微生物菌种的选育方法
微生物菌种的选育和保藏--诱变育种
四、诱变育种
2 诱变育种基本过程 ➢诱变处理: ➢诱变剂的处理方式: ✔单因子处理:采用单一诱变剂处理出发菌株; ✔复合因子处理:两种以上诱变因子共同诱发菌体突变,包括①两种或多种 诱变剂先后使用;②同一种诱变剂的重复使用;③两种或多种诱变剂的同时使用。 ➢诱变剂的处理方法: ✔直接处理方法:将菌悬液用物理、化学因子处理,然后涂平板分离突变株; ✔生长过程处理法:适用于诱变作用强而杀菌率较低的诱变剂,或在分裂过 程中只对DNA起作用的诱变剂,如NTG、LiCl、 秋水仙碱等;方法:可将诱变剂 加入培养基后涂平板;或先把培养基制成平板,将一定浓度的诱变剂和菌体加入平 板; 或摇瓶振荡培养处理;
四、诱变育种
2 诱变育种基本过程 ➢ 制备单孢子(或单细胞)悬液: ➢ 目的:获得单孢子(或单细胞)均匀的悬液;
➢ 原因: 分散状态的细胞可以均匀地接触诱变剂,又可避免长出不纯菌落;
➢ 方法:✔菌龄:对数期细胞、刚成熟的孢子母菌细胞悬浮液的浓度为106个/mL、
四、诱变育种
2 诱变育种基本过程 ➢ 突变株的分离与筛选: ➢ 筛选方案:
➢ 筛选方法: ✔初筛:a.随机筛选:也称摇瓶筛选;随机挑选的平板菌落进行摇瓶筛选; b.平板菌落预筛:在培养皿上诱变后从试样检出突变体的一种
琼脂平板筛选法,有纸片培养显色法、透明圈法、琼脂块培养法等; ✔复筛:对突变株的生产性能作比较精确的定量测定工作,代表方法:琼脂
放线 菌或细菌的浓度为108个/ mL左右;
✔菌悬液配制方法:离心洗涤前培养物,用冷生理盐水或缓冲液制备菌悬 液,放在盛有玻璃珠的三角瓶内振荡10min,令其分散,用无菌脱脂棉或滤纸过滤。 通过菌体计数,调整菌悬液的浓度供诱变处理。
四、诱变育种
2 诱变育种基本过程 ➢ 诱变处理: ➢ 诱变剂种类的选择:物理诱变剂和化学诱变剂 ✔物理诱变剂:紫外线、χ射线、γ射线、等离子、快中子、ɑ射线、β射线、 超声波等; ✔化学诱变剂: 碱基类似物、烷化剂、羟胺、吖定类化合物等; ➢ 最适诱变剂量选择: ✔诱变剂剂量表示方式:a.UV的剂量指强度与作用时间的乘积; b.化学诱变剂剂量:诱变剂的浓度和作用 时间的乘 积来表示; c.在育种实践中,常以杀菌率来作诱变剂 的相对剂量; ✔最适诱变剂量确定:a.依据:最适剂量应该使所希望得到的突变株在存活 群体中占有最大的比例; b.方法:通过比较剂量--存活率曲线和剂量-
选育优良菌种的方法
选育优良菌种的方法
如何选育优良菌种:
一、筛选有利环境:
1.搜集不同地域不同时期的信息,并结合本地环境,筛选出有利的菌源;
2.对筛选出来的地域进行微生物调查分析;
3.比较等温滴虫、红螨等不同菌株的生长状况,根据客观数据选取稳健的菌种;
二、模拟适应土壤环境:
1.调查分析当地土壤成分,模拟土壤成分;
2.根据不同的营养液和施肥技术,选定优质菌种;
3.鉴定在该土壤条件下,菌株对病原因子的防护效果;
三、采用现代诊断技术:
1.检测菌株表征参数,核实其属种和类型;
2.运用基因测序技术,分析各菌株的遗传参数;
3.应用肿瘤细胞毒力实验和抗真菌、抗紫外、抗旱性等试验,了解菌株的适应性;
四、利用抗性强的优良菌株:
1.评价菌株抗药性、抗内毒素和危害生物毒素等;
2.运用合成细菌表面多肽技术,选育出抗性较强的菌株;
3.利用基因组学、代谢途径学和蛋白质组学等技术,筛选出优良菌株;
五、调节和分离菌株:
1.搜集真菌素、定殖菌素和合成腐植酸等抑制剂,精选优良菌株;
2.测定菌株有效期,并跟踪观测菌株的抗性情况;
3.对菌株进行浓度调节、分离分离,实现菌种的增殖和分布;
六、结语:
选育优良菌种是一个复杂的过程,需要综合运用各种现代技术,根据土壤环境、地域信息以及防护效果等多方面综合分析,逐步搜索、筛选、繁衍和种植过程,才能找到适应于环境的优良菌种。
微生物菌种选育实验指导
《微生物菌种选育实验》是一门涉及食品理化分析、微生物学实验且由学生自行设计实验方案的综合性、设计性实验课程,集中三周时间开课。
一、实验目的通过本环节训练,加深对发酵工程上游技术中菌种筛选的认识;学会常规选种方法;掌握微生物诱变育种的方法;掌握常规工业微生物菌种保藏法;树立科学认真仔细的态度,培养科研协作精神。
二、实验内容实验一工业微生物菌种分离根据一定的生产目的如产酶、产酸、产酯等,建立不同的筛选模型,并从特定的样品如曲药、酸乳、土壤中筛选出高产适宜的菌株。
1、分离培养基的配制2、无菌器材的准备3、菌悬液的制备4、接种5、培养6、初步鉴定(1) 菌落形态(2) 个体形态7、斜面接种培养实验二工业微生物菌种复筛通过摇瓶培养对实验一所得的菌株的生产性能进行精确的定量测定。
1、发酵培养基的配制;2、目的菌株的摇瓶培养;3、发酵液的生理活性测定。
