拉深工艺
拉深工艺及拉深模具设计说明书模板
1 d n1 kn mn dn
2、极限拉深系数 在保证侧壁不破坏的情况下所能得到的最小拉深系数称 为极限拉深系数(可查表)。拉深时,要保证拉深顺利 进行,每次拉深系数应大于极限拉深系数。
影响极限拉深系数的因素:
1)材料的内部组织和力学性能:
塑性好,组织均匀,晶粒大小适当;屈强比小,塑性应变比大,板 料的拉深性能好,极限拉深系数就小。
max
Rw 1.1 s ln ( r) r
max
1.1 s
( Rw )
筒壁传力区的受力分析 凸模的压力通过筒壁传递至法兰的内边缘,将变形区的 材料拉入凹模,筒壁区所受的拉应力由以下各部分组成 ①使变形区产生塑性变形所必须的拉应力 ②克服变形区上下两个表面的摩擦阻力所必须的力 ③克服毛坯沿凹模圆角运动必须克服的弯曲阻力
2 、拉裂
拉深时筒壁总拉应力超过筒壁最薄弱处的材料强度 时,拉深件产生破裂。
原因:
1)由于法兰起皱,坯料不能通过凸凹模间隙,使筒 壁拉应力增大 2)压边力过大,使径向拉应力增大 3)变形程度太大
防止拉裂的措施:
1)采用适当的拉深比和压边力 2)增加凸模的表面粗糙度,改善凸缘部分变形材 料的润滑条件 3)合理设计模具工作部分的形状 4)选用拉深性能好的材料.
4.2.1 对拉深件形状尺寸的要求 1)拉深件形状应尽量简单、对称,尽可能一次拉 深成形。 2)尽量避免半敞开及非对称的空心件,应考虑设 计成对称(组合)的拉深,然后剖开;
3)在设计拉深件时,应注明必须保证外形或内形 尺寸,不能同时标注内外形尺寸;带台阶的拉 深件,其高度方向的尺寸标注一般应以底部为 基准。
pg
pg
py
2.底部圆角半径rpg 底部圆角半径rpg:指壁与底面的转角半径。 要求: 1)rpg≥t,一般取:rpg≥(35)t 2)rpg<t,增加整形工序,每整形一次,rpg 可减小1/2。
模具设计与制造第7章拉深工艺与模具设计
尺寸测量
使用测量工具对拉深制品的尺 寸进行测量,以检查其是否符 合设计要求。
壁厚测量
使用壁厚测量仪对拉深制品的 壁厚进行测量,以检查其是否 均匀。
强度测试
对拉深制品进行拉伸或压缩试 验,以检测其力学性能是否满
足要求。
提高拉深制品质量的措施
选用优质材料
选用质量稳定、性能良好的材料,以提高拉深制品的基 本质量。
的强度和刚度等因素。
压力过大会导致工件破裂或模 具损坏,而压力过小则会导致
工件起皱或形状不规整。
压力控制需要与速度控制和温 度控制等参数进行协调,以确 保整个拉深过程的稳定性和可
靠性。
拉深工艺的速度控制
速度控制是拉深工艺中的另一 个重要参数,它直接影响到工
件的表面质量和尺寸精度。
速度控制需要考虑到工件的材 质、厚度、润滑条件以及模具
拉深工艺的应用领域
汽车行业
汽车覆盖件、油箱、仪 表盘等部件的制造。
家用电器行业
电子行业
航空航天行业
空调、冰箱、洗衣机等 产品的外壳和内部零件
的制造。
手机、电脑等产品的外 壳和内部结构件的制造。
飞机蒙皮、机身部件等 高精度、高质量要求的
零件的制造。
拉深工艺的发展趋势
高精度、高质量
柔性化、个性化
随着科技的发展,对拉深工艺的精度和 产品质量要求越来越高,高精度、高质 量的模具和加工设备成为发展的趋势。
破裂。
凸模设计
凸模的作用是将材料拉入凹模, 因此需要具有足够的刚性和强度。 凸模的直径应与凹模相匹配,以
保持适当的间隙。
压边圈设计
压边圈的作用是控制材料流动, 防止材料起皱。压边圈的宽度和 重量应适中,以确保压力均匀。
4.1拉深工艺及拉深件的结构工艺性
二. 拉深变形过程
方法:拉深网格试验
二. 拉深变形过程
(1)底部(d内)网格不变形; (2)拉深前等距同心圆 不等距水平圆周线 (3)拉深前等角度射线 等距、平行于底面的平行线 (4)拉深前筒壁上的扇形网格,拉深后变成矩形网格。 (5)测量工件高度,高度H>(D-d)/2
二. 拉深变形过程
拉深过程中毛坯各部分变化
一. 拉深工艺
拉深概念
利用模具将平板毛 坯冲压成各种开口的空 心零件,或将已制成的 开口空心件压制成其他 形状和尺寸空心件的一 种冲压加工方法。
一. 拉深工艺
生活中的拉深件
一. 拉深工艺
拉深工艺分类
➢按壁厚变化情况分: ① 一般拉深(工件壁厚不变) ② 变薄拉深(工件壁厚变薄)
➢按使用的毛坯的形状分:
1Cr18Ni9Ti不锈钢等。
较硬材料拉深时,需增加工序改变性能: ①先退火处理后拉深,最后淬火。 ②加热后拉深。
四.拉深件的结构工艺性
拉深件结构工艺性
拉深件的形状:简单、对称,对应r相等 尽量避免半敞开及非对称的空心件,否则
应设计成对称组合的拉深,然后剖开。
四.拉深件的结构工艺性
拉深件高度:尽量小一些
① 第一次拉深(使用平板毛坯) ② 以后的各次拉深(以开口空心件为毛坯)
二. 拉深变形过程
如图a圆形薄片,剪去图中阴影部分,再将剩余部分沿直径d圆 周弯折,然后焊接,就得到一个图b的直径为d,高度为(D-d)/2 的直圆筒形件。
二. 拉深变形过程
拉深变形过程:
用相同直径大小的圆形平板毛坯,在拉深成直圆筒形 件的过程中,并没有去除多余材料,多余材料流向哪里?
