延津县高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

延津县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z
A .1
B .2
C .3
D .4
2. 已知函数1)1(')(2
++=x x f x f ,则=⎰
dx x f 1
)(( )
A .67-
B .67
C .65
D .6
5- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.
3. 已知i z 311-=,i z +=32,其中i 是虚数单位,则2
1
z z 的虚部为( ) A .1- B .
54 C .i - D .i 5
4 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.
4. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )
A .
B .
C .
D .
5. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A .
B .
C .
D .
6. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )
A .a >
B .﹣<a <1
C .a <﹣1
D .a >﹣1
7. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )
A .只有减区间没有增区间
B .是f (x )的增区间
C .m=±1
D .最小值为﹣3
8. 设i
是虚数单位,是复数z 的共轭复数,若
z =2
(+i ),则z=( )
A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
9. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )
=+6x ﹣1的极值点,则log 2
(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2
B .3
C .4
D .5
10.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 67
11.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )
A .{2,1,1}--
B .{1,1,2}-
C .{1,1}-
D .{2,1}--
【命题意图】本题考查集合的交集运算,意在考查计算能力.
12.设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2
')()(2x x xf x f >+,则不等式
0)2(4)2014()2014(2>--++f x f x 的解集为
A 、)2012
,(--∞ B 、)0,2012(- C 、)2016,(--∞ D 、)0,2016(- 二、填空题
13.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a
+≤=->在其定义域上恰有两
个零点,则正实数a 的值为______. 14.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1
=
,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成
角的正切值为( )
A
. B

C

D

15.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .
16.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
17.过椭圆
+
=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则
椭圆的离心率为 .
18.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
三、解答题
19.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.
(1)如图1,若G 为线段PD 的中点,BE=DF=,证明:PB ∥平面EFG ;
(2)如图2,若E ,F 分别是线段AB ,CD 的中点,DG=2GP ,试问:矩形ABCD 内(包括边界)能否找到点H ,使之同时满足下面两个条件,并说明理由.
①点H 到点F 的距离与点H 到直线AB 的距离之差大于4; ②GH ⊥PD .
20.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;
(2)求的值;
(3)解不等式f (x )<f (x+2).
21.圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长.
22.已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.
23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).
(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.
24.(本小题满分12分)已知椭圆1C :14
82
2=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;
(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.
延津县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=,
第5行的第1、3个数分别为,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
2.【答案】B
3.【答案】B
【解析】由复数的除法运算法则得,i
i
i
i
i
i
i
i
z
z
5
4
5
3
10
8
6
)
3
)(
3(
)
3
)(
3
1(
3
3
1
2
1+
=
+
=
-
+
-
+
=
+
+
=,所以
2
1
z
z
的虚部为
5
4
. 4.【答案】A
【解析】解:由已知中几何体的直观图,
我们可得侧视图首先应该是一个正方形,故D不正确;
中间的棱在侧视图中表现为一条对角线,故C不正确;
而对角线的方向应该从左上到右下,故B不正确
故A选项正确.
故选:A.
【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.
5.【答案】D
【解析】解:∵正△ABC的边长为a,∴正△ABC的高为,
画到平面直观图△A′B′C′后,“高”变成原来的一半,且与底面夹角45度,
∴△A′B′C′的高为=,
∴△A′B′C′的面积S==.
故选D.
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
6.【答案】B
【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,
设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,
由f′(x)>0得x>1或x<﹣,此时函数单调递增,
由f′(x)<0得﹣<x<1,此时函数单调递减,
即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,
在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,
要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,
则﹣1<﹣a<,
即﹣<a<1,
故选:B.
【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.
7.【答案】B
【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,
则f(0)=|m|﹣1=0,则m=1或m=﹣1,
当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,
当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,
作出函数f(x)的图象如图:
则函数在上为增函数,最小值为﹣2,
故正确的是B,
故选:B
【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.
8.【答案】B
【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,
由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],
整理得a2+b2=2a+2(b﹣1)i.
则,解得.
所以z=1+i.
故选B.
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.
9.【答案】C
【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,
∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,
∴a 2014,a 2016是方程x 2
﹣8x+6=0的两实数根,则a 2014+a 2016=8.
数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,
∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
10.【答案】D
【解析】解:对于A :设函数y=log 0.4x ,则此函数单调递减∴log 0.44>log 0.46∴A 选项不成立 对于B :设函数y=1.01x
,则此函数单调递增∴1.013.4
<1.01
3.5
∴B 选项不成立
对于C :设函数y=x 0.3
,则此函数单调递增∴3.50.3
>3.4
0.3
∴C 选项不成立
对于D :设函数f (x )=log 7x ,g (x )=log 6x ,则这两个函数都单调递增∴log 76<log 77=1<log 67∴D 选项成立 故选D
11.【答案】C
【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .
12.【答案】C.
【解析】由,
得:, 即,令,则当
时,
, 即