实验三微生物的诱变育种用紫外线对实验一所得的高产菌株进行诱变,并测定诱变后的菌株的生产能力。
1、单细胞(或单孢子) 悬液的制备;2、致死曲线的测定;3、诱变处理;4、初筛;5、复筛;6、菌种保藏。
三、实验要求1.学生自行设计具体实验方案,在教师指导下由学生自主完成实验。
2.实验结束后,要求学生完成一篇微型小论文。
论文的撰写应本着实事求是的原则,对所做实验过程和数据进行认真、严格的记录和处理,并进行独立分析,不得抄袭他人的数据。
四、考核办法1、考核内容:实验方案、实验态度、操作技能、实验报告等。
2、考核办法:按照实验方案、实验态度、操作技能、实验报告等内容综合考核学生,得到学生该门实验课程的成绩。
成绩考核采用优秀、良好、中等、及格、不及格五级记分制。
3、考核标准:以实际操作技能和分析解决问题的技能为主,实验考核内容各单项所占分数比例为实验方案20%、实验态度10%、操作技能40%、实验报告30%。
微生物菌种选育概述微生物的菌种对进行微生物工作来讲是非常重要的。
没有“种”无法进行微生物的科学研究;没有良种,不能进行发酵工业的生产。
选育菌种的方法
选育菌种的方法一、引言菌种的选育是微生物学研究中的重要环节,它对于促进农业、食品工业、医药领域的发展具有重要意义。
本文将介绍一些常用的选育菌种的方法,包括传统的筛选方法和基于分子生物学的筛选方法。
二、传统的筛选方法1. 随机筛选法随机筛选法是最常用的菌种选育方法之一。
其步骤包括:从自然环境中收集样品,如土壤、水体等,将样品制成适宜的培养基,然后进行培养。
在培养过程中,通过观察菌落的形态、颜色、生长速度等特征,筛选出具有特殊性状或功能的菌株。
2. 生理选育法生理选育法是根据菌株的生理特性进行选育的方法。
通过调节培养条件,如温度、pH值、氧气浓度等,筛选出适应特殊环境的菌株。
例如,有些菌株能够在高温或低温环境中生长,有些菌株能够在酸性或碱性环境中生长,这些菌株可以被应用于相关领域。
3. 抗性筛选法抗性筛选法是利用抗生素或其他抑制性物质来筛选菌株的方法。
通过将菌株培养在含有抗生素或抑制性物质的培养基上,只有具有抗性的菌株才能够生长并形成菌落。
这种方法可以筛选出具有抗生素抗性、耐酸碱或耐高温的菌株。
三、基于分子生物学的筛选方法1. PCR筛选法PCR筛选法是利用聚合酶链反应(PCR)技术来筛选菌株的方法。
通过设计特异性引物,扩增目标基因片段,然后通过电泳分析扩增产物,筛选出具有特定基因的菌株。
2. 基因克隆筛选法基因克隆筛选法是将目标基因插入表达载体中,然后转化到宿主菌中,通过观察宿主菌的表型变化来筛选菌株。
例如,将具有抗性基因的载体转化到宿主菌中,只有转化成功的菌株才能够生长在含有抗生素的培养基上。
3. 荧光筛选法荧光筛选法是利用荧光蛋白标记目标基因,通过观察菌株产生的荧光信号来筛选菌株。
例如,将荧光蛋白基因与目标基因融合,将融合基因转化到宿主菌中,通过观察菌株产生的荧光信号来筛选具有目标基因的菌株。
四、总结菌种的选育是微生物学研究中不可或缺的一环。
传统的筛选方法包括随机筛选法、生理选育法和抗性筛选法,它们通过观察菌株的形态、生长特性和抗性等来筛选菌株。
微生物的菌种选育
理想的工业发酵菌种应符合以下要求:⑴遗传性状稳定⑵生长速度快,不易被噬菌体等污染⑶目标产物的产量尽可能接近理论转化率⑷目标产物最好能分泌到胞外,以降低产物抑制并利于产物分离⑸尽可能减少产物类似物的产量,以提高目标产物的产量并且有利于产物分离⑹培养基成分简单、来源广、价格低廉⑺对温度、pH、离子强度、剪切力等环境因素不敏感⑻对溶氧的要求低,便于培养以及降低能耗一、从自然界获得新菌种的步骤分离微生物新种的具体步骤大体可分为采样、增殖、纯化、性能测定。
采样菜园和耕作层土壤是有机质较多的土层,常以细菌和放线菌为主;果园数根土层中,酵母菌含量较高;动植物残体及霉腐土层中,分布着较多的霉菌。
豆科植物根系土中,往往存在根瘤菌;河流湖泊的淤泥中能分离到产甲烷菌;油田和炼油厂周围土层中常见分解石油的微生物等。
各种水体也是工业微生物菌种的重要来源,许多具有光合作用能力的微生物以及兼性或专性厌氧微生物都能从各种水体中筛选得到。
增殖才采集的样品中,一般待分离的菌种在数量上并不占优势,为提高分离的效率,常以投其所好和取其所抗的原则在培养基中添加特殊的养分或抗菌物质,使所需菌种的数量相对增加,这种方法称为增殖培养或富集培养。
纯化常用的菌种纯化方法很多,大体可将它们分为两个层次,一个层次较粗放,一般只能达到“菌落纯”的水平,从“种”的水平来说是纯的,其方法有划线分离法,涂布分离法和稀释分离法。
另一层次是较为精细的单细胞或单孢子分离法,它可达到细胞纯即“菌株纯”的水平。
具体操作方法很多,最简便的方法是利用培养皿或凹玻片等分离小室进行细胞分离。
也可以利用复杂的显微镜操作装置进行单细胞挑取。