一次成形零件的拉深高度应满足: ①无凸缘筒形件: h≤(0.5~0.7)d
拉深工艺设计课件
为:
1max1.1AVlnRrt
在变形区外边缘处压应力最大,其值为:
3 max1.1AV
PPT学习交流
25
7.1.2 拉深过程中板料的应力应变状态
凸缘外边向内边 1 由低到高变化, 3 则由高到低变化,在凸缘中间必有一交 点存在(如右图所示),在此点处有 1 3
RR RR 所以:
1 . 1 A l Vt n 1 . 1 A 1 V lt n
• 拉深所用的模具主要由凸模、凹模和压边圈三部分组成。 凸模、凹模有一定圆角半径。
PPT学习交流
11
7.1 拉深变形过程分析
• 直径为D、厚度为t的圆形板料被拉入凹模,形成外径为d、高度 为H的开口圆筒形工件。
凸模 压边圈
凹模
制件
PPT学习交流
12
7.1.1 拉深的变形过程
PPT学习交流
13
7.1.1 拉深的变形过程
得:
Rd 1(13)d R 0
塑性变形时需满足的塑1性方3程为:m
PPT学习交流
24
7.1.2 拉深过程中板料的应力应变状态
由上述两式,并考虑边界条件(当R Rt 时,1 0 ),经数学 推导就可以求出径向拉应力,和切向压应力的大小为:
1 1.1AVlnRRt
3 1.1AV1-lnRRt
在变形区的内边缘(即Rr 处)径向拉应力最大,其值
4.拉深模典型结构与拉深模工作零件设计 。
PPT学习交流
4
概述
• 拉深:
• 又称拉延、引伸、延伸等,是利用模具在压力机的压力作用 下,将平板坯料制成开口空心零件的冲压加工方法。
• 它是冲压基本工序之一。可以加工旋转体零件,还可加工盒 形零件及其它形状复杂的薄壁零件。
第四章拉深工艺及拉深模具设计复习题答案
第四章拉深工艺及拉深模具设计复习题答案填空题拉深是是利用拉深模将平板毛坯压制成开口空心件或将开口空心件进一步变形的冲压工艺。
拉深凸模和凹模与冲裁模不同之处在于,拉深凸、凹模都有一定的圆角而不是锋利的刃口,其间隙一般稍大于板料的厚度。
拉深系数m是拉深后的工件直径和拉深前的毛坯直径的比值,m越小,则变形程度越大。
拉深过程中,变形区是坯料的凸缘部分。
坯料变形区在切向压应力和径向拉应力的作用下,产生切向压缩和径向伸长的变形。
对于直壁类轴对称的拉深件,其主要变形特点有:(1)变形区为凸缘部分;(2)坯料变形区在切向压应力和径向拉应力的作用下,产生切向压缩与径向的伸长,即一向受压、一向收拉的变形;(3)极限变形程度主要受传力区承载能力的限制。
拉深时,凸缘变形区的起皱和筒壁传力区的拉裂是拉深工艺能否顺利进行的主要障碍。
拉深中,产生起皱的现象是因为该区域内受较大的压应力的作用,导致材料失稳_而引起。
拉深件的毛坯尺寸确定依据是面积相等的原则。
拉深件的壁厚不均匀。
下部壁厚略有减薄,上部却有所增厚。
在拉深过程中,坯料各区的应力与应变是不均匀的。
即使在凸缘变形区也是这样,愈靠近外缘,变形程度愈大,板料增厚也愈大。
板料的相对厚度t/D越小,则抵抗失稳能力越愈弱,越容易起皱。
因材料性能和模具几何形状等因素的影响,会造成拉深件口部不齐,尤其是经过多次拉深的拉深件,起口部质量更差。
因此在多数情况下采用加大加大工序件高度或凸缘直径的方法,拉深后再经过切边工序以保证零件质量。
拉深工艺顺利进行的必要条件是筒壁传力区最大拉应力小于危险断面的抗拉强度。
正方形盒形件的坯料形状是圆形;矩形盒形件的坯料形状为长圆形或椭圆形。
用理论计算方法确定坯料尺寸不是绝对准确,因此对于形状复杂的拉深件,通常是先做好拉深模,以理论分析方法初步确定的坯料进行试模,经反复试模,直到得到符合要求的冲件时,在将符合要求的坯料形状和尺寸作为制造落料模的依据。
影响极限拉深系数的因素有:材料的力学性能、板料的相对厚度、拉深条件等。
精选拉深变形过程及拉深工艺
(2)材料流过凹模圆角半径产生弯曲变形的阻力 可根据弯曲时内力和外力所作功相等的条件按下式计算: (3)材料流过凹模圆角后又被拉直成筒壁的反向弯曲力仍按式上式进行计算: 拉深初期凸模圆角处的弯曲应力也按上式计算,即:
(4)材料流过凹模圆角时的摩擦阻力 通讨凸模圆角处危险断面传递的径向拉应力即为: 由上式把影响拉深力的因素,如拉深变形程度,材料性能,零件尺寸,凸、凹模圆角半径,压边力,润滑条件等都反映了出来,有利于研究改善拉深工艺。 拉深力可由下式求出:
(2)计算拉深次数 例如: 可知该零件要拉深四次才行 。半成品尺寸确定 (1)半成品直径 拉深次数确定后,再根据计算直径 应等于 的原则对各次拉深系数进行调整,使实际采用的拉深系数大于推算拉深次数时所用的极限拉深系数。
图4.2.3 锥形凹模
1-首次拉深; 2-二次拉深图 4.2.4 首次拉深与二次拉深的拉深力
4.2.3无凸缘圆筒形拉深件的拉深次数和工序件尺寸的计算 试确定如下图所示零件(材料08钢,材料厚度 =2mm)的拉深次数和各拉深工序尺寸。 计算步骤如下:1.确定切边余量 根据 ,查教材表4.2.1,并取: 。2.按教材表4.2.3序号1的公式计算毛坯直径
