(3)B(4)成绩在80~100分的人数为 300030%15%1350 (人)【解析】(1)这次接受调查的学生总人数是7236%200 (人),故答案为:200;(2)频数分布表中20015%30m ,扇形统计图中38100%19%200n, 故答案为:30,19%; (3)19%36%55%50% >∵, ∴第100、101个数据均落在B 组,∴这次测试成绩的中位数落在B 组,故答案为:B ;(4)成绩在80~100分的人数为 300030%15%1350 (人).18.【答案】(1)D ∵是BC 边的中点,BD CD ∴,CF BE ∵∥,CFD BED ∴,在CFD △和BED △中,CFD BED CD BD FDC EDB, CFD BED AAS △≌△∴,CF BE ∴,∴四边形BFCE 是平行四边形;(2)①5②1【解析】(1)D ∵是BC 边的中点,BD CD ∴,CF BE ∵∥,CFD BED ∴,在CFD △和BED △中,CFD BED CD BD FDC EDB, CFD BED AAS △≌△∴,CF BE ∴,∴四边形BFCE 是平行四边形;(2)①当5AC 时,四边形BECF 是菱形;理由如下:5AB ∵,AB AC ∴,D ∵是BC 边的中点,AD BC ∴,EF BC ∴,∵四边形BECF 为平行四边形,∴四边形BECF 是菱形.故答案为5;②∵四边形BEFC 是正方形,6EF BC ∴,EF BC ,∵点D 是BC 的中点,3BD CD DF DE ∴,4AD ∴,431AF AD DF ∴,故答案为1.19.【答案】(1)∵反比例函数12m y x(m 为常数)的图象在第一、三象限, 120m ∴>,12m ∴<; (2)①∵四边形ABOD 为平行四边形,AD OB ∴∥,2AD OB ,A ∵的坐标为 0,3,D ∴点坐标为 2,3,12236m ∴,∴该反比例函数的解析式为6y x; ② 2,0或 2,0【解析】(1)∵反比例函数12m y x(m 为常数)的图象在第一、三象限, 120m ∴>,12m ∴<; (2)①∵四边形ABOD 为平行四边形,AD OB ∴∥,2AD OB ,A ∵的坐标为 0,3,D ∴点坐标为 2,3,12236m ∴,∴该反比例函数的解析式为6y x; ②1332ODP S OP △∵, 2OP ∴,∴点P 的坐标为 2,0或 2,0 .故答案为: 2,0或 2,0 .20.【答案】(1)设A 种运动鞋的进价为x 元,3 200 2 56020x x , 解得100x ,经检验,100x 是原分式方程的解,2080x ∴,答:A 运动鞋的进价为100元/双,B 运动鞋的进价是80元/双;(2)设总利润为w 元,则 250100180802005020 000w m m m(), 500∵>,w 随m 的增大而增大,又90105m ≤∵≤,∴当105m 时,w 取得最大值,20095m ,答:要使该专卖店获得最大利润,此时应购进甲种运动鞋105双,购进乙种运动鞋95双.21.【答案】(1)2(2)(3)①112x y 或392x y ②13x <<【解析】解:(1)把2x 代入函数解析式便得2122y x , 2m ∴,故答案为2;(2)用描点法画出函数图象如下:(3)根据题意作出函数图象如下:①由函数图象可知,方程组212y kx b y x 的解为112x y 或392x y ,故答案为:112x y 或392x y ; ②根据函数图象可知,当13x <<时,直线y kx b 在抛物线的上方,∴不等式212kx b x >的解集为13x <<, 故答案为:13x <<.22.【答案】(1)BE DG BE DG(2)(1)的结论仍然成立,理由如下:设BE 交AD 于O ,DG 于N ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,BAE DAG ∴,在ABE △和DAG △中,AB AD BAE DAG AE AG, ABE DAG SAS △≌△∴,BE DG ∴;ABE ADG ,90ABE AOB ∵,90ADG AOB ADG DON ∴,90DNO ∴,BE DG ∴;(3)7 3【解析】解:(1)如图1,延长BE 交DG 于H ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,ABE DAG SAS △≌△∴,BE DG ∴,ABE ADG ,90ADG DGA ∵,90ABE DGA ∴,90GHB ∴,BE DG ∴,故答案为:BE DG ,BE DG ;(2)(1)的结论仍然成立,理由如下:设BE 交AD 于O ,DG 于N ,∵四边形ABCD 和四边形AEFG 是正方形,AE AG ∴,AB AD ,90BAD EAG ,BAE DAG ∴,在ABE △和DAG △中,AB AD BAE DAG AE AG, ABE DAG SAS △≌△∴,BE DG ∴;ABE ADG ,90ABE AOB ∵,90ADG AOB ADG DON ∴,90DNO ∴,BE DG ∴;(3)∵将正方形AEFG 在平面内绕点A 任意旋转,∴当点E 在线段AB 上时,BE 有最小值523AB AE ,当点E 在线段BA 的延长线上时,BE 有最大值527AB AE ,故答案为:7,3.23.