性能测定菌种性能测定包括菌株的毒性试验和生产性能测定。
二、基因突变和微生物菌种选育基因是在生物体内具有自主复制能力的遗传功能单位,是一个具有特定核苷酸顺序的核酸片段,每个基因约有1000个碱基对。
基因是合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常是指DNA序列)。
《微生物的菌种选育》课件
诱变育种
总结词
诱变育种是一种通过使用物理、化学或生物诱变剂,诱发微生物发生基因突变,从而获得所需性状的育种方法。
详细描述
诱变育种通常需要处理少量材料,因为诱变剂可以直接诱发基因突变。该方法效率较高,可以快速获得所需的突 变体。常用的物理、化学诱变剂包括紫外线、X射线、化学诱变剂等。生物诱变剂则包括某些细菌或病毒等。
培养条件控制
法规与伦理问题
微生物的生长和代谢受到培养条件的影响 ,如温度、pH、氧气浓度等,这些条件的 细微变化可能导致实验结果的波动。
在某些应用领域,如药物和食品工业,微 生物菌种选育可能面临严格的法规和伦理 要求,需要遵循相关规定和标准。
未来的发展方向
高通量筛选技术 随着高通量筛选技术的发展,未 来可以更快地筛选到具有优良性 状的微生物菌种,提高选育效率 和成功率。
基因组编辑技术
总结词
基因组编辑技术是一种通过精确地编辑微生物的基因组序列,从而获得所需性状的育种方法。
详细描述
基因组编辑技术包括CRISPR-Cas9等基因编辑技术,可以精确地编辑和修改微生物的基因组序列,从 而获得具有优良性状的菌株。该方法需要一定的基因组编辑技术基础,但具有高效率和精确性等优点 。
在医药领域的应用
抗生素生产
许多抗生素是由微生物产生的,通过 菌种选育可以获得高产抗生素的菌株 ,用于治疗各种疾病。
疫苗生产
疫苗的生产也需要用到菌种选育技术 ,通过选育具有特定抗原性的菌株, 可以生产出预防各种疾病的疫苗。
在环境保护中的应用
生物治理
通过菌种选育可以获得具有高效降解能力的 菌株,用于处理各种环境污染,如废水处理 、土壤修复等。例如,通过选育能够降解有 机污染物的细菌和真菌,可以有效治理水体 和土壤污染。
五种菌种选育的方法
五种菌种选育的方法1. 筛选优良菌株:通过对菌种进行筛选,选出具有较高产量、快速生长、稳定性等良好性状的菌株。
可以通过观察菌株的形态特征、生长速度以及产物产量等指标进行初步筛选。
2. 交配选育:将具有不同有益特征的两个菌株进行交配,产生具有更优秀性状的杂种,进一步提高菌种的产量和品质。
3. 基因工程改良:通过基因工程技术对菌株的基因进行修改和调整,强化其有益性状,例如提高产量、耐逆性或产物纯度。
4. 微生物育种:利用微生物的自然变异、诱变或基因重组等方法,通过筛选和选育,培育出具有优良性状的菌株。
5. 隔离培养:从自然环境或特定寄主体内分离出有良好性状的菌株,单独培养并进行繁殖,以保持其稳定性和纯度。
6. 高通量筛选:利用高通量技术,如高通量测序、高通量筛选装置等,对大量菌株进行快速筛选和检测,以选取具有优良性状的菌株。
7. 环境适应培养:通过将菌株暴露在不同环境条件下,如不同温度、盐度、pH值等,挑选出能适应多种环境的菌株,提高其应用广泛性和稳定性。
8. 选择性培养基:根据特定的性状需求,调配选择性培养基,利用特定生理功能或代谢产物的需求,筛选出具有目标性状的菌株。
9. 抗菌素筛选:利用抗菌素对菌株进行筛选,选择出对某种特定抗菌素敏感或耐药的菌株,为后续应用提供基础。
10. 应激培养:通过暴露菌株于适宜剂量的外界应激因子,如氧化应激、低温应激等,筛选出对应激因子具有较高耐受能力的菌株。
11. 连续培养:通过在连续培养系统中进行菌株的增殖和筛选,选出适应此种培养方式的优良菌株。
12. 自动化选育:利用自动化系统对菌株进行快速筛选、监控和评价,提高选育效率和可控性。
13. 发酵条件优化:通过改变发酵条件中的温度、pH值、气体供应等参数,优化菌株的生长和产物产量,提高其应用效果。
14. 组合选育:将具有不同优势特征的菌株进行组合,形成互补优势,从而提高整体产量和产品品质。
15. 代谢工程优化:通过调整和改变菌株的代谢途径和代谢产物分布,来增强产物的产量和纯度。
微生物菌种选育方式(一)
微生物菌种选育方式(一)关键词:地衣芽孢杆菌诺卡氏菌 ATCC 北京标准物质网微生物菌种选育技术在现代生物技术中具有十分重要的地位,经历了自然选育、诱变育种、杂交育种、代谢控制育种和基因工程育种五个阶段,各个阶段并不孤立存在,而是相互交叉,相互联系的。
新的育种技术的发展和应用促进了生产的发展。
1.自然选育随着微生物学的发展,特别是在发明微生物的纯培养技术之后,出现了微生物纯种的自然选育。
以基因自发突变为基础选育优良性状菌株的这种方法,是最早应用微生物遗传学原理.进行育种实践的一个实例。