3.确定拉深次数 ⑴ 判断能否一次拉出 对于图示的零件,由毛坯的相对厚度: 从表 4.2.4中查出各次的拉深系数 : =0.54, =0.77, =0.80, =0.82。则该零件的总拉深系数 。 即 : ,故该零件需经多次拉深才能够达到所需尺寸。
2.拉裂 拉深后得到工件的厚度沿底部向口部方向是不同的(如图4.1.9) 防止拉裂: 可根据板材的成形性能,采用适当的拉深比和压边力,增加凸模的表面粗糙度,改善凸缘部分变形材料的润滑条件,合理设计模具工作部分的形状,选用拉深性能好的材料。3.硬化 拉深是一个塑性变形过程,材料变形后必然发生加工硬化,使其硬度和强度增加,塑性下降。 加工硬化的好处是使工件的强度和刚度高于毛坯材料,但塑性降低又使材料进一步拉深时变形困难。
5-6 拉深工艺设计
下列3种工艺方案:
方案1
(1)落料 (2)首次拉深 (3)二次拉深 (4)三次拉深
方案2
方案3
(1)落料、首次拉深复合 (1)落料 (2)二次拉深 (2)正、反拉深 (3)三次拉深
三种方案比较 : 模具结构简单, 压力机吨位可 较小,生产率 低,适于批量 不大的生产。
正、反拉深模具 复合工序的模具 结构较复杂,这 较复杂,且压力 时需要采用双动 机吨位要求较大, 压力机、生产力 生 产 率 比 方 案 1 率高,适宜于批 高,适宜于批量 量大而且具备双 动压力机的情况。 1)多道工序的拉深成形工序设计时,每一道工序完成一 定的加工任务,使先行工序不妨碍后续工序的完成; (2)每道拉深工序的最大变形程度不能超过其极限值; (3)已成形部分和待成形部分之间,不应再发生材料的转 移。 (4)在大批量生产中,若凸凹模的模壁强度允许,应采用 落料、拉深复合工艺。
查表取修边余量为10mm, 则零件高度为570mm, 因而可求得毛坯直径D≈965mm。 357.5 零件的总拉深系数 m Σ = = 0.37 965 t/D=2.5/965=0.25%
查表需分3次拉深,拉深系数分别为: m1=0.58 m2=0.79 m3=0.81 故 d1=m1D=0.58×965mm≈560mm d2=m2d1=0.79×560mm≈442mm d3=m3d2=0.81×442mm≈357.5mm
第五章 拉深工艺与模具设计
§5-6 拉深工艺设计
一、拉深件的工艺性
1.拉深件结构形状的要求 拉深件结构形状的要求
拉深后材料各部位的厚度变化:底部厚度基本 不变,底部圆角部分变薄,凸缘部分变厚。 在设计拉深件时,尺寸应明确标注的是外形尺 寸还是内形尺寸,不能同时标注内、外形尺寸。
第六章 拉深工艺
以后各次拉深
压边力
压料装置产生的压料力Fy大小应适当: 式中
Fy Ap
A――压料圈下坯料的投影面积; p――单位面积压料力, p值可查表
圆筒形件首次拉深
圆筒形件以后各次拉深
FY
D 4
2
( d1 2rA1 ) 2 p
FY
d 4
2
i 1
( d i 2rAi ) 2 p
拉 深 过 程 的 应 力 与 应 变 状 态
下标1、2、3分 别代表坯料径向、 厚度方向、切向 的应力和应变
圆 筒 形 件 拉 深 时 凸 缘 变 形 区 的 应 力 分 布
4、拉深时的主要质量问题——起皱与拉裂
a、起皱
起皱的影响因素:
变形程度:m
d D
d-工件直径 D-毛坯直径
m-拉深系数 越小,拉深变形越厉害起皱就越大
5)、凸凹模圆角半径:
(R凹)R凸大 (R凹)R凸小
m可以取小值 m应该加大
6)、润滑条件
润滑条件好,m可以取小值,(改善塑性流动)
3、拉深次数的确定
a、推算法:
可根据相对厚度 值,由P169表6-6、6-7 中查出各次拉深的m值 然后计算出各次拉深直径,便可推算出拉深次数。
d1 m1 D
d3 d2
第三次拉深系 数
mn
dn d d n1 d n1
m总
d d n d1 d 2 d 3 d 4 d n1 d n 第n次拉深系数 m3 mn1 mn m1 m2 D D D d1 d 2 d 3 d n2 d n1
拉深工艺与拉深模设计
(1)由直线和圆弧相连接的形状
(2)曲线连接的形状
测验题
填空 1、不变薄拉深简单旋转体毛坯尺寸的计算常采用 。
课后思考
1、拉深件坯料尺寸的计算遵循什么原则? 2、简单旋转体拉深件的毛坯
学习目标: 了解拉深系数的概念,能够计算圆筒形件的
拉深次数及各次拉深的工序件尺寸;计算圆筒形 件的拉深力。
1)孔位应与主要结构面(凸缘面)在同一平面, 或孔壁垂直该平面,便于冲孔与修边在同一 道工序中完成。
2)拉深件侧壁上的冲孔与底边或凸缘边的距离
h2dt
3)拉深件凸缘上的孔距:
D 1(d13t2r2d)
4)拉深件底部孔距:
dd12r1t
4.2.3 拉深件的精度等级 主要指其横断面的尺寸精度;一般在IT13级