【答案】(1)∵一次函数y kx b 与x 轴交于点 4,0A 与y 轴交于点 0,8B , 804b k b∴, 解得:28k b, ∴一次函数的解析式为28y x ;(2)设点 ,28P x x ,OC x ∴,28PC x ,∵四边形PCOD 的邻边之比为2:1,2OC PC ∴或2PC OC ,228x x ∴)或282x x ,165x∴或2x , 4PC ∴或85; (3)设点 ,Q m n ,当AB 是对角线时,∵四边形AOBQ 是平行四边形,AB ∴与OQ 互相平分,04022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ;当AO 是对角线时,∵四边形ABOQ 是平行四边形,AO ∴与BQ 互相平分,04022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ;当OB 是对角线时,∵四边形AOQB 是平行四边形,AQ ∴与BO 互相平分,40022m ∴,08022n , 4m ∴,8n ,∴点 4,8Q ,综上所述:点Q 的坐标为 4,8或 4,8Q 或 4,8Q .。
华师大版八年级数学下册期末测试卷含答案
新华师版八年级下期末测试卷总分120分120分钟一.选择题(共7小题,每题3分)1.下列等式正确的是()A (﹣1)﹣3=1 B(﹣4)0=1 C(﹣2)2×(﹣2)3=﹣26D(﹣5)4÷(﹣5)2=﹣52 2某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6D.73.方程的解是()A.x=2 B.x=1 C.x=D.x=﹣24.已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.5.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<46.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2C.3D.46题7题13题14题7.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.A O=CO,BO=DO D.AB∥DC,AD=BC 二.填空题(共7小题,每题3分)8.若关于x的分式方程的解为正数,那么字母a的取值范围是_________.9.若关于x的方程+=2有增根,则m的值是_________.10.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为_________.11.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产_________台机器.12.写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:_________.(填上一个答案即可)。
华东师大版八年级数学下册期末测试卷(及参考答案)
华东师大版八年级数学下册期末测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.比较大小:23133.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
完整版华师大版八年级下册数学期末测试卷
学生个体差异的动态评估
评估方法:采用多种评估手 段,如观察、访谈、测试等
评估内容:包括学生的学习能 力、兴趣、动机、学习习惯等
评估目的:了解每个学生的 个性特点和需求
评估结果:为每个学生提供 个性化的教学建议和反馈
教师教学质量的动态评估
评估内容:教 学目标、教学 方法、教学效 果等
评估方式:学 生反馈、同行 评价、教学观 察等
动态评估可以为 教育管理者提供 有关教育教学质 量的数据,有助 于制定更有效的 教育政策。
01
0 2
0 3
0 4
未来展望与研究
07
方向
动态评估技术的发展趋势
智能化:利用 人工智能技术 进行更准确的 评估和反馈
个性化:根据学 生的学习特点和 需求进行定制化 的评估和反馈
实时化:实时收 集学生的学习数 据,及时进行评 估和反馈
反馈频率:定期或不定期,根 据实际情况进行调整
反馈信息的分析与处理
分析反馈信息:对收集到的反馈 信息进行分类、归纳和分析,找 出问题所在
制定改进措施:根据分析结 果,制定针对性的改进措施
收集反馈信息:通过各种途径收 集学生对教育教学的反馈信息
实施改进措施:将改进措施落实 到教育教学实践中,提高教育教
评估周期:定 期评估与即时 评估相结合
评估结果应用: 改进教学、调整 教学方法、提高 教学质量等
01
0 2
0 3
0 4
课程与教材的动态评估
评估目标:了解学生的学习情 况,调整教学策略
评估内容:课程难度、教材内 容、教学方法等
评估方法:问卷调查、课堂观 察、作业分析等
评估结果:反馈给教师,用于 改进教学和调整课程内容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴江市2010~2011学年第二学期期末试卷
初二数学
(时间100分钟,满分100分)
一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把
正确选项前的字母填入答题纸的相应表格中)
1.无论x 取什么数时,下列分式总是有意义的是( ▲ )
A .51x x -+
B .21x x +
C .331x x +
D .()
221x x + 2.如图,已知直线EF ⊥MN 垂足为F ,且∠1=140°,则当
∠2等于( ▲ )时,AB ∥CD .
