北理工操作系统内存管理实验报告
操作系统存储管理实验报告.doc
操作系统存储管理实验报告实验5存储管理第一,实验的目的1,加深对操作系统存储管理的理解2,可以过度模拟页面调试算法,加深对操作系统内存管理的理解二、一般设计思想、环境语言、工具等一般设计思想:1.编写一个函数来计算和输出以下算法的命中率:(1) OPT页面替换算法OPT选定的过时页面是已经转移到内存中并且将来不会被使用或者在最长时间内不会被访问的页面。
因此,如何找到这样的页面是算法的关键。
每页可以设置一个步长变量。
它的初始值是一个足够大的数字。
对于不在内存中的页面,其值将重置为零。
对于内存中的页面,其值被重置为当前访问的页面与页面首次出现时的距离。
因此,该值越大,在最长时间内不会被访问的页面就越多,并且可以选择它作为交换页面。
(2)先进先出页面替换算法先进先出总是选择首先进入内存的页面进行清除,因此可以设置先进先出的繁忙页面帧队列,新转移到内存的页面挂在队列的尾部,当没有空闲页面帧时,可以从队列的头部取出下一个页面帧作为空闲页面帧,然后再转移到需要的页面。
(3) LRU页面替换算法LRU 根据转移到存储器中的页面的使用做出决定。
它使用“最近的过去”作为“最近的未来”的近似,并选择最长时间没有使用的页面进行删除。
该算法主要通过页面结构中的访问时间来实现。
时间记录页面的最后访问时间。
因此,当需要删除一个页面时,选择时间值最小的页面,即最近最长时间没有使用的页面进行删除。
(4) LFU页面替换算法LFU要求每个页面配置一个计数器(即页面结构中的计数器)。
一旦页面被访问,计数器的值将增加1。
当需要替换一个页面时,将选择计数器值最小的页面,即存储器中访问次数最少的页面进行清除。
⑤NUR页面替换算法NUR要求为每个页面设置一个访问位(访问位仍然可以由页面结构中的计数器表示)。
当页面被访问时,其访问位计数器被设置为1。
当需要页面替换时,替换算法从替换指针(最初指向第一页)开始顺序检查内存中的每一页。
如果其访问位为0,则选择页面进行替换,否则,替换指针向下移动以继续向下搜索。
操作系统存储管理实验报告
实验五存储管理一、实验目的1 、加深对操作系统存储管理的理解2 、能过模似页面调试算法,加深理解操作系统对存的高度管理二、总的设计思想、环境语言、工具等总的设计思想:1、编写函数计算并输出下述各种算法的命中率①OPT页面置换算法OPT所选择被淘汰的页面是已调入存,且在以后永不使用的,或是在最长时间不再被访问的页面。
因此如找出这样的页面是该算法的关键。
可为每个页面设置一个步长变量,其初值为一足够大的数,对于不在存的页面,将其值重置为零,对于位于存的页面,其值重置为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越大表示该页是在最长时间不再被访问的页面,可以选择其作为换出页面。
②FIFO页面置换算法FIFO总是选择最先进入存的页面予以淘汰,因此可设置一个先进先出的忙页帧队列,新调入存的页面挂在该队列的尾部,而当无空闲页帧时,可从该队列首部取下一个页帧作为空闲页帧,进而调入所需页面。
③LRU页面置换算法LRU是根据页面调入存后的使用情况进行决策的,它利用“最近的过去”作为“最近的将来”的近似,选择最近最久未使用的页面予以淘汰。
该算法主要借助于页面结构中的访问时间time来实现,time记录了一个页面上次的访问时间,因此,当须淘汰一个页面时,选择处于存的页面中其time值最小的页面,即最近最久未使用的页面予以淘汰。
④LFU页面置换算法LFU要求为每个页面配置一个计数器(即页面结构中的counter),一旦某页被访问,则将其计数器的值加1,在需要选择一页置换时,则将选择其计数器值最小的页面,即存中访问次数最少的页面进行淘汰。
⑤NUR页面置换算法NUR要求为每个页面设置一位访问位(该访问位仍可使用页面结构中的counter 表示),当某页被访问时,其访问位counter置为1。
需要进行页面置换时,置换算法从替换指针开始(初始时指向第一个页面)顺序检查处于存中的各个页面,如果其访问位为0,就选择该页换出,否则替换指针下移继续向下查找。
北理工操作系统内存管理实验报告
实验三:内存管理班级:学号:姓名:一、实验目的1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解;2.熟悉虚存管理的页面淘汰算法;3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二、实验要求1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。
并产生一个需要访问的指令地址流。
它是一系列需要访问的指令的地址。
为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。
2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。
而不再判断它是否被改写过,也不将它写回到辅存。
3.系统运行既可以在Windows,也可以在Linux。
三、实验流程图图1 页式存储管理程序参考流程四、实验环境硬件设备:个人计算机。
系统软件:windows操作系统,Visual C++6.0编译环境。
五、实验结果说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。
将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。
此时主存中还有两个空闲帧。
此时按刚才随机顺序进行访问指令工作。
前9页因都在主存中可直接调用。
第10个随机地址为页号为5的指令,也在主存中,也可直接调用。
页号为24,3因不在主存中,需要调用进主存。
此时主存已满。
然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。
以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。
六、实验感想七、实验代码#include <iostream>#include <iomanip>#include <stdlib.h>#include <time.h>#include <vector>#include <queue>//#include <algorithm>using namespace std ;#define PAGETABLE_NUM 35 //模拟进程的页表表项数量;#define AVAILABLEFRAME_NUM 10 //主存中固定工作集页帧的数量;#define RANDOMNUMBER_NUM 20 //产生随机指令地址的数量;structPageTableEntry{unsignedintFrameNum ;boolPressent ;};voidInitRandomAddr(vector<unsigned int>&RandomAddr) ;voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue) ;voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue) ;voidSetPTE(PageTableEntry&PTE) ;int main(){int a ;//初始化RANDERNUMBER_NUM条随机的32位指令地址;vector<unsigned int>RandomAddr(RANDOMNUMBER_NUM) ;InitRandomAddr(RandomAddr) ;//初始化FIFS指针;vector<unsigned int>::iterator FIFS_pintor ;FIFS_pintor = RandomAddr.begin() ;//初始空闲帧队列;queue<unsigned int>IdleFrameQueue, ActiveFrameQueue ;InitIdleFrameQueue(IdleFrameQueue) ;//初始进程页表(模拟进程初始时,工作集已经使用至少10个页帧);vector<PageTableEntry>PageTable(PAGETABLE_NUM) ;InitPageTable(PageTable, RandomAddr, IdleFrameQueue, ActiveFrameQueue) ;//Testcout<<" 开始访问指令地址\n" ;vector<unsigned int>::iterator pt_RandomAddr ;for(pt_RandomAddr = RandomAddr.begin(); pt_RandomAddr != RandomAddr.end(); pt_RandomAddr++ ){unsignedintPageNum = (*pt_RandomAddr) >> 12 ;cout<<"地址:0x"<<hex<<*pt_RandomAddr<<dec<<"\t页号:"<<PageNum;if ( PageTable[PageNum].Pressent == 0 ) //该页不在主存中;{cout<<"\t该页不在主存,";if (IdleFrameQueue.empty()) //工作集空闲页帧已用完;{cout<<"执行FIFO淘汰算法\t";//FIFS算法淘汰一页;unsignedintFrame_Num ;Frame_Num = ActiveFrameQueue.front() ;ActiveFrameQueue.pop() ;PageTable[(*FIFS_pintor) >> 12].Pressent = 0 ; //标记此页已经被置换出主存;//置换进新页;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;//移动FIFS指针;FIFS_pintor++ ;}else{cout<<"调入所需页到空闲页\t";//调入当前所需的页到空闲页中;unsignedintFrame_Num ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;}}elsecout<<"\t该页在主存";cout<<"\t帧号:"<<PageTable[PageNum].FrameNum<<endl ;}return 0 ;}voidInitRandomAddr(vector<unsigned int>&RandomAddr){cout<<" 生成随机指令地址\n" ;vector<unsigned int>::iterator pd ;srand( (unsigned)time( NULL ) );for(pd = RandomAddr.begin(); pd != RandomAddr.end(); pd++ ){//产生随机页号0~PAGETABLE_NUM - 1;unsignedint High_20 = rand() % PAGETABLE_NUM ;//产生随机偏移量0~4095 ;unsignedint Low_12 = rand() % 4096 ;unsignedintAddr = (High_20 << 12) | Low_12 ;*pd = Addr ;cout<<"随机指令地址:0x"<<setw(8)<<setfill('0') <<setiosflags(ios::uppercase | ios::fixed)<<hex<<*pd<<"\t页号:"<<dec<<High_20<<"\t偏移量:0x"<<hex<<Low_12<<dec<<endl ;}}voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue){//帧号从0~1048575,这里取1000000~1000016;for ( unsigned intFrameNum = 1000000; FrameNum< 1000000 + AVAILABLEFRAME_NUM; FrameNum++ )IdleFrameQueue.push(FrameNum) ;}voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue){cout<<" 初始化页表; \n" ;for_each(PageTable.begin(), PageTable.end(), SetPTE) ;unsignedintPage_Num, Frame_Num ;for ( int count = 0; count < 9; count++){while(true){Page_Num = RandomAddr[count] >> 12 ;if ( PageTable[Page_Num].Pressent != 0 )break ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[Page_Num].FrameNum = Frame_Num ; //设置页帧号;PageTable[Page_Num].Pressent = 1 ; //标记页帧在主存中;AvtiveFrameQueue.push(Frame_Num) ; //记录活动页帧;cout<<"将模拟进程的第"<<Page_Num<<"页初始化至主存中,帧号为:"<<Frame_Num<<endl;}}cout<<endl ;}voidSetPTE(PageTableEntry&PTE){PTE.FrameNum = PTE.Pressent = 0 ; }。
《操作系统》存储管理实验报告
____大学____学院实验报告课程名称:计算机操作系统实验名称:存储管理实验实验日期:班级:姓名:学号:仪器编号: XX实验报告要求:1.实验目的 2.实验要求 3.实验步骤 4.程序清单 5.运行情况6.流程图 7.实验体会1、实验目的①通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉虚存管理的各种页面淘汰法。
②通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
2、实验要求①设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
②设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。
③编写并调试一个段页式存储管理的地址转换的模拟程序。
首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。
要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。
3、实验步骤(1)理解实验要求,联系所学知识;(2)根据要求编写调度算法;(3)编写完整的实验代码并在VC++ 6.0环境下编译运行;(4)调试程序直至得出结果。