2)工序件底部圆角半径 合理选配各次拉深工序件的底部圆角半径
3)高度
无凸缘圆筒形件拉深工序计算流程
4.4.3 有凸缘圆筒形的拉深计算 1.判断能否一次拉深成形 (1)利用极限相对高度进行判断(查表)
如果工件的相对高度h/d小于或等于表中 对应的极限相对高度[h1/d1]值时,则可以一次 拉深成形;否则需多次拉深。
2)尽量避免半敞开及非对称的空心件,应考虑设 计成对称(组合)的拉深,然后剖开;
3)在设计拉深件时,应注明必须保证外形或内形 尺寸,不能同时标注内外形尺寸;带台阶的拉 深件,其高度方向的尺寸标注一般应以底部为 基准。
4)拉深件口部尺寸公差应适当。
5)一般拉深件允许壁厚变化范围0.6t1.2t,若 不允许存在壁厚不均现象,应注明;
上表只适合08及10号钢的拉深件
2.拉深件工序件尺寸
1)直径 确定拉深次数后,应调整拉深系数,使首
第 4 章 拉深工艺与拉深模
第4章 拉深工艺与拉深模 (Drawing Process and Drawing Die)教学目标了解拉深工艺及拉深件的结构工艺性、变形过程分析、拉深件的质量问题及防止措施,基本掌握拉深工艺设计、拉深模具典型结构组成及工作过程分析、拉深模具设计。
应该具备的能力:具备拉深件的工艺性分析、工艺计算和典型结构工作过程分析、拉深模设计的基本能力。
教学要求能力目标知识要点权重自测分数了解拉深工艺及拉深件的结构工艺性拉深概念及拉深件的结构工艺性12.5%理解拉深变形过程分析拉深变形过程及变形分析、拉深件的质量问题及防止措施12.5%基本掌握拉深工艺设计毛坯尺寸计算、拉深系数、拉深次数、各次拉深半成品件尺寸的计算25%熟悉拉深模具典型结构拉深模分类、典型结构、拉深模主要特点25%熟悉拉深模具设计拉深力计算,压边装置及压边力、压力机的选择,凸、凹模工作尺寸计算25% 引例壳形件在生产生活中经常见到,如下图所示的机壳、电动机叶片、摩托车轮护瓦,还有诸如不锈钢饭盒、易拉罐等产品。
这些零件从板料成为深腔件,就是通过拉深工艺实现的,其发生的塑性变形比较大,那么所用模具如何设计?这就是本章所要解决的问题。
思考电动机叶片模具的制造过程中包括哪些冲压工序。
模具设计与制造·108· ·108·4.1 拉深工艺与拉深件工艺性(Drawing Process andProcessability of Drawing Part)4.1.1 拉深件与拉深工艺分类(Drawing Part and Classification of Drawing Process)拉深是指利用模具将平板毛坯冲压成各种开口的空心零件,或将已制成的开口空心件压制成其他形状和尺寸空心件的一种冲压加工方法。
1.拉深件分类冲压生产中,拉深的种类很多,各种拉深件按变形力学特点可以分为表4-1所示的基本类型。
表4-1 拉深件的分类拉深件名称 拉深件简图变形特点 轴对称零件 圆筒形件 带凸缘圆筒形件 阶梯形件1.拉深过程中变形区是坯料的凸缘部分,其余部分是传力区;2.坯料变形区在切向压应力和径向拉应力作用下,产生切向压缩与径向伸长的一向受压一向受拉的变形;3.极限变形程度主要受坯料传力区承载能力的限制 盒形件 带凸缘盒形件 其他形状零件 1.变形性质同前,区别在于一向受拉一向受压的变形在坯料周边上分布不均匀,圆角部分变形大,直边部分变形小; 2.在坯料的周边上,变形程度大与变形程度小的部分之间存在着相互影响与作用 直壁类拉深件 非轴对称零件 曲面凸缘的零件 除具有前项相同的变形性质外,还有如下特点:1.因零件各部分高度不同,在拉深开始时有严重的不均匀变形;2.拉深过程中,坯料变形区内还要发生剪切变形轴对称零件球面类零件 锥形件 其他曲面零件 拉深时坯料变形区由两部分组成: 1.坯料外部是一向受拉一向受压的拉深变形;2.坯料的中间部分是受两向拉应力的胀形变形区 曲面类拉深件非轴对称零件 平面凸缘零件 曲面凸缘零件 1.拉深时坯料的变形区也是由外部的拉深变形区和内部的胀形变形区所组成,但这两种变形在坯料中的分布是不均匀的; 2.曲面凸缘零件拉深时,在坯料外周变形区内还有剪切变形第4章 拉深工艺与拉深模 ·109··109·虽然这些零件的冲压过程都叫做拉深,但是由于其几何形状不同,在拉深过程中,它们的变形区位置、变形性质、毛坯各部位的应力状态和分布规律等都有相当大的差别,所以在确定拉深的工艺参数、工序数目与工艺顺序等方面都不一样。
拉深变形过程及拉深工艺解答
图 4.2.2 拉深工序示意图
拉深系数的倒数称为拉深程度或拉深比,其值为:
kn
1 mn
d n 1 dn
拉深系数表示了拉深前后毛坯直径的变化量,反映了
毛坯外边缘在拉深时切向压缩变形的大小,因此可用它作为
衡量拉深变形程度的指标。拉深时毛坯外边缘的切向压缩变
形量为:
1
Dt dt Dt
的高度:
第一次 h1 (D2 d120 2r1d10 8r12 ) 4d1
第二次
h2