是减函数, ,


在是减函数,所以由得,


,故选
二、填空题
13.【答案】e
【解析】考查函数()()20{
x x x f x ax lnx
+≤=-,其余条件均不变,则:
当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,
由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,
即有ln x
a x =
有且只有一个实根。

令()()2
ln 1ln ,'x x g x g x x x -==, 当x >e 时,g ′(x )<0,g (x )递减; 当0<x <e 时,g ′(x )>0,g (x )递增。

即有x =e 处取得极大值,也为最大值,且为
1
e
, 如图g (x )的图象,当直线y =a (a >0)与g (x )的图象 只有一个交点时,则1a e
=
. 回归原问题,则原问题中a e =.
点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.
(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 14.【答案】
【解析】解:法1:取A 1C 1的中点D ,连接DM ,
则DM ∥C 1B 1,
在在直三棱柱中,∠ACB=90°, ∴DM ⊥平面AA 1C 1C ,
则∠MAD 是AM 与平面AA 1C 1C 所的成角,
则DM=,AD=
=
=,
则tan∠MAD=.
法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,
则∵AC=BC=1,侧棱AA
=,M为A1B1的中点,
1
∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量
设AM与平面AA1C1C所成角为θ,
则sinθ=||=
则tanθ=
故选:A
【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.
15.【答案】2
【解析】解:设f(x)=﹣,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,即f(x)的最大值与最小值之和为0.
将函数f (x )向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x ∈R )
的最大值与最小值的和为2. 故答案为:2.
【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.
16.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
17.【答案】 .
【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣),
∵∠F 1PF 2=60°,

=
, 即2ac=b 2
=
(a 2﹣c 2
).
∴e 2+2e ﹣=0,
∴e=
或e=﹣
(舍去).
故答案为:.
【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.
18.【答案】12π 【解析】

点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,
本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.三、解答题
19.【答案】
【解析】(1)证明:依题意,E,F分别为线段BA、DC的三等分点,
取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,
∴PK∥GF,
∵PK⊄平面EFG,∴PK∥平面EFG,
∴四边形EBKF为平行四边形,∴BK∥EF,
∵BK⊄平面EFG,∴BK∥平面EFG,
∵PK∩BK=K,∴平面EFG∥平面PKB,
又∵PB⊂平面PKB,∴PB∥平面EFG.
(2)解:连结PE,则PE⊥AB,
∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,
PE⊂平面PAB,PE⊥平面ABCD,
分别以EB,EF,EP为x轴,y轴,z轴,
建立空间直角坐标系,
∴P(0,0,),D(﹣1,4,0),
=(﹣1,4,﹣),∵P(0,0,),
D(﹣1,4,0),=(﹣1,4,﹣),
∵==(﹣,,﹣),
∴G(﹣,,),
设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,
依题意得:,
∴x2>16y,(﹣1≤x≤1),(i)
又=(x+,y﹣,﹣),
∵GH⊥PD,∴,
∴﹣x﹣+4y﹣,即y=,(ii)
把(ii)代入(i),得:3x2﹣12x﹣44>0,
解得x>2+或x<2﹣,
∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,
∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
20.【答案】
【解析】解:(1)∵f(5)=3,
∴,
即log a27=3
解锝:a=3…
(2)由(1)得函数,
则=…
(3)不等式f(x)<f(x+2),
即为
化简不等式得…
∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.
∴x2+2<x2+4x+6…
即4x>﹣4,
解得x>﹣1,
所以不等式的解集为:(﹣1,+∞)…
21..
【解析】
试题分析:画出图形,设出棱长,根据三角形相似,列出比例关系,求出棱长即可.
试题解析:过圆锥的顶点S 和正方体底面的一条对角线CD 作圆锥的截面,得圆锥的轴截面SEF ,正方体对角面11CDD C ,如图所示.
设正方体棱长为,则1CC x =,112C D x =, 作
SO EF ⊥于O ,则2SO =,1OE =,
∵1ECC EOS ∆∆,∴
11CC EC SO EO =,即2121
2
x -=, ∴2
2
x =
cm ,即内接正方体棱长为22cm .
考点:简单组合体的结构特征.
22.【答案】
【解析】解:(1)把直线y=x+m 代入椭圆方程得:x 2+4(x+m )2=4,即:5x 2+8mx+4m 2﹣4=0, △=(8m )2﹣4×5×(4m 2﹣4)=﹣16m 2+80=0 解得:m=