4、程序清单①#include <stdio.h>#include <stdio.h>#include<math.h>#include<stdlib.h>#define NUM 4#define alloMemory(type) (type*)malloc(sizeof(type)) struct partiTab{int no;int size;int firstAddr;char state;}parTab[NUM];typedef struct partiTab PARTITAB;typedef struct jcb { /*定义作业控制块JCB ,部分信息省略*/ char name[10]; //作业名int size; //作业大小struct jcb* link; //链指针}JCB;typedef struct{JCB *front,*rear;}jcbQue;jcbQue *jcbReadyQue;void AllocateMemory(int size);void createTab();void checkTab();void recycleMemory(int i);void AllocateMemory(int size){int i;for(i=0;i<NUM;i++){PARTITAB p=parTab[i];if(p.state='N' && p.size>size)parTab[i].state='Y';elseprintf("没有空闲分区,无法分配内存!\n"); }}void createTab(){int i;for( i=1;i<=NUM;i++){//getPartiTab(PARTITAB);parTab[i-1].no=i;parTab[i-1].size=20;parTab[i-1].firstAddr=21;parTab[i-1].state='N';}}void checkTab(){int i;printf("分区号\t大小\t起址\t状态\n");for(i=0;i<NUM;i++){printf("%d\t",parTab[i].no);printf("%d\t",parTab[i].size);printf("%d\t",parTab[i].firstAddr);printf("%c\t",parTab[i].state);printf("\n");}}void recycleMemory(int i){parTab[i-1].state='N';}int main(int argc, char* argv[]){int i;printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验一存储管理实验\n");printf("\t\t\t\t固定式分区分配存储管理\n");printf("\t\t*********************************************\t\t\n"); createTab();checkTab();printf("请按任意键继续:\n");getchar();printf("每个分区装入一道作业:\n");for(i=0;i<NUM;i++){AllocateMemory((i+1)*3);}checkTab();printf("请按任意键继续:\n");getchar();printf("假如一段时间后,其中一个作业结束,回收给它分配的分区(假如该作业在第2分区)\n");recycleMemory(2);checkTab();printf("请按任意键继续:\n");getchar();printf("接着,从外存后备作业队列中选择一个作业装入该分区(假如该作业大小为10)\n");AllocateMemory(10);checkTab();return 0;}#include<stdio.h>#include <dos.h>#include<stdlib.h>#include<conio.h>#define n 10#define m 10#define minisize 100struct{float address;float length;int flag;}used_table[n];struct{float address;float length;int flag;}free_table[m];void allocate(char J,float xk) {int i,k;float ad;k=-1;for(i=0; i<m; i++)if(free_table[i].length>=xk&&free_table[i].flag==1) if(k==-1||free_table[i].length<free_table[k].length) k=i;if(k==-1){printf("无可用空闲区\n");return;}if(free_table[k].length-xk<=minisize){free_table[k].flag=0;ad=free_table[k].address;xk=free_table[k].length;}else{free_table[k].length=free_table[k].length-xk;ad=free_table[k].address+free_table[k].length;}i=0;while(used_table[i].flag!=0&&i<n)i++;if(i>=n){printf("无表目填写已分分区,错误\n");if(free_table[k].flag==0)free_table[k].flag=1;else{free_table[k].length=free_table[k].length+xk;return;}}else{used_table[i].address=ad;used_table[i].length=xk;used_table[i].flag=J;}return;}void reclaim(char J){int i,k,j,s,t;float S,L;s=0;while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n)s++;if(s>=n){printf("找不到该作业\n");return;}used_table[s].flag=0;S=used_table[s].address;L=used_table[s].length;j=-1;k=-1;i=0;while(i<m&&(j==-1||k==-1)){if(free_table[i].flag==1){if(free_table[i].address+free_table[i].length==S)k=i; if(free_table[i].address==S+L)j=i;}i++;}if(k!=-1)if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/ {free_table[k].length=free_table[j].length+free_table[k].length+L; free_table[j].flag=0;}else/*上邻空闲区,下邻非空闲区,与上邻合并*/free_table[k].length=free_table[k].length+L;else if(j!=-1) /*上邻非空闲区,下邻为空闲区,与下邻合并*/{free_table[j].address=S;free_table[j].length=free_table[j].length+L;}else /*上下邻均为非空闲区,回收区域直接填入*/{/*在空闲区表中寻找空栏目*/t=0;while(free_table[t].flag==1&&t<m)t++;if(t>=m) /*空闲区表满,回收空间失败,将已分配表复原*/{printf("主存空闲表没有空间,回收空间失败\n");used_table[s].flag=J;return;}free_table[t].address=S;free_table[t].length=L;free_table[t].flag=1;}return;}/*主存回收函数结束*/int main( ){printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t实验三存储管理实验\n");printf("\n\t\t\t可变式分区分配 (最佳适应算法)\n");printf("\t\t*********************************************\n");int i,a;float xk;char J;/*空闲分区表初始化:*/free_table[0].address=10240; /*起始地址假定为10240*/free_table[0].length=10240; /*长度假定为10240,即10k*/free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/for(i=1; i<m; i++)free_table[i].flag=0; /*其余空闲分区表项未被使用*//*已分配表初始化:*/for(i=0; i<n; i++)used_table[i].flag=0; /*初始时均未分配*/{printf("功能选择项:\n1。