(D2
d
2 20
2r2 d 20
8r22 )
4d2
第三次
h3
(D2
d
2 30
2r3 d 30
8r32 )
4d3
式中:
d1, d2 , d3
各次拉深的直径(中线值);
r1, r2 , r3
(1)半成品直径 拉深次数确定后,再根据计算直径dn 应等于d工 的原则对 各次拉深系数进行调整,使实际采用的拉深系数大于推算拉 深次数时所用的极限拉深系数。
零件实际需拉深系数应调整为:
m1 0.57, m2 0.79, m3 0.82, m4 0.85
调整好拉深系数后,重新计算各次拉深的圆筒直径即得 半成品直径。零件的各次半成品尺寸为 :
(3)材料的力学性能 板料的屈强比 s b 小,则屈服极限小,变形区内的切向压 应力也相对减小,因此板料不容易起皱。
(4)凹模工作部分的几何形状
平端面凹模拉深时,毛坯首次拉深不起皱的条件是 :
t (0.09 ~ 0.17)(1 t )
D
D
1.拉深工艺基础
模块一拉深工艺基础
图4-5 拉深件的网格实验
生拉应力和
的共同作用下产生切向压缩与径向伸长变形而被逐渐拉人凹模。
产生了压应力但通常和
的绝对值比大得多。
厚度方向的变形决定于径向拉应力和切向压应力之间的比例关系,
(小
作用下可能失稳而拱
图4-6拉深过程的应力与应变状态
2.凸缘圆角部分(B区)
径向受拉应力
受压应力而压缩,
压应力。
不大,而径向拉应力
力和切向拉应力
当拉深应力较大且接近材料的强度极限
分析拉深过程中可能产生的质量问题及控制方式?
图4-1 金属保护筒。
模具设计第五章 拉深工艺及拉深模
七、拉深模制造特点
4)由于拉深过程中材料厚度变化及回弹变形等原因,复杂拉深件 坯料形状和尺寸设计值与实际值往往存在误差,坯料形状和尺寸 最终是在试模后确定。 2.拉深模凸、凹模的加工方法
26627D
七、拉深模制造特点
表5-4 拉深凸模常用加工方法
26627D
七、拉深模制造特点
表5-5 拉深凹模常用加工方法
一、拉深变形分析
26627D
图5-3 拉深件的网格变化
二、拉深件的主要质量问题
1.起皱
26627D
图5-4 起皱破坏
二、拉深件的主要质量问题
(1)影响起皱的主要因素 1)坯料的相对厚度t/D。 2)拉深系数m。 (2)起皱的判断 在分析拉深件的成形工艺时,必须判断该冲件 在拉深过程中是否会发生起皱,如果不起皱,则可以采用无压边 圈的模具;否则,应该采用带压边装置的模具,如图5-5所示。
26627D
图5-10 圆筒形件
三、圆筒形件的拉深
解 由于t=2mm>1mm,所以按中线尺寸计算。 1)确定修边余量。 2)计算坯料展开直径。 3)确定是否用压边圈。 4)确定拉深次数。 5)确定各次拉深直径。 6)求各工序件高度。 7)画出工序图,如图5-11所示。
26627D
四、拉深模的典型结构
26627D
图5-9 多次拉深时筒形件直径的变化
三、圆筒形件的拉深
2.拉深系数
表5-3 圆筒形件带压边圈时的极限拉深系数
3.拉深次数 4.圆筒形件拉深各次工序尺寸的计算
(1)工序件直径 从前面介绍中已知,各次工序件直径可根据各 次的拉深系数算出。
Hale Waihona Puke 26627D三、圆筒形件的拉深
第四章 拉深工艺与模具设计
t D
Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1
K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m
2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w
1 4
b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w
1 4
b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:
拉深工艺
变形阻力与拉深筋
1.影响拉深变形阻力的因素 .凹模口形状 .拉深深度 .拉深件的侧壁形状 .压料力 .凹模图角半径 .润滑条件 .压料面面积
2.拉深筋(槛)
拉深筋的作用 .增加进料阻力 .调节材料的流动情况 .扩大压料力的调节范围 .当具有深拉筋时,对压料面的加工要求 .纠平材料不平整的缺陷
• 拉深筋的种类
Text1
Text4
Text5
Block Diagram
Add Your Text
Add Your Text
concept
Concept
Concept
Concept
2
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
3
ThemeGallery is a Design Digital Content & Contents mall developed by Guild Design Inc.