(2)设该直线与椭圆相交于两点A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程5x 2+8mx+4m 2﹣4=0的两根, 由韦达定理可得:x1+x 2=﹣,x 1•x 2=

∴|AB|=
==
=2;
∴m=±

【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.
23.【答案】
【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,
则有g′(x)=2ax+b+=>0;
从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;
又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,
事实上,对于二次函数f(x)=ax2+bx+c,
k==a(x1+x2)+b=2ax0+b;
又f′(x0)=2ax0+b,
故k=f′(x0);
故函数f(x)=ax2+bx+c是“K函数”;
对于函数g(x)=ax2+bx+c•lnx,
不妨设0<x1<x2,则k==2ax0+b+;
而g′(x0)=2ax0+b+;
故=,化简可得,
=;
设t=,则0<t<1,lnt=;
设s(t)=lnt﹣;则s′(t)=>0;
则s(t)=lnt﹣是(0,1)上的增函数,
故s(t)<s(1)=0;
则lnt≠;
故g (x )=ax 2
+bx+c •lnx 不是“K 函数”.
【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.
24.【答案】(1)x y 82=;(2)9
64. 【解析】
试题分析:(1)求得椭圆的焦点坐标,连接2MF ,由垂直平分线的性质可得2MF MP =,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当AC 或BD 中的一条与轴垂直而另一条与轴重合时,此时四边形ABCD 面积2
2b S =.当直线AC 和BD 的斜率都存在时,不妨设直线AC 的方程为()2-=x k y ,则直
线BD 的方程为()21
--
=x k
y .分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得AC ,BD .
利用四边形ABCD 面积BD AC S 2
1
=即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出.
(2)当直线AC 的斜率存在且不为零时,直线AC 的斜率为,),(11y x A ,),(22y x C ,
则直线BD 的斜率为k
1
-,直线AC 的方程为)2(-=x k y ,联立⎪⎩⎪⎨⎧=+-=148
)2(22y x x k y ,得0888)12(2
222=-+-+k x k x k .111]
∴2
2
21218k
k x x +=+,22212188k k x x +-=. 1
2)1(324)(1||2
2212
212++=-+⋅+=k k x x x x k AC .由于直线BD 的斜率为k 1-,用k 1-代换上式中的。

可得2
)
1(32||22++=
k k BD . ∵BD AC ⊥,∴四边形ABCD 的面积)
12)(2()1(16||||212
22
2+++=⋅=k k k BD AC S . 由于2222222]2
)1(3[]2)12()2([)12)(2(+=+++≤++k k k k k ,∴964≥S ,当且仅当1222
2+=+k k ,即
1±=k 时取得等号.
易知,当直线AC 的斜率不存在或斜率为零时,四边形ABCD 的面积8=S .
综上,四边形ABCD 面积的最小值为9
64. 考点:椭圆的简单性质.1
【思路点晴】求得椭圆的焦点坐标,由垂直平分线的性质可得||||2MF MP ,运用抛物线的定义,即可得所求的轨迹方程.第二问分类讨论,当AC 或BD 中的一条与轴垂直而另一条与轴重合时,四边形面积为2
2b .当直线
AC 和BD 的斜率都存在时,分别设出BD AC ,的直线方程与椭圆联立得到根与系数的关系,利用弦长公式求得
BD AC ,,从而利用四边形的面积公式求最值.。

相关文档
最新文档