内存管理实验报告
内存管理实验报告实验名称:内存管理实验目的:掌握内存管理的相关概念和算法加深对内存管理的理解实验原理:内存管理是操作系统中的一个重要模块,负责分配和回收系统的内存资源。
内存管理的目的是高效地利用系统内存,提高系统的性能和稳定性。
实验过程:1.实验环境准备本实验使用C语言编程,要求安装GCC编译器和Linux操作系统。
2.实验内容实验主要包括以下几个部分:a.基本内存管理创建一个进程结构体,并为其分配一定大小的内存空间。
可以通过C语言中的指针操作来模拟内存管理的过程。
b.连续分配内存算法实现两种连续分配内存的算法:首次适应算法和最佳适应算法。
首次适应算法是从低地址开始寻找满足要求的空闲块,最佳适应算法是从所有空闲块中选择最小的满足要求的块。
c.非连续分配内存算法实现分页和分段两种非连续分配内存的算法。
分页是将进程的虚拟地址空间划分为固定大小的页面,然后将页面映射到物理内存中。
分段是将进程的地址空间划分为若干个段,每个段可以是可变大小的。
3.实验结果分析使用实验中的算法和方法,可以实现对系统内存的高效管理。
通过比较不同算法的性能指标,我们可以选择合适的算法来满足系统的需求。
具体而言,连续分配内存算法中,首次适应算法适用于内存中有大量小碎片的情况,可以快速找到满足要求的空闲块。
最佳适应算法适用于内存中碎片较少的情况,可以保证最小的内存浪费。
非连续分配内存算法中,分页算法适用于对内存空间的快速分配和回收,但会带来一定的页表管理开销。
分段算法适用于对进程的地址空间进行分段管理,可以灵活地控制不同段的权限和大小。
实验中还可以通过性能测试和实际应用场景的模拟来评估算法的性能和适用性。
实验总结:本实验主要介绍了内存管理的相关概念和算法,通过编写相应的代码实现了基本内存管理和连续分配、非连续分配内存的算法。
通过实际的实验操作,加深了对内存管理的理解。
在实验过程中,我们发现不同算法适用于不同情况下的内存管理。
连续分配算法可以根据实际情况选择首次适应算法或最佳适应算法。
操作系统:实验4 存储管理(实验报告)
欢迎共阅班级: 姓名: 学号:5) 当前计算机的实际内存大小为:______________________________________ 分析程序4-1,请回答问题:1) 理论上每个Windows 应用程序可以独占的最大存储空间是:_____________2) 程序中,用于检查系统中虚拟内存特性的API 函数是:__________________ 4.2 Windows 虚拟内存本节实验的目的是:实验4存储管理1) 通过实验了解Windows内存的使用,学习如何在应用程序中管理内存,体会Windows应用程序内存的简单性和自我防护能力。
2) 学习检查虚拟内存空间或对其进行操作;3) 了解Windows的内存结构和虚拟内存的管理,进而了解进程堆和Windows为使用内存而提供的一些扩展功能。
1. 工具/准备工作在开始本节实验之前,请回顾教材的相关内容。
需要准备一台运行Windows系统的计算机,且安装了C/C++编译器。
2. 实验内容与步骤将系统当前的保留区(reserved)虚拟地址空间填入表4.3中。
表4.3 实验记录2) 根据运行结果,请简单描述程序运行的流程:_________________________________________________________________________________________________________________________________________的程序段,该段程序试图通过VirtualAlloc()函数,然后利用物理备用内存将整个块分配到虚拟内存空间的任何位置。
这种技术只对拥有1GB以上的RAM且都有换页文件的计算机可行。
从运行结果看,这种技术成功了吗?_________________。
3) 程序中说明为___________________________________________________的程序段,该段程序利用VirtualAlloc()函数,如果函数成功,则获得大块内存,但不将任何物理内存调配到此块中。
实验四 操作系统存储管理实验报告
实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。
二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。
离散分配:分页存储管理、分段存储管理、段页式存储管理。
2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。
最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。
最坏适应算法:选择最大的空闲分区进行分配。
3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。
四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。
输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。
2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。
输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。
3、离散内存分配实验实现分页存储管理的地址转换功能。
输入逻辑地址,程序计算并输出对应的物理地址。
4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。
记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。
五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。
内存状态显示清晰,分区的使用和空闲情况一目了然。
动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。
2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。
操作系统存储管理实验报告
操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
实验四操作系统存储管理实验报告
实验四操作系统存储管理实验报告一、实验目的本次实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收、页面置换算法等关键概念,并能够分析和解决存储管理中可能出现的问题。
二、实验环境本次实验在装有 Windows 操作系统的计算机上进行,使用了 Visual Studio 等编程工具和相关的调试环境。