球形件变形特点
壁厚的变化
三个变形区域
1.胀形变形区 2.拉深变形区 3.凸缘变形区
抛物线形件拉深
分两类:以高径比h/d分类 1.浅抛物线拉深 2.深抛物线拉深
汽车灯罩的拉深
两道拉深筋的模具
液压拉深
对于复杂抛物线
拉深模
1.拉深模种类 2.拉深模的设计要点
拉深模结构
1.无压料装置的 简单拉深模
2.有压料装置的 简单拉深模
3.落料拉深复合模
作业:4、5、
第五章 局部成形工艺
用各种不同变形性质的局部变形来改变毛坯 或半成品的形状和尺寸的冲压成形工序称 为局部成形。
拉深工艺与拉深模设计
82449 9(76 3.8)6.2 87.584 87.52 20.572 20m8m
案例分析(毛坯尺寸计算) 电容器外壳 由图4-2可得:
d1=17.6mm d2=21.2mm h1=26.8mm h=28.6mm r=1.8mm h/d=28.6÷21.2=1.35
r
y
α
O
y
a)
b)
圆心重心位置
a)圆弧与水平线相交
b)圆弧与垂直线相交
O
2)作图解析法 ①将零件按母线分成若干个简单的几何部分;
②求出各简单几何部分的重心至旋转轴的旋转半径r1、r2、 r3……rn;并求出各部分母线长度l1、l2、l3……ln;则其 乘积之和lr= l1r1+l2r2+l3r3+……+lnrn;
当零件尺寸标注在外形时
D dD m a0 x .7 5 0 d
D pD m a0 x.7 5 Z0 p
当零件尺寸标注在内形时
dddm in 0.40 d
dpdm in 0.4Z0 p
D0 -Δ
Z /2
D +Δ 0
Z /2
Dp
dp
Dd
a)
零件尺寸标注
dd
b)
对于多次拉深,工序尺寸无需严格要求,凸、凹
(2)凸模圆角半径的确定 首次拉深,凸模圆角半径
rp1=(0.7~1.0)rd1 最后一次拉深,凸模圆角半径
r—零件圆角半径。
rpn=r
如果r<t时,则rpn≥t,然后整形。
中间各次拉深,凸模圆角半径
rpi-1=0.5(di-1-di-2t)
式中 di-1,di—各工序的外径(mm)。
第4章 拉深工艺与拉深模
2013-7-29
10
面积相等原则:将三角 形阴影部分切除,把留 下的狭条沿直径d的圆周 折弯后竖起来并加以焊 接,就得到一个直径为d, 高度为h=(D-d)/2的圆 筒件,说明被切除的三 角形阴影部分在模具的 作用下发生了塑性流动, 从而使拉深后的工件高 度增加了Δh,所以h> (D-d)/2。
rn rpn 2
42 2013-7-29
(3)半成品高度尺寸的计算
D2 rn h n 0.25 d d n 0.43 d d n 0.32rn n n
4 拉深工艺力的计算 (1)压边力 是否采用压边圈?查表4.6(P125) 压边力过大,会增加坯料拉入凹模的拉力,容易拉 裂工件;过小,则不能防止凸缘起皱。
2013-7-29
30
(2)拉深件毛坯尺寸的确定 根据拉深后工件表面积与拉深前毛坯表面积相等 这一原则来计算
(1)确定修边余量:查表4.1、4.2(P119)查处Δh (2)计算工件表面积,分解成若干简单几何体 (3)求出毛坯尺寸
2013-7-29 31
表4.1筒形件的修边余量(mm)
2013-7-29
2013-7-29
24
拉深起皱后,轻者 凸缘变形区材料仍 能被拉进凹模,会 使工件口部产生波 纹,影响工件的质 量。
2013-7-29
25
起皱严重时,起皱的凸缘 材料不能通过凸、凹模间 隙而引起拉深件拉裂。 拉深是否起皱与σ 3大小 有关,也与毛坯的相对厚 度t/D有关,而σ 3与拉深 的变形程度有关。而每次 拉深的变形程度较大而 t/D较小时就会起皱。 防止起皱的方法是压边圈, 或者减小拉深变形程度、 加大毛坯厚度。
2013-7-29
43
第四讲拉深模工作部分计算跟拉深工艺设计-
1、无凸缘和有凸缘拉深工艺的主要区别是什么?
2、多次拉深中每次的拉深高度在实际生产中如何控制?
第四章 拉深工艺与拉深模设计
无压料一次拉深成形的凹模结构
a)圆弧形 b)锥形 c)渐开线形 d)等切面形
第四章 拉深工艺与拉深模设计
无压料多次拉深的凸、凹模结构
第四章 拉深工艺与拉深模设计
有压料多次拉深的凸、凹模结构
5.拉深件的底与壁、凸缘与壁、矩形件四 角的圆角半径应满足:
≥t,R≥2t,r≥3t。 否则,应增加整形工序。
第四章 拉深工艺与拉深模设计
6.拉深件不能同时标注内外形尺寸;带台阶的拉深件,其高 度方向的尺寸标注一般应以底部为基准。
带台阶拉深件的尺寸标注
第四章 拉深工艺与拉深模设计
四、拉深件的材料
第四章 拉深工艺与拉深模设计
二、拉深模间隙
一般采用单边间隙Z 表示。 1.无压料圈的拉深模
末次拉深或精密拉深件: 中间各次或不太精密的拉深件: 2.有压料圈的拉深模
按表4-21决定。 3. 精度要求较高的拉深零件
Z=(0.9~0.95)t
负间隙拉深
第四章 拉深工艺与拉深模设计
三、凸、凹模的结构
1. 不用压料的拉深模凸、凹模结构 1 不用压料的一次拉深成形时所用的凹模结构形式 2 无压料多次拉深的凸、凹模结构 2.有压料的拉深模凸、凹模结构
壁部划伤
模具不光滑;润滑剂不干净
第四章 拉深工艺与拉深模设计
2、因板料拉深变形本质决定,不易解决
质量问题 起皱或破裂