由于微生物体内存在光复活、切补修复、重组修复、紧急呼救修复等修复机制以及DNA聚合酶的校正作用,使得自发突变几率极低,一般为10-6~10-10这样低的突变率导致自然选育耗时长、工作量大,影响了育种工作效率。
在这种情况下,就出现了诱变育种技术。
2.诱变育种1927年,Miller发现X射线能诱发果蝇基因突变。
之后,人们发现其他一些因素也能诱发基因突变,并逐渐弄清了一些诱变发生的机理,为工业微生物诱变育种提供了前提条件。
1941年,Beadle 和 Tatum 采用X射线和紫外线诱变红色面包霉,得到了各种代谢障碍的突变株。
在这之后,诱变育种得到了极大发展。
诱变育种是以诱变剂诱发微生物基因突变,通过筛选突变体,寻找正向突变菌株的一种诱变方法。
诱变剂包括物理诱变剂、化学诱变剂和生物诱变剂。
其中,物理诱变剂包括紫外线、X射线、射线、快中子等;化学诱变剂包括烷化剂(如甲基磺酸乙酯、硫酸二乙酯、亚硝基胍、亚硝基乙基脲、乙烯亚胺及氮芥等)、天然碱基类似物、脱氨剂(如亚硝酸)、移码诱变剂、羟化剂和金属盐类(如氯化锂及硫酸锰等);生物诱变剂包括噬菌体等。
物理诱变剂因其价格经济,操作方便,所以应用最为广泛;化学诱变剂多是致癌剂,对人体及环境均有危害,使用时须谨慎;生物诱变剂应用面窄,其应用也受到限制。
现今,诱变育种已取得了显著的成果,如青霉素生产菌的青霉素产量在40年内增加了近万倍,达到lO万u/ml左右;谷氨酸产生菌经紫外诱变处理,产酸率提高了3l%;用亚硝酸钠、紫外线等物化方法诱变产碱性蛋白酶的地衣芽孢杆菌,使其从原来的以玉米粉为碳源转变为以大米为碳源进行发酵产酶,后用紫外诱变,最终筛选出F一8014菌株,产酶量提高了37%。
项目五 任务二三_微生物菌种选育
(二) 菌悬液的制备
1. 选用单细胞或单孢子悬液(均匀、分散)
目的:①使每个细胞能均匀接触诱变剂; ②减少表型延迟现象(诱变后性状的分离及退化现象)
2. 同步培养(生理状态一致)
3. 菌龄:对诱变剂最敏感时期 营养细胞:对数期 孢子或芽孢:萌发前期
4.菌悬液的制备方法
物理诱变:生理盐水配制 化学诱变:缓冲液配制
01
特点:每2组只有一种共同物质
2271111
1
2345
3381111
2
6
2678
3
5
4491112
3690
4
5511112
04791
(3)营养缺陷型的用途
❖ 生产菌 (氨基酸、核苷酸、维生素等高产菌需求); ❖ 研究代谢途径和杂交、转化等遗传规律的遗传标记。
诱变育种的程序:
出发菌株(纯化)
前培养( CM ,培养至对数期)
项目五
任务二 食品微生 物育种基本程序及
操作
一、菌种的来源
❖ 根据资料直接向有科研单位、高等院校、工厂 或菌种保藏部门索取或购买;
❖ 从大自然中分离筛选新的微生物菌种。
二、分离思路
❖ 新菌种的分离是要从混杂的各类微生物中依照 生产的要求、菌种的特性,采用各种筛选方法, 快速、准确地把所需要的菌种挑选出来。
设计有效的筛选方法,将少量正变株中的 筛选(定向) 优良菌株挑选出来。
二、诱变育种的方法
(一) 出发菌株(original strain)
出发菌株指用于诱变育种的起始菌株。
出发菌株的选择标准: • 具有有利性状(如高产、生长速度快、营养要求粗放、
标记明显等); • 对诱变剂敏感
出发菌株的来源: •野生型菌株; •从生产中选育的自发突变菌株; •诱变获得的高产菌株
菌种选育名词解释
菌种选育名词解释
菌种选育是指通过筛选和培育,从自然环境或人工选育中获得具有特定特征和性质的菌种或菌株。
菌种是指由一类具有相同或类似形态、生理和遗传特征的微生物个体所组成的集合体。
菌种选育的目的是为了获得具有高产、高效、高质的菌种,以满足工业生产、农业生产或科学研究的需要。
在菌种选育中,常用的方法包括筛选法、改良法和混合法。
筛选法通过对大量菌株进行筛选,选取具有所需特性的菌种。
改良法则通过对已有菌种进行基因工程或遗传改良,使其具有更好的特性。
混合法是将两个或多个不同菌株进行混合培养,通过互补作用和相互促进,获得具有更好性能的菌种。
菌种选育在农业领域可以用于优选具有抗病、抗逆性强、高产等特性的菌种,以提高作物产量和品质;在工业领域可用于选育具有高产酶、高产代谢产物等特性的菌种,以提高产品产量和质量;在环境保护方面可以用于选育具有降解、吸附等环境修复能力的菌种,以减少环境污染;在医药领域可以用于选育具有抗菌、抗肿瘤等特性的菌种,用于新药研发等方面。
总之,菌种选育是一种重要的菌种改良和应用技术,可以通过选择和培育获得具有理想特性的菌种,以应用于各个领域。
食品微生物学 第四章微生物遗传与菌种选育 第二节微生物的菌种选育
微生物遗传与菌种选育
4.2.2.1 诱变育种的步骤:
确定出发菌 ↓
菌种的纯化选优 ↓出发菌株性能测定
同步培养 ↓