三、实验内容(一)内存分配与回收算法实现1、首次适应算法首次适应算法从内存的起始位置开始查找,找到第一个能够满足需求的空闲分区进行分配。
在实现过程中,我们通过建立一个空闲分区链表来管理内存空间,每次分配时从表头开始查找。
2、最佳适应算法最佳适应算法会选择能够满足需求且大小最小的空闲分区进行分配。
为了实现该算法,在空闲分区链表中,分区按照大小从小到大的顺序排列,这样在查找时能够快速找到最合适的分区。
3、最坏适应算法最坏适应算法则选择最大的空闲分区进行分配。
同样通过对空闲分区链表的排序和查找来实现。
(二)页面置换算法模拟1、先进先出(FIFO)页面置换算法FIFO 算法按照页面进入内存的先后顺序进行置换,即先进入内存的页面先被置换出去。
在模拟过程中,使用一个队列来记录页面的进入顺序。
2、最近最久未使用(LRU)页面置换算法LRU 算法根据页面最近被使用的时间来决定置换顺序,最近最久未使用的页面将被置换。
通过为每个页面设置一个时间戳来记录其最近使用的时间,从而实现置换策略。
3、时钟(Clock)页面置换算法Clock 算法使用一个环形链表来模拟内存中的页面,通过指针的移动和页面的访问标志来决定置换页面。
四、实验步骤(一)内存分配与回收算法的实现步骤1、初始化内存空间,创建空闲分区链表,并为每个分区设置起始地址、大小和状态等信息。
2、对于首次适应算法,从链表表头开始遍历,找到第一个大小满足需求的空闲分区,进行分配,并修改分区的状态和大小。
3、对于最佳适应算法,在遍历链表时,选择大小最接近需求的空闲分区进行分配,并对链表进行相应的调整。
操作系统内存管理实验报告
#include <stdio.h>
#include <malloc.h>
t;
int main(void)
{
char *str; /*为字符串申请分配一块内存*/
if ((str = (char *) malloc(10)) == NULL)
根据练习二改编程序如下:
#include <stdio.h>
#include <malloc.h>
#include <string.h>
int main(void)
{
char *str;
/*为字符串申请分配一块内存*/
if ((str = (char *) malloc(20)) == NULL)
{
同组同学学号:
同组同学姓名:
实验日期:交报告日期:
实验(No. 4)题目:编程与调试:内存管理
实验目的及要求:
实验目的:
操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管
理的过程是完全透明不可见的。因此,程序员开发时从不关心系统如何为自己分配内存,
而且永远认为系统可以分配给程序所需的内存。在程序开发时,程序员真正需要做的就
printf("String is %s\n Address is %p\n", str, str);
/*重分配刚才申请到的内存空间,申请增大一倍*/
int main(void)
{
char *str;
/*为字符串申请分配一块内存*/
if ((str = (char *) malloc(10)) == NULL)
《操作系统》存储管理实验报告
《操作系统》存储管理实验报告操作系统是计算机系统中最基础、最核心的软件之一,负责管理计算机硬件资源和提供资源的分配与调度。
而存储管理是操作系统中的重要组成部分,它负责管理计算机的内存,包括内存的分配、回收、保护等操作。
本文将针对存储管理进行实验,并撰写实验报告。
本次实验主要涉及以下内容:内存的分配与回收、内存的保护。
实验过程中,我首先根据操作系统的要求,设计了相应的算法用于内存的分配与回收。
并通过编写程序,验证了算法的正确性。
随后,我进一步研究了内存的保护机制,通过设置访问权限位和访问控制表,实现了对内存的合理保护。
在内存的分配与回收方面,我设计了一种简单的算法,首次适应算法。
具体实现如下:首先,将内存分为若干个块,每个块的大小为固定值。
当需要分配内存时,首先遍历内存块列表,找到第一个大小合适的块,将其分配给进程。
当进程终止时,将其占用的内存块回收,以便后续进程使用。
通过编写程序进行测试,结果表明该算法能够正确地进行内存的分配与回收。
在内存的保护方面,我采用了访问权限位和访问控制表的方式进行。
具体实现如下:首先,为每个进程分配一组访问权限位,记录了该进程能够访问的内存区域。
同时,设置一个访问控制表,记录了每个内存块的权限。
当进程访问一些内存块时,首先检查该进程的访问权限位,再与访问控制表中的权限进行比较,以确定该进程是否有权限访问该内存块。
通过编写程序进行测试,证明了该机制能够有效地保护内存。
总结来说,本次实验主要涉及了操作系统中的存储管理部分,包括内存的分配与回收、内存的保护。
通过设计算法和编写程序,我成功地实现了这些功能,并验证了其正确性。
通过本次实验,我进一步加深了对操作系统存储管理的理解,提高了编程和设计的能力。
操作系统实验-内存管理
操作系统实验-内存管理操作系统实验内存管理在计算机系统中,内存管理是操作系统的核心任务之一。
它负责有效地分配和管理计算机内存资源,以满足各种程序和进程的需求。
通过本次操作系统实验,我们对内存管理有了更深入的理解和认识。
内存是计算机用于存储正在运行的程序和数据的地方。
如果没有有效的内存管理机制,计算机系统将无法高效地运行多个程序,甚至可能会出现内存泄漏、内存不足等严重问题。
在实验中,我们首先接触到的是内存分配策略。
常见的内存分配策略包括连续分配和离散分配。
连续分配是将内存空间视为一个连续的地址空间,程序和数据被依次分配到连续的内存区域。
这种方式简单直观,但容易产生内存碎片,降低内存利用率。
离散分配则将内存分成大小相等或不等的块,根据需求进行分配。
其中分页存储管理和分段存储管理是两种常见的离散分配方式。
分页存储管理将内存空间划分为固定大小的页,程序也被分成相同大小的页,通过页表进行映射。
分段存储管理则根据程序的逻辑结构将其分成不同的段,如代码段、数据段等,每个段有不同的访问权限和长度。
接下来,我们研究了内存回收算法。
当程序不再使用分配的内存时,操作系统需要回收这些内存以便再次分配。
常见的内存回收算法有首次适应算法、最佳适应算法和最坏适应算法。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲区域进行分配;最佳适应算法则选择大小最接近需求的空闲区域进行分配;最坏适应算法选择最大的空闲区域进行分配。
为了更直观地理解内存管理的过程,我们通过编程实现了一些简单的内存管理算法。
在编程过程中,我们深刻体会到了数据结构和算法的重要性。
例如,使用链表或二叉树等数据结构来表示空闲内存区域,可以提高内存分配和回收的效率。
在实验中,我们还遇到了一些实际的问题和挑战。
比如,如何处理内存碎片的问题。
内存碎片是指内存中存在一些无法被有效利用的小空闲区域。
为了解决这个问题,我们采用了内存紧缩技术,将分散的空闲区域合并成较大的连续区域。
操作系统内存管理实验报告
操作系统内存管理实验报告操作系统内存管理实验报告引言:操作系统是计算机系统中的核心软件,负责管理计算机系统的各种资源,其中内存管理是操作系统的重要功能之一。
内存管理的目标是有效地管理计算机的内存资源,提高计算机系统的性能和可靠性。
本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
一、实验背景计算机内存是计算机系统中的重要组成部分,它用于存储程序和数据。
在操作系统中,内存被划分为多个不同的区域,每个区域有不同的用途和访问权限。
内存管理的主要任务是为进程分配内存空间,并进行合理的管理和调度,以提高系统的性能和资源利用率。
二、实验目的本实验旨在通过设计和实现一个简单的内存管理系统,加深对操作系统内存管理原理的理解,并通过实践来加深对操作系统的认识。