原因和解决措施 拉深变形太大或材料强度原因,
采用多次拉深或换用材料
拉深凸耳 拉深弹复
材料流动各向异性,可留出修边余量 零件的弹性变形,选用屈强比小的材料。
拉深工艺的特点
拉深工艺的特点
拉深工艺是一种常见的表面处理技术,其主要特点如下:
1. 高精度:拉深工艺能够实现高精度的加工,可根据设计要求制造出复杂的几何形状和弯曲度。
2. 高效率:通过采用拉伸成形的方式,拉深工艺能够大幅提高工作效率,减少生产时间和人力成本。
3. 节约材料:与传统的切削加工相比,拉深工艺不需要额外的切削材料,最大限度地减少了材料的浪费。
4. 优良的材料性能:拉深工艺可以改善材料的力学性能和表面质量,提高产品的使用寿命和可靠性。
5. 强度高:由于拉深工艺能够使材料发生塑性变形,因此拉深后的产品具有较高的强度和刚度。
6. 适用性广:拉深工艺适用于多种材料,如金属、合金和塑料等,可用于制作各种零部件和产品。
总之,拉深工艺具有高精度、高效率、节约材料、优良的材料性能、高强度和广泛适用性等特点,广泛应用于工业制造和加工领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不变薄拉深
变薄拉深
§11-2 筒形件拉深的主要质量问题
一、拉深件的主要质量问题
拉深过程中的质量问题:
主要是凸缘变形区的起皱和筒壁传力区的拉裂。
凸缘区起皱: 由于切向压应力引起板料失去稳定而产生弯曲; 传力区拉裂: 由于拉应力超过抗拉强度引起板料断裂。
§11-2 筒形件拉深的主要质量问题
二、凸缘变形区的起皱
主要决定于:
一方面是切向压应力σ 3的大小,越大越容易失稳起皱; 另一方面是凸缘区板料本身的抵抗失稳的能力。 凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越 小,抵抗失稳能力越小。
最易起皱的位置:凸缘边缘区域 起皱最强烈的时刻: 在Rt=(0.7~0.9)R0时 防止起皱:压边
§11-2 筒形件拉深的主要质量问题
第十一章 拉深
内容简介:
拉深是基本冲压工序之一
本章在分析拉深变形过程及拉深件质量影响因素的基础 上,介绍拉深工艺计算、工艺方案制定和拉深模设计。涉及 拉深变形过程分析、拉深件质量分析、拉深系数及最小拉深 系数影响因素、圆筒形件的工艺计算、其它形状零件的拉深
变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结
三、筒壁的拉裂
主要取决于:
一方面是筒壁传力区中的拉应力;
另一方面是筒壁传力区的抗拉强度。
当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在 底部圆角与筒壁相切处——“危险断面”产生破裂。
防止拉裂:
一方面要通过改善材料的力学性能,提高筒壁抗拉强度; 另一方面通过正确制定拉深工艺和设计模具,降低筒壁所 受拉应力。
拉深:
又称拉延,是利用拉深模在压力机的压力作用下,将平板坯 料或空心工序件制成开口空心零件的加工方法。 它是冲压基本工序之一。可以加工旋转体零件,还可加工盒 形零件及其它形状复杂的薄壁零件。 变薄拉深 拉深模: 拉深所使用的模具。 拉深模特点:结构相对较简单,与冲裁模比较,工作部分有较 大的圆角,表面质量要求高,凸、凹模间隙略大 于板料厚度。 拉深
§11-6 拉深件的坯料与工序件尺寸
二、简单旋转体拉深件坯料尺寸的确定---计 算法
1.将拉深件划分为若干个简单的几何体;
2.分别求出各简单几何体的表面积;
3.把各简单几何体面积相加即为零件总面积;
4.根据表面积相等原则,求出坯料直径。
§11-6 拉深件的坯料与工序件尺寸
二、简单旋转体拉深件坯料尺寸的确定
构、拉深模工作零件设计、辅助工序等。
第十一章 拉深
学习目的与要求:
1. 了解拉深变形规律及拉深件质量影响因素;
2. 掌握拉深工艺计算方法。 3. 掌握拉深工艺性分析与工艺设计方法; 4. 认识拉深模典型结构及特点,掌握拉深模工作零件设计 方法; 5. 掌握拉深工艺与拉深模设计的方法和步骤。
第十一章 拉深
FY 1
D 4
0
2
2
(d1 2rd 1 ) 2 p
(d n 2rdn ) 2 p
圆筒形件以后各次拉深 FYn
d 4
n 1
§11-4 拉深力与拉深功
一、圆筒形件拉深的拉深力
采用压料圈拉深时 首次拉深 F d1t b K1 以后各次拉深 不采用压料圈拉深时
二、筒形件拉深过程中坯料内的应力与应变状态
拉深过程中某一瞬间坯料所处的状态
1.凸缘部分 应力分布图
2.凹模圆角部分 3.筒壁部分 4.凸模圆角部分 5.筒底部分 坯料各区的应力与应变是很不均匀的。 拉深成形后制件壁厚和硬度分布
§11-1 筒形件的拉深变形分析
拉 深 件 类 型
a)轴对称旋转体拉深件 b)盒形件 c)不对称拉深件
拉 深 过 程 的 应 力 与 应 变 状 态
下标1、2、3分 别代表坯料径向、 厚度方向、切向 的应力和应变
§11-1 筒形件的拉深变形分析
圆 筒 形 件 拉 深 时 凸 缘 变 形 区 的 应 力 分 布
§11-1 筒形件的拉深变形分析
拉深件的壁厚和硬度的变化
§11-1 筒形件的拉深变形分析
一、旋转体拉深件坯料尺寸的计算原则