制备单细胞(单孢子)悬液 ↓
诱变剂选择与诱变剂量的预试验 ↓
诱变处理 ↓
平板分离 ↓计形态变异菌落数、↓
重复筛选 ↓摇瓶发酵试验
选出突变株进行生产试验
如果此野生型菌株产量偏低,达不到工业生产的要求, 可以留之作为菌种选育的出发菌株。
微生物遗传与菌种选育
4.2.2 微生物的诱变育种
诱变育种是利用物理和化学诱变剂处理微生物细胞群, 促进其突变率在同提高,再从中筛选出少数符合育种目的的 突变株。
诱变育种的主要手段是以合适的诱变剂处理大量而分散 的微生物细胞,在引起大部分细胞死亡的同时,使存活细胞 的突变率迅速提高,再设计既简便、快速又高效的筛选方法, 进而淘汰负突变并把正突变中效果最好的优良菌株挑选出来。
微生物遗传与菌种选育
4.2.1.4 纯种培养 经过分离培养,在平板上出现很多单个菌落,通过菌落
形态观察,选出所需菌落,然后取菌落的一半进行菌种鉴定, 对于符合目的菌特性的菌落,可将之转移到试管斜面纯培养。 4.2.1.5 生产性能测定
从自然界中分离得到的纯种称为野生型菌株,它只是筛 选的第一步,所得菌种是否具有生产上的实用价值,能否作 为生产菌株,还必须采用与生产相近的培养基和培养条件, 通过三角瓶进行小型发酵试验,以求得适合于工业生产用菌 种。
微生物遗传与菌种选育
4.2.2.2 营养缺陷型突变株的筛选
在诱变育种工作中,营养缺陷型突变体的筛选及应用有 着十分重要的意义。营养缺陷型菌株是指通过诱变而产生的 缺乏合成某些营养物质(如氨基酸、维生素、嘌呤和嘧啶碱 基等)的能力,必须在其基本培养基中加入相应缺陷的营养 物质才能正常生长繁殖的变异菌株。其变异前的菌株称为野 生菌株。
微生物菌种选育
株,苏云金杆菌模式菌株等细菌、食用菌等大型真菌、林 木病原菌、菌根菌、病虫生防菌、木腐菌、病毒和植原体 类等。 中国工业微生物菌种保藏管理中心:保藏各种工业微生物菌种 资源包括:细菌、放线菌、酵母菌、丝状真菌和大型真菌 。 中国医学细菌保藏管理中心: 兽医微生物菌种保藏管理中心:
美国典型菌种保藏中心 (American Type Culture Collection, ATCC)
三、菌种分离思路
1:新菌种的分离是要从混杂的各类微生物中依照生产的要 求、菌种的特性,采用各种筛选方法,快速、准确地把所 需要的菌种挑选出来。
2:实验室或生产用菌种若不慎污染了杂菌,也必须重新进行 分离纯化。
3:有了优良的菌种,还要有合适的工艺条件和合理先进的 设备与之配合。
8、几种微生物纯培养分离方法的比较
1)固体稀释平皿法: 即可定性,又可定量,用途广泛;
2)平皿划线分离法: 方法简便,多用于分离细菌;
3)组织分离法: 高等真菌及植物病原菌。
4)单细胞挑取法: 局限于专业化的科学研究;
5)利用选择培养基法: 适用于分离某些生理类型较特殊的微生物。
二、菌种的来源
1、根据资料直接向有科研单位、高等院校、工 厂或菌种保藏部门索取或购买;
菌种选育的常用途径
菌种选育的常用途径菌种选育是指通过对微生物菌株的筛选、培养、改良等一系列措施,以提高其在特定应用领域中的产量、质量或其他相关性状。
菌种选育在农业、食品工业、医药领域等具有重要应用价值。
本文将介绍菌种选育的常用途径。
1. 野生菌株的筛选和收集野生菌株是从自然环境中采集到的未经人工干预的微生物。
通过对不同环境样品(如土壤、水体、植物组织等)进行采集和分离,可以获得大量潜在有用的菌株。
筛选出具有特定特性或功能的野生菌株,是进行菌种选育的第一步。
2. 菌株的培养和保存为了保持菌株的纯度和活力,需要对筛选得到的菌株进行培养和保存。
常见的培养方式包括液体培养和固体培养。
液体培养适用于大规模生产,而固体培养则适用于分离纯化和鉴定菌株。
还可以利用冷冻保存、低温冷冻保存和干燥保存等方法对菌株进行长期保存,以备后续的选育和应用。
3. 菌株特性的评价和筛选菌株特性的评价是判断菌株是否具有选育潜力的重要依据。
常见的评价指标包括产量、活力、稳定性、抗逆性、产物质量等。
通过对大量菌株进行系统的评价和筛选,可以找到具有优良特性的菌株,并进一步进行深入研究和选育。
4. 菌株改良菌株改良是指通过基因工程、诱变、融合等方法对已有菌株进行遗传改造,以获得更好的性状或功能。
基因工程技术可以通过引入外源基因或调控内源基因的表达来改变菌株的代谢途径或产物合成能力。
诱变则通过物理或化学手段诱导突变,从而获得新的遗传变异体。
融合是将两个不同亲本菌株进行杂交,以获得具有双亲优点的后代。
菌株改良是提高菌株性状和功能的重要手段。
5. 发酵工艺的优化发酵工艺的优化是在选育过程中不可或缺的一环。
通过调节培养基成分、培养条件(温度、pH值、氧气供应等)和发酵参数(搅拌速度、通气量等),可以促进菌株的生长和代谢产物的积累。
还可以利用统计学方法对发酵过程进行建模和优化,以提高发酵效率和产量。