具体目标包括:1. 设计和实现一个简单的内存分配算法,实现内存的动态分配和回收;2. 实现内存的地址映射机制,实现虚拟地址到物理地址的转换;3. 实现内存保护机制,确保进程之间的内存隔离和安全性;4. 实现内存的页面置换算法,提高内存的利用率和性能。
三、实验设计与实现1. 内存分配算法为了实现内存的动态分配和回收,我们设计了一个简单的内存分配算法。
该算法根据进程的内存需求和剩余内存空间的大小,选择合适的内存块进行分配。
当进程结束或释放内存时,将已使用的内存块标记为空闲状态,以便下次分配。
2. 地址映射机制为了实现虚拟地址到物理地址的转换,我们设计了一个地址映射机制。
该机制使用页表来记录虚拟地址与物理地址的映射关系。
当进程访问内存时,操作系统根据页表将虚拟地址转换为物理地址,并进行内存访问。
3. 内存保护机制为了确保进程之间的内存隔离和安全性,我们实现了一个简单的内存保护机制。
该机制通过设置每个进程的访问权限,限制进程对内存的读写操作。
只有获得相应权限的进程才能访问内存,确保进程之间的数据安全和隔离。
操作系统实验之内存管理实验报告
操作系统实验之内存管理实验报告一、实验目的内存管理是操作系统的核心功能之一,本次实验的主要目的是深入理解操作系统中内存管理的基本原理和机制,通过实际编程和模拟操作,掌握内存分配、回收、地址转换等关键技术,提高对操作系统内存管理的认识和实践能力。
二、实验环境本次实验在 Windows 操作系统下进行,使用 Visual Studio 作为编程环境,编程语言为 C++。
三、实验原理1、内存分配算法常见的内存分配算法有首次适应算法、最佳适应算法和最坏适应算法等。
首次适应算法从内存的起始位置开始查找,找到第一个满足需求的空闲分区进行分配;最佳适应算法则选择大小最接近需求的空闲分区;最坏适应算法选择最大的空闲分区进行分配。
2、内存回收算法当进程结束释放内存时,需要将其占用的内存区域回收至空闲分区链表。
回收过程中需要考虑相邻空闲分区的合并,以减少内存碎片。
3、地址转换在虚拟内存环境下,需要通过页表将逻辑地址转换为物理地址,以实现进程对内存的正确访问。
四、实验内容1、实现简单的内存分配和回收功能设计一个内存管理模块,能够根据指定的分配算法为进程分配内存,并在进程结束时回收内存。
通过模拟多个进程的内存请求和释放,观察内存的使用情况和变化。
2、实现地址转换功能构建一个简单的页式存储管理模型,模拟页表的建立和地址转换过程。
给定逻辑地址,能够正确计算出对应的物理地址。
五、实验步骤1、内存分配和回收功能实现定义内存分区的数据结构,包括起始地址、大小、使用状态等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
创建空闲分区链表,初始化为整个内存空间。
模拟进程的内存请求,调用相应的分配算法进行内存分配,并更新空闲分区链表。
模拟进程结束,回收内存,处理相邻空闲分区的合并。
2、地址转换功能实现定义页表的数据结构,包括页号、页框号等信息。
给定页面大小和逻辑地址,计算页号和页内偏移。
通过页表查找页框号,结合页内偏移计算出物理地址。
操作系统内存管理实验报告
scanf("%d",&m);
for(i=0;i<N;i++)
{ a[i]=0;
if(P[i].size<m)
continue;
else if(P[i].size==m)
{ P[i].state=1;
l=1; break; }
else
a[i]=P[i].size-m; }
计算机操作系统
实验名称
内存管理
实验过程
一.实验目的
1.了解内存管理的功能
2.掌握进程可变内存管理的几种内存分配与回收算法
3.掌握可变分区算法中空闲分区的合并方法
二.实验内容
实现下列内存分配算法之一:首次适应算法、循环首次适应、最佳分配算法、最坏分配算法
三.实验程序
#include <stdio.h>
printf("动态分区分配算法:");
while(k!=5)
{printf("\n~~~~("\n1、首次适应算法\n2、循环首次适应算法");
printf("\n3、最坏适应算法\n4、最佳适应算法");
printf("\n5、退出\n");
printf("请选择算法:");
实验总结通过看书学习了解了首次适应算法循环首次适应算法最佳分配算法最坏分配算法的区别以及他们各自的优缺点不同的算法给予不同的分配区域他们各自运行的结果也不同这一点在代码上可以看出
实验报告
系别
班级
学号
姓名
时间
地点
操作系统实验报告三存储器管理实验
操作系统实验报告三存储器管理实验操作系统实验报告三:存储器管理实验一、实验目的本次存储器管理实验的主要目的是深入理解操作系统中存储器管理的基本原理和方法,通过实际操作和观察,掌握内存分配与回收的算法,以及页面置换算法的工作过程和性能特点,从而提高对操作系统资源管理的认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容1、内存分配与回收算法实现首次适应算法(First Fit)最佳适应算法(Best Fit)最坏适应算法(Worst Fit)2、页面置换算法模拟先进先出页面置换算法(FIFO)最近最久未使用页面置换算法(LRU)时钟页面置换算法(Clock)四、实验原理1、内存分配与回收算法首次适应算法:从内存的起始位置开始,依次查找空闲分区,将第一个能够满足需求的空闲分区分配给进程。
最佳适应算法:在所有空闲分区中,选择能够满足需求且大小最小的空闲分区进行分配。
最坏适应算法:选择空闲分区中最大的分区进行分配。
2、页面置换算法先进先出页面置换算法:选择最早进入内存的页面进行置换。
最近最久未使用页面置换算法:选择最近最长时间未被访问的页面进行置换。
时钟页面置换算法:给每个页面设置一个访问位,在页面置换时,从指针指向的页面开始扫描,选择第一个访问位为0 的页面进行置换。
五、实验步骤1、内存分配与回收算法实现定义内存分区结构体,包括分区起始地址、大小、是否已分配等信息。
实现首次适应算法、最佳适应算法和最坏适应算法的函数。
编写测试程序,创建多个进程,并使用不同的算法为其分配内存,观察内存分配情况和空闲分区的变化。
2、页面置换算法模拟定义页面结构体,包括页面号、访问位等信息。
实现先进先出页面置换算法、最近最久未使用页面置换算法和时钟页面置换算法的函数。
编写测试程序,模拟页面的调入和调出过程,计算不同算法下的缺页率,比较算法的性能。
操作系统存储管理实验报告
操作系统存储管理实验报告操作系统存储管理实验报告引言:操作系统是计算机系统中的核心软件之一,它负责管理计算机硬件资源和提供用户与计算机之间的接口。
在操作系统中,存储管理是一个重要的子系统,它负责管理计算机的内存资源。
本实验旨在通过实际操作,深入了解操作系统的存储管理机制,并通过实验结果分析其性能和效果。
实验目的:1. 了解操作系统的存储管理机制;2. 掌握存储管理相关的概念和技术;3. 分析不同存储管理策略的优缺点;4. 通过实验验证不同策略的性能和效果。
实验内容:本次实验主要涉及以下几个方面的内容:1. 内存分配:在操作系统中,内存是计算机中的重要资源,它被划分为多个固定大小的块,每个块称为一页。
实验中,我们将学习不同的内存分配算法,如连续分配、离散分配和分页分配,并通过实验验证它们的性能和效果。
2. 内存回收:当某个进程不再需要使用内存时,操作系统需要回收该内存空间,以便其他进程使用。
实验中,我们将学习不同的内存回收算法,如最佳适应算法、最坏适应算法和首次适应算法,并通过实验比较它们的效果。
3. 虚拟内存管理:虚拟内存是一种扩展内存的技术,它将磁盘空间作为辅助存储器,将部分数据存储在磁盘上,以释放内存空间。
实验中,我们将学习虚拟内存的概念和原理,并通过实验验证其性能和效果。
实验结果与分析:通过实验,我们得到了不同存储管理策略的性能数据,并进行了分析。