1.以工件最后一次拉深的尺寸为计算基础. 2.按体积不变条件,对于拉深前后料厚不变,拉深前坯料表 面积与拉深后冲件表面积近似相等,得到坯料尺寸。 3.当板料厚度大于1mm时,按工件中线尺寸计算.当板料厚 度小于1mm时,按工件内形或外形尺寸计算. 4.计算毛坯尺寸要加上修边余量.. 拉深件的模具设计顺序: 先设计拉深模,坯料形状尺寸确定后再设计冲裁模。 切边工序:拉深件口部不整齐,需留切边余量。
rn rAZ Z / 2
r rTZ Z / 2
§11-5 筒形件拉深模工作部分设计
三、凸、凹模的结构
1.不用压料的拉深模凸、凹模结构 (1)不用压料的一次拉深成形时所用的凹模结构形式 (2)无压料多次拉深的凸、凹模结构 2.有压料的拉深模凸、凹模结构
最后拉深工序凸模底部的设计
§11-5 筒形件拉深模工作部分设计
0
d A (d min 0.4 Z ) 0
对于多次拉深,中间各工序的凸、凹模尺寸可按下式计算: A 0 DA D 0 DT ( D Z )
T
§11-5 筒形件拉深模工作部分设计
a)尺寸标注在内形
b)尺寸标注在外形
盒形件拉深模角部间隙确定方法
§11-5 筒形件拉深模工作部分设计
§11-1 筒形件的拉深变形分析
一、拉深变形过程(续)
2.金属的流动过程 工艺网格实验 材料转移:高度、厚度发生变化。 3.拉深变形过程 外力 凸缘产生内应力:径向拉应力σ1;切向压应力σ3 凸缘塑性变形:径向伸长,切向压缩,形成筒壁 直径为d高度为H的圆筒形件(H>(D-d)/2)
§11-1 筒形件的拉深变形分析
§11-5 筒形件拉深模工作部分设计
二、拉深模间隙
1.无压料圈的拉深模 其拉深间隙为: Z / 2 (1 ~ 1.1)t max 2.有压料圈的拉深模 其拉深间隙为: Z/2=(0.9~0.95)t 3.盒形件拉深模的间隙 当尺寸精度要求高时:Z/2=(0.9~1.05)t; 当精度要求不高时: Z/2=(1.1~1.3)t。 末道拉深取较小值。 最后一道拉深:圆角部分的间隙比直边部分大0.1t。
F dit b K2 (i 1,2,3,...,n)
首次拉深 F 1.25 ( D0 d1 )t b
以后各次拉深 F 1.3 (di 1 di )t b (i=2、3、…、n)
§11-4 拉深力与拉深功
二、拉深力与压力机公称压力 Fg
单动压力机,其公称压力应大于工艺总压力Fz。 工艺总压力为 Fz F FY 注意: 当拉深工作行程较大,尤其落料拉深复合时,应使工艺力 曲线位于压力机滑块的许用压力曲线之下。 在实际生产中,可以按下式来确定压力机的公称压力 Fg : 浅拉深 Fg (1.6 ~ 1.8) Fz 深拉深 Fg (1.8 ~ 2.0)Fz
不变薄拉深
§11-1 筒形件的拉深变形分析
一、拉深变形过程
圆筒形件是最典型的拉深件。 (一)拉深成形时板料的受力分析
(二)拉深变形过程及特点 1.变形现象
平板圆形坯料的凸缘——弯曲绕过凹模圆角,
然后拉直——形成竖直筒壁。
变形区——凸缘; 已变形区——筒壁; 不变形区——底部。 底部和筒壁为传力区。
§11-3 压边方式设计
一、压边装置: (2)刚性压边装置 这种装置的特点是压边力不随行程变化,拉深效果较好, 且模具结构简单.
压边力是为了防止毛坯起皱,保证拉深过程顺利进行而施 加的力,它的大小对拉深影响很大。压边力的数值应适当,太 小时防皱效果不好,太大时则会增加危险断面处的拉应力,引 起拉裂破坏或严重变薄超差。
中间各拉深工序凸模圆角半径可按下式确定:
rTi 1 d i 1 d i 2t (i=3、4、…、n) 2
最后一次拉深凸模圆角半径rTn即等于零件圆角半径r。 但零件圆角半径如果小于拉深工艺性要求时, 则凸模圆角半径应按工艺性的要求确定(即rT≥t), 然后通过整形工序得到零件要求的圆角半径。
§11-4 拉深力与拉深功
三、拉深功的计算
拉深功 W=CFmaxh/1000 电动机功率 N=KWn/(60*1000₣1₣2)
要求压力机电机功率大于上述计算值
§11-5 筒形件拉深模工作部分设计
一、凸、凹模的圆角半径
1.凹模圆角半径的确定 首次(包括只有一次)拉深凹模圆角半径可按下式计算:
rA1 0.8 (D d )t
§11-1 筒形件的拉深变形分析
1-模柄 2 -上模座 3凸模固定板 4弹簧 5-压 边圈 6-定位 板 7-凹模 8-下模座 9 -卸料螺钉 10凸模
拉 深 模 结 构 图
§11-1 筒形件的拉深变形分析
拉深变形过程
§11-1 筒形件的拉深变形分析
拉 深 的 网 格 试 验
§11-1 筒形件的拉深变形分析
按图得: 故
A 4
4
D 0 2 A1 A2 A3 Ai
D0
A1 d ( H r ) A2 A3
i
2r (d 2r ) 8r 4
2
4
( d 2r ) 2
整理后可得坯料直径为:
第十一章 拉深
主要内容:
第一节 筒形件的拉深变形分析 第二节 筒形件拉深的主要质量问题 第三节 压边方式设计 第四节 拉深力与拉深功 第五节 筒形件拉深模工作部分设计 第六节 拉深件的坯料与工序件尺寸 第七节 拉深的辅助工序 第八节 拉深工艺设计 第九节 筒形件的拉深变形分析
§11-1 筒形件的拉深变形分析
§11-2 筒形件拉深的主要质量问题