6. 菌株应用评价菌种选育的最终目标是将优良菌株应用于实际生产中。
对菌株应用性能进行评价至关重要。
微生物菌种的选育方法(两篇)2024
引言:微生物菌种的选育是一项重要的研究领域,其在农业、医药、环境保护等多个领域具有广泛的应用价值。
本文结合相关研究成果,探讨了微生物菌种选育的方法,旨在为相关领域的科研工作者提供参考。
概述:微生物菌种的选育是指通过对微生物的筛选和培养,选择出具有特殊功能或者优良特性的微生物菌株。
其方法包括了菌种筛选、培养条件优化等多个环节。
本文将以此为主线,结合实际案例,详细阐述微生物菌种选育的方法。
正文内容:1. 菌种筛选1.1 传统筛选方法传统筛选方法包括菌落形态观察、生理生化指标检测、抗性测定等。
通过对菌落形态和生理生化特性的观察,可以初步确定菌株的特性。
同时,通过对菌株的抗性测定,可以筛选出具有耐药或者耐环境逆境特性的菌株。
1.2 分子生物学方法分子生物学方法可以应用PCR等技术,快速检测目标菌株的特定基因或者特性。
这些特定基因可能与目标菌株的优良性状相关,通过筛选出含有这些特定基因的菌株,可以更加精确地进行微生物菌种的选育。
2. 菌种培养条件优化2.1 培养基配方优化培养基是微生物菌种培养的基础,其配方的优化对于菌种的生长和代谢具有重要影响。
通过调整培养基中的碳源、氮源、矿质元素等成分,可以优化菌株的生长条件。
2.2 培养条件控制培养条件的控制对于微生物菌株的生长和产生特定代谢产物等方面具有重要影响。
温度、pH值、培养时间等因素的调控,可以使菌株在适宜的环境中进行生长和代谢,从而保证其优良特性的表达。
3. 菌株遗传改良3.1 重组DNA技术重组DNA技术可以通过将目标基因导入到菌株中,使其具有特定的功能特性。
通过引入外源基因,可以使菌株产生特定的代谢产物,或者具有特定的酶活性等特性。
3.2 融合技术融合技术是指将两个或者多个菌株进行融合,从而形成新的菌株。
融合后的菌株可能具有不同菌株的优点,如抗性能力、代谢能力等,从而提高菌株的综合性能。
4. 菌株功能验证4.1 体外实验通过在实验室中建立靶点验证体系,对选育出的菌株进行功能验证。
微生物优良菌种的选育
优良菌种应具备的特征
对菌种的要求
1.生产力:能在廉价的培养基上迅速生长,所需的代谢产
物的产量高,其它代谢产物少
2.操作性:培养条件简单,发酵易控制,产品易分离 3.稳定性:抗噬菌体能力强,菌种纯,不易变异退化 4.安全性:是非病源菌,不产有害生物活性物质或毒素
优良菌种应具备的特征
选择生产菌种应注意的因素
二、诱变选育
诱导微生物发生突变进行的菌种选育,包括诱变和 筛选两个步骤。
概念:利用被称为诱变剂的物理因素或化学试剂处
理微生物细胞,提高其基因突变频率,再通过适当
的筛选方法获得所需要的高产优质菌种的育种方法。
原理:在诱变剂的作用下会出现染色体畸变(染色 体或DNA片段发生缺失、易位、重复等);基因突 变(少数碱基改变)。
表皮葡萄球菌能产生一种内肽酶——葡萄球菌素,溶解
•革兰氏阴性菌不能直接溶壁,只有当乙二胺四乙酸 (EDTA)存在时,某些革兰氏阴性菌的细胞壁才能够被 溶菌酶溶解。
•放线菌的细胞壁结构类似于革兰氏阳性菌也可采用溶菌酶 •真菌细胞壁主要由纤维素、几丁质和葡聚糖等组成
青霉菌多用纤维素酶和-1,3-糖苷酶等溶壁
第四章 微生物优良菌种的选育 4 Breeding of the Industrial Strains
提纲
微生物优良生产菌种的特征 自然突变选育 诱变选育
如何选育微生物高产菌种
如何选育微生物高产菌株要选育出一株可以应用于工业生产的高产菌株大概的方法有:常规育种法,诱变育种法,基因工程育种法和代谢控制育种法。
无论是那一种方法,都是以微生物的基因发生突变为育种的基础,只有微生物的基因发生了有利于工业生产的突变才有可能选育出高产的菌株。
事实上在选育某种高产微生物菌株的过程中,不同的育种方法常常是结合在一起发挥作用的。
目的性强、劳动强度低、效果显著是我们的育种原则。
目的性强,就是指我们做的一切工作都要围绕着如何提高目的产物的产量来进行。
要利用微生物生产一种目的产物,首先就要对我们要生产的物质要有充分的了解,这就包括掌握目的产物的生理生化性质,组成结构,那些微生物会产生或可能产生这一物质,这些微生物会在哪里采集的到。
有可能的话还有必要了解微生物产生这种物质的代谢途径和必要的的一些代谢网络的信息。
只有这样才能在后面的菌种选育的过程中有目的性的选择合适的方法,使得所有的步骤和方法都是围绕着我们选育高产目的产物的菌株而服务的。
劳动强度低,就是在掌握了菌种选育的必要信息之后,要对选育高产菌种的选育方案进行优化设计,从而使选育工作的劳动强度降低。
这一步骤是很有必要的,只有在确定了一个好的选育的方案以后,后续的选育工作才有保证。