在内存分配方面,连续分配在内存利用率方面表现较好,但容易产生外部碎片;离散分配能够充分利用内存空间,但需要额外的管理开销;分页分配能够灵活地分配内存,但会带来内部碎片。
在内存回收方面,最佳适应算法能够更好地利用内存空间,但需要较长的搜索时间;最坏适应算法能够减少外部碎片,但可能导致内存利用率较低;首次适应算法在搜索时间和内存利用率方面都有较好的平衡。
在虚拟内存管理方面,虚拟内存能够有效扩展内存空间,提高系统的性能和效率。
通过实验,我们发现虚拟内存的使用可以显著减少交换空间的开销,并提高系统的响应速度。
操作系统实验 内存管理
操作系统实验报告计算机学院(院、系)网络工程专业082 班组课学号20 姓名区德智实验日期教师评定实验四内存管理一、实验目的通过实验使学生了解可变式分区管理使用的主要数据结构,分配、回收的主要技术,了解最优分配、最坏分配、最先分配等分配算法。
基本能达到下列具体的目标:1、掌握初步进程在内存中的映像所需要的内存需求。
2、内存的最先分配算法首先实现,再逐步完成最优和最坏的分配算法。
二、实验内容1、在进程管理的基础上实现内存分配。
2、运用java实现整体的布局与分配内存时的动态图画显示。
三、实验步骤1.构建一个Process的对象类,每分配一次内存就实例化一个对象。
这对象包含分配内存的名字,内存大小(byte),绘画的起点像素,绘画的终点像素。
主要代码:public class Process {private String name;private int size;private int beginPx;private int endPx;public int getBeginPx() {return beginPx;}public void setBeginPx(int beginPx) {this.beginPx = beginPx;}public int getEndPx() {return endPx;}public void setEndPx(int endPx) {this.endPx = endPx;}public String getName() {return name;}public void setName(String name) { = name;}public int getSize() {return size;}public void setSize(int size) {this.size = size;}}2.根据用户输入而分配内存的大小,若输入的大小大于目前可分配内存的大小则拒绝分配操作,否则增加一个新进程入链表中,并在已分配表中增加进程的名字,更新剩余内存大小。
操作系统实验之内存管理实验报告
int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block;
定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情
该模块完成在内存空间中申请一块空间供进程使用的功能,通过输入进程大 小系统先查看内存空间中是否有足够的空间供其进行申请,若无,显示分配失败 相应信息,否则在空闲内存分区块中选择最先的一块进行分配,若内存空间不足 则继续向下查找,空闲内存分区的顺序通过三种算法给出。分配内存时,要指定 进程的首地址和大小,并对内存空闲分区的大小做相应的修改。 2.4 进程终止模块
四、开发工具及主要源代码
1、开发工具
sublimeText3 文本编辑器,采用 g++编译。
2、主要源码
这里只给出最先适应算法的源码,由于三种算法均为对链表进行排序,只是 排序依据的属性不同,结构上几乎相似,在此就不做赘述 /*最先适应算法,按地址的大小由小到达排序*/
void rFirst_Fit() {
current_min_addr = temp->next->start_addr; p = temp; } temp = temp->next; } if (p->next != head->next) { temp = p->next; p->next = p->next->next; temp->next = head->next;
不足之处在于,本次实验中没有实现最坏适应法,分析可能是在在排序的 过程中链表的指针出现了错误,在开始调试阶段只对单一算法进行了调试从而 忽略了这个问题的存在,直到编写本报告的时候才发现种问题。
实验四--操作系统存储管理实验报告
实验四 操作系统存储管理实验报告一、实验目的存储管理的主要功能之一是合理地分配空间。
请求页式管理是一种常用的虚拟存储管理技术。
本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。
二、实验内容(1) 通过计算不同算法的命中率比较算法的优劣。
同时也考虑了用户内存容量对命中率的影响。
页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。
在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。
(2) produce_addstream 通过随机数产生一个指令序列,共320条指令。
A 、 指令的地址按下述原则生成:1) 50%的指令是顺序执行的2)25%的指令是均匀分布在前地址部分3) 25%的指令是均匀分布在后地址部分B 、 具体的实施方法是:1)在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令;3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4)顺序执行一条指令,地址为m ’+1的指令 5)在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令C 、 将指令序列变换称为页地址流在用户虚存中,按每k 存放10条指令排列虚存地址,即320条指令在虚存中页地址流长度页面失效次数命中率-=1的存放方式为:第0条~第9条指令为第0页(对应虚存地址为[0,9]);第10条~第19条指令为第1页(对应虚存地址为[10,19]);。
第310条~第319条指令为第31页(对应虚存地址为[310,319]);按以上方式,用户指令可组成32页。
(3)计算并输出下属算法在不同内存容量下的命中率。
1)先进先出的算法(FIFO);2)最近最少使用算法(LRU);3)最佳淘汰算法(OPT);4)最少访问页面算法(LFR);其中3)和4)为选择内容三、系统框图五运行结果首先打印出产生的指令信息,第一列为指令序列号,第二列为指令地址,第三列为指令所在的虚页号选择FIFO调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率选择LRU调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率选择OPT调度算法,并且内存从3也开始逐渐增加到32页,打印出缺页次数缺页率,命中率六实验程序产生指令流文件produce_addstream.h #ifndef PRODUCE_ADDSTREAM_H #define PRODUCE_ADDSTREAM_H #include<stdio.h>#include<stdlib.h>#include<time.h>#include<iomanip.h>#include<vector>using namespace std;#define random(x) (rand()%x)#define MAX_LENGTH 320struct produce{int num; //指令序号int zhiling; //指令地址int virtualpage; //指令虚页号produce *next;};struct produce*creatlist();void