A .50°
B .40°
C .30°
D .60°
3.化简222a a a
--的结果是( ▲ ) A .-1 B .1 C .-a D .A
4.下列命题的逆命题不正确的是( ▲ )
A .两直线平行,同位角相等
B .直角三角形的两个锐角互余
C .平行四边形的对角线互相平分
D .对顶角相等
5.下列运算正确的是( ▲ )
A .5-3=2
B .114293
= C .2×3=5 D .()22552-=-
6.如图,梯形ABCD 中,AD ∥BC ,AD =CD ,BC =AC ,
∠BAD =100°,则∠D =( ▲ )
A .140°
B .130°
C .110°
D .100°
7.在反比例函数y =-3x
图象上有两个点A (x 1,-2)和B(x 2,1),则( ▲ ). A .x 1<x 2 B .x 1>x 2
C .x 1=x 2
D .x 1与x 2大小不能确定
8.在平行四边形ABCD 中,下列条件中,不能判断四边形ABCD 是正方形是( ▲ )
A .∠ABC =90°且A
B =AD B .A
C ⊥B
D ,且AC =BD
C .AB =BC 且AC ⊥B
D D .AC =BD ,且AB =BC
9.如图所示,给出下列条件:①∠B =∠ACD ;②∠ADC =∠ACB ;
③
AC AB CD BC
=;④AC 2=A D ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( ▲ )
A .1
B .2
C .3
D .4
10.如图,已知点A 是一次函数y =2x 的图象与反比例函数y =-k x 的图象在第一象限内的交点,AB ⊥x 轴于点B ,点C 在x 轴的 负半轴上,且∠ACB =∠OAB ,△AOB 的面积为4,则点C 的
坐标为( ▲ )
A . (-5,0)
B . (-6,0)
C .(-5.5,0)
D . (-4,0)
二、填空题:(本大题共10小题,每小题2分,共20分)
11.要使代数式1x -有意义,则x 的取值范围是 ▲ . 12.命题“直角三角形的两个锐角互余”的条件是: ▲ ,结论是: ▲ .
13.在13
,8,18,48中与3是同类二次根式有 ▲ . 14.在□ABCD 中,如果AC =BD 时,那么这个□ABCD 是 ▲ 形.
15.若4220a a b +++-=,则ab = ▲ .
16.有一块多边形草坪,在市政建设设计图纸上的面积为200cm 2,其中一条边的长度为3cm ,
经测量,这条边的实际长度为18m ,则这块草坪的实际面积是 ▲ m 2.
17.如图,在菱形ABCD 中,∠BAD =70°,AB 的垂直平分线交对角线
AC 于点F ,E 为垂足,连接DF .则∠CDF 等于 ▲ .
18.若点(-6,1
3
)和(-1,m )都在反比例函数.y =k x
的图象上, 则k +m = ▲ . 19.如图,A 1、A 2、A 3是双曲线y =6x
(x >0)上的三点,A 1B 1、A 2B 2、 A 3B 3都垂直于x 轴,垂足分别为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3
于点C ,A 1、A 2、A 3三点的横坐标分别为2、4、6,则线段CA 2的
长为 ▲ .
20.我们把对称中心重合,四边分别平行的两个正方形之间的部分
叫“方形环”,已知方形环四周的宽度相等,如图,若直线l
分别交方形环的邻边AD 、A'D'、D'C'、DC 于点M 、M'、N'、
N ,且M 为AD 的中点,DN =3CN ,则线段MM'与NN'的长度
之比为 ▲ .
三、解答题:(本大题共8小题,共50分)
21.(每题4分,共8分)
(1)计算:()011243231π+---- (2)化简:422222a a a ⎛⎫÷+ ⎪--+⎝⎭ 22.(本题4分)已知x =2+1,y =2-1,求x y y x
-的值.
23.(本题6分)如图,四边形ABCD 中,AB ∥CD ,AC 平分
∠BAD ,CE//AD 交AB 于E .
(1)求证:四边形AECD 是菱形;
(2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由.
24.(本题4分)如图,△ABC 三个顶点的坐标分
别是A(0,0)、B(3,1)、C(1,2),以点A 为
位似中心,试将△ABC 放大,使放大后的
△AEF 与△ABC 对应边的比为2:1.且两个
图形位于点A 的两侧,并写出放大后的△AEF
顶点E 、F 的坐标.
25.(本题6分)学校到景区有24千米,某班学生从学校出发到景区去游览,他们先步行走
4千米,然后改乘汽车共用1.5小时到达景区,已知汽车的速度是步行速度的10倍,求步行速度和汽车的速度.
26.(本题6分)如图,已知,AD 是ABC 的中线,且∠DAC
=∠B , CD =CE .
(1)求证:△ACE ∽ABAD :
(2)若AB =12,BC =8,试求AC 和AD 的长.
27.(本题7分)已知反比例函数y =
2m x
- (x <0)的 图象经过点A (-2,3),过点A 作直线AC 与函数
y =2m x
-的图象交于点B ,与x 轴交于点C ,且 AB =2BC .
(1)求m的值及点B的坐标:
(2)求△AOB的面积.
28.(本题共9分)如图,在△ABC中,AB=AC=10,BC=12,AM∥BC,点P在线段BC上以每秒2个单位的速度由B点向C点运动,点Q在线段BA上以每秒1个单位的速度由B点向A点运动,在运动中,始终保持∠QPD=∠B,且PD交AC于点E,交AM于点D,当P点运动到C点时,Q点随之停止运动.设运动时间为t(秒).
(1)当t=4秒时,试证明:△BPQ≌△CEP;
(2)设△BPQ的面积为S,求S与t之间的函数关系式;
(3)当t为何值时?使得
1
4
ADE
CPE
s
s
V
V
.。