实验方案的优化设计还是要基于前面的信息准备,要有针对性的设计实验方案。
在这里很大程度要依赖代谢控制发酵的原理和思路来对所要选育的高产菌株进行选育方案的设计。
虽然菌种选育的大致框架都差不多,但是能不能选育出某一高产菌株还是要看有没有一个有很强针对性的筛选思路,这样就可以减少不必要的工作,降低菌种选育的劳动强度。
效果显著,就是选育出的菌株确实是提高了产量的菌株。
这是检验一个育种试验设计是否正确和高效的最直接的标准。
在这一环节中要求要有一个快速高效的筛选机制,如果没有一个好的筛选高产菌株的方法,就算在正确的育种思路指导下,菌株发生了正向的突变,筛选不出来前面的努力也是白费。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物菌种的选育方法菌种选育Loremreferentibus(英语:Strain selection 日语:ひずみの选択法语:la sélection des souches 俄语:Штаммвыбор 德语:Stammselektion )微生物菌种是决定发酵产品的工业价值以及发酵工程成败的关键,只有具备良好的菌种基础,才能通过改进发酵工艺和设备以获得理想的发酵产品。
菌种用途广泛涉及食品、医药、工农业、环保等诸多领域。
自然选育自然选育的菌种来源于自然界、菌种保藏机构或生产过程,从自然界中选育菌种的过程较为复杂,而从生产过程或菌种保藏机构得到菌种的自然选育过程较为简单。
自然选育的步骤主要是:采样,增长培养,培养分离和筛选等。
采样筛选的菌种采集的对象以土壤为主,也可以是植物、腐败物品和某些水域等。
土壤是微生物的汇集地,从土壤中几乎可以分离到任何所需的微生物,故土壤往往是首选的采集目标。
微生物的营养需求和代谢类型与生长环境有很大关系。
富集培养由于采集样品中各种微生物数量有很大差异,若估计到要分离的菌种数量不多时,就要人为增加分离的概率,增加该菌种的数量,称为富集培养。
纯种培养尽管通过增长培养的效果很好,但是得到的微生物还是处于混杂状态,因为样品中本身含有许多种类的微生物。
所以,为了取得所需的微生物纯种,增殖培养后必须进行分离。
平板分离法由接种环以无菌操作沾取少许待分离的材料,在无菌平板表面进行平行划线、扇形划线或其他形式的连续划线,微生物细胞数量将随着划线次数的增加而减少,并逐步分散开来。
如果划线适宜的话,微生物能一一分散,经培养后,可在平板表面得到单菌落。
分离方法有三种:即划线分离法、稀释法和组织分离法。
稀释分离法在溶液中再加入溶剂使溶液的浓度变小。
亦指加溶剂于溶液中以减小溶液浓度的过程。
浓溶液的质量×浓溶液的质量分数=稀溶液的质量×稀溶液的质量分数生产能力考察初筛一般通过平板稀释法获得单个菌落,然后对各个菌落进行有关性状的初步测定,从中选出具有优良性状的菌落。
例如,对抗生素产生菌来说,选出抑菌圈大的菌落;对于蛋白酶产生菌来说,选出透明圈大的菌落。
此法快速、简便,结果直观性强。
缺点是培养皿的培养条件与三角瓶、发酵罐的培养条件相差大,两者结果常不一致。
复筛指对初筛出的菌株的有关性状作精确的定量测定。
一般要在摇瓶或台式发酵罐中进行培养,经过精细的分析测定,得出准确的数据。
突变体经过筛选后,还必须经过小型或中型的投产试验,才能用于生产。
诱变育种诱变育种一般步骤利用各种诱变剂处理微生物细胞,提高基因的随机突变频率,扩大变异幅度,通过一定的筛选方法,获得所需要优良菌株的过程,称为诱变育种。
诱变育种应注意的问题(1)挑选优良的出发菌株出发菌株就是用于育种的原始菌株。
出发菌株适合,育种工作效率就高。
参考以下实际经验选用出发菌株:①以单倍体纯种为出发菌株,可排除异核体和异质体的影响;②采用具有优良性状的菌株,如生长速度快、营养要求低以及产孢子早而多的菌株;③选择对诱变剂敏感的菌株。
由于有些菌株在发生某一变异后,会提高对其它诱变因素的敏感性,故可考虑选择已发生其他变异的菌株为出发菌株。
④许多高产突变往往要经过逐步累积的过程,才变得明显,所以有必要多挑选一些已经过诱变的菌株为出发菌株,进行多步育种,确保高产菌株的获得。
(2)菌悬液的制备一般采用生理状态一致(用选择法或诱导法使微生物同步生长)的单细胞或孢子进行诱变处理。
所处理的细胞必须是均匀而分散的单细胞悬液。
分散状态的细胞可以均匀地接触诱变剂,又可避免长出不纯菌落。
由于某些微生物细胞是多核的,即使处理其单细胞,也会出现不纯的菌落。
有时,虽然处理的是单核的细胞或孢子,但由于诱变剂一般只作用于DNA双链中的某一条单链,故某一突变无法反映在当代的表型上,而是要经过DNA的复制和细胞分裂后才表现出来,于是出现了不纯菌落,这就叫表型延迟。
上述两类不纯菌落的存在,也是诱变育种工作中初分离的菌株经传代后很快出现生产性状“衰退”的主要原因。
鉴于上述原因,因此用于诱变育种的细胞应尽量选用单核细胞,如霉菌或放线菌的孢子或细菌的芽孢。
细胞的生理状态对诱变处理也会产生很大的影响。
细菌在对数期诱变处理效果较好;霉菌或放线菌的分生孢子一般都处于休眠状态,所以培养时间的长短对孢子影响不大,但稍加萌发后的孢子则可提高诱变效率。
(3)选择简便有效、最适剂量的诱变剂诱变剂主要有两大类,即物理诱变剂和化学诱变剂。
物理诱变剂如紫外线、X射线、γ射线和快中子等;化学诱变剂种类极多,主要有烷化剂、碱基类似物和吖啶类化合物。
最常用的烷化剂有N-甲基-N′-硝基-N-亚硝基胍(NTG)、甲基磺酸乙酯(EMS) 、甲基亚硝基脲(NMU)、硫酸二乙酯(DES)和环氧乙烷等。
目前常用的诱变剂主要有紫外线(UV)、硫酸二乙酯、N-甲基-N′-硝基-N-亚硝基胍(NTG)和亚硝基甲基脲(NMU)等。
后两种因有突出的诱变效果,所以被誉为“超诱变剂”。
剂量的选择受处理条件、菌种情况、诱变剂的种类等多种因素的影响。
剂量一般指强度与作用时间的乘积。
在育种实践中,常采用杀菌率来作各种诱变剂的相对剂量。
要确定一个合适的剂量,通常要进行多次试验。
在实际工作中,突变率往往随剂量的增高而提高,但达到一定程度后,再提高剂量反而会使突变率下降。
根据对紫外线、X射线和乙烯亚胺等诱变效应的研究结果,发现正变较多地出现在偏低的剂量中,而负变则较多地出现于偏高的剂量中,还发现经多次诱变而提高产量的菌株中,更容易出现负变。
因此,在诱变育种工作中,目前比较倾向于采用较低的剂量。
例如,过去在用紫外线作诱变剂时,常采用杀菌率为99%的剂量,而近年来则倾向于采用杀菌率为30%~75%的剂量。
(4)突变体的筛选诱变处理使微生物群体中出现各种突变型,其中绝大多数是负变株。
要获得预定的效应表型主要靠科学的筛选方案和筛选方法,一般要经过初筛和复筛两个阶段的筛选。
杂交育种杂交育种法杂交育种(bybridization)指不同种群、不同基因型个体间进行杂交,并在其杂种后代中通过选择而育成纯合品种的方法。
杂交可以使双亲的基因重新组合,形成各种不同的类型,为选择提供丰富的材料;基因重组可以将双亲控制不同性状的优良基因结合于一体,或将双亲中控制同一性状的不同微效基因积累起来,产生在各该性状上超过亲本的类型。
正确选择亲杂交育种技术选择1.选择亲本的原则首先要尽可能选用综合性状好,优点多,缺点少,优缺点或优良性状能互补的亲本,同时也要注意选用生态类型差异较大、亲缘关系较远的亲本杂交,如江西的荷包红鲤和云南的元江鲤。
在亲本中最好有一个能适应当地条件的品种。
要考虑主要的育种目标,选作育种目标的性状至少在亲本之一应十分突出。
当确定一个品种为主要改良对象,针对它的缺点进行改造才能收到好的效果,如草鱼的抗病性。
采用的组合方式2.杂交方式亲本确定之后,采用什么杂交组合方式,也关系育种的成败。
通常采用的有单杂交、复合杂交、回交等杂交方式。
(1)单杂交即两个品种间的杂交(单交)用甲×乙表示,其杂种后代称为单交种,由于简单易行、经济,所以生产上应用最广,一般主要是利用杂种第一代,如丰鲤、福寿鱼。
(2)复合杂交即用两个以上的品种、经两次以上杂交的育种方法。
如果单交不能实现育种所期待的性状要求时,往往采用复合杂交,其目的在于创造一些具有丰富遗传基础的杂种原始群体,才可能从中选出更优秀的个体。
复合杂交可分为三交、双交等。
三交是一个单交种与另一品种的再杂交,可表示为(甲×乙)×丙,例如(荷包红鲤×元江鲤)×散鳞镜鲤一三杂交鲤。
双交是两个不同的单交种的杂交,可表示为(甲×乙)×(丙×丁)或(甲×丙)×(乙×丙),例如(蓝非鲫×尼罗非鲫)×(莫桑比克非鲫×尼罗非鲫)。
(3)回交即杂交后代继续与其亲本之一再杂交,以加强杂种世代某一亲本性状的育种方法。
当育种目的是企图把某一群体乙的一个或几个经济性状引入另一群体甲中去,则可采用回交育种。
如鲮鱼具有许多优良性状,但不能耐受低温,需要进行遗传改良。
可先用耐受低温的湘华鲮与鲮杂交,杂交子一代再与鲮回交,回交后代继续同鲮进行多次回交,对回交子代选择的注意力必须集中在抗寒性这个目标性状上,从而最终育成一个具有抗寒性的优良的。
基因工程育种随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。
如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。
这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。
这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA 分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。