insert(struct produce *first,struct produce *s); //插入一个节点(尾插法)void print(struct produce *first); //打印函数int max(vector<vector<int> >,int );struct produce*creatlist(){srand((int)time(0));struct produce*first=new produce;first->next=NULL;int m=0,m1=0;/*int yanzheng[20]={7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1};for (int i=0;i<(MAX_LENGTH/4);i++){struct produce *s0;s0=new produce;s0->num=i*4+0;s0->zhiling=yanzheng[i*4+0];s0->virtualpage=s0->zhiling;insert(first,s0);struct produce *s1;s1=new produce;s1->num=i*4+1;s1->zhiling=yanzheng[i*4+1];s1->virtualpage=s1->zhiling;insert(first,s1);struct produce *s2;s2=new produce;s2->num=i*4+2;s2->zhiling=yanzheng[i*4+2];s2->virtualpage=s2->zhiling;insert(first,s2);struct produce *s3;s3=new produce;s3->num=i*4+3;s3->zhiling=yanzheng[i*4+3];s3->virtualpage=s3->zhiling;insert(first,s3);}//*///*for (int i=0;i<(MAX_LENGTH/4);i++){struct produce *s0;s0=new produce;m=random(MAX_LENGTH);s0->num=i*4+0;s0->zhiling=m+1;s0->virtualpage=s0->zhiling/10;insert(first,s0);m1=random(m+1);struct produce *s1;s1=new produce;s1->num=i*4+1;s1->zhiling=m1;s1->virtualpage=s1->zhiling/10;insert(first,s1);struct produce *s2;s2=new produce;s2->num=i*4+2;s2->zhiling=m1+1;s2->virtualpage=s2->zhiling/10;insert(first,s2);struct produce *s3;s3=new produce;s3->num=i*4+3;s3->zhiling=random(MAX_LENGTH-m1-2)+m1+2;s3->virtualpage=s3->zhiling/10;insert(first,s3);}//*/return first;}void insert(struct produce *first,struct produce *s){struct produce *r=first;struct produce *p;while(r){p=r;r=r->next;}p->next=s;p=s;p->next=NULL;}void print(struct produce *first) //打印函数{struct produce *p;p =first->next;cout<<"随机产生的指令的信息如下"<<endl;cout<<"指令序号"<<"指令地址"<<"指令虚页号"<<endl;while (p){cout<<p->num<<'\t'<<p->zhiling<<setw(14)<<p->virtualpage<<endl;p=p->next;}}int max(vector<vector<int> > page,int Maxpage){int a=0,position=0;for (int i=0;i<Maxpage;i++){if (page[i][1]>a){a=page[i][1];position=i;}}return position;}#endif先来先出调度算法:fifo.h#ifndef FIFO_H#define FIFO_Hvoid fifo(struct produce *first,int Maxpage){vector<int> page(Maxpage);//for (int i=0;i<Maxpage;i++)page[i]=-1;int rear=0;//定义一个变量,指向要被替换的位置int pages;//定义变量保存当前指令的所在的地址int count1=0;//int count2=0;//缺页次数int find=1;struct produce *p=first->next;while (p){pages=p->virtualpage;for(int i=0;i<Maxpage;i++){if (page[i]==-1||count1<Maxpage){page[i]=pages;count1 ++;count2 ++;find =1;break;}else if (page[i]==pages){find =1;break;}find=0;}if (find==0){page[rear]=pages;rear ++;rear=rear%Maxpage;count2 ++;}p=p->next;}cout<<"FIFO调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(25)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}#endif FIFO_HLRU调度算法lru.h#ifndef LRU_H#define LRU_H#include<vector>using namespace std;//int max(vector<vector<int> >,int );void lru(struct produce*first,int Maxpage){struct produce*p=first->next;vector<vector<int> > page2(Maxpage, vector<int>(2));int count1=0; //定义内存已经被占用的页数int count2=0; //定义记录缺页次数int equal=0; //定义判断如果当前页数与比较的页数,如果相等则为1,否则为0int place=0; //定义要替换的位置for (int i=0;i<Maxpage;i++){page2[i][0]=-1;page2[i][1]=0;}while (p){if (count1<Maxpage){for (int i=0;i<Maxpage;i++){page2[i][1]=page2[i][1]+1;if (page2[i][0]==-1){page2[i][0]=p->virtualpage;count2++;break;}else if (page2[i][0]==p->virtualpage){page2[i][1] =1;}}count1++;}else{for (int i=0;i<Maxpage;i++){page2[i][1] +=1;if (page2[i][0]==p->virtualpage){equal=1;place=i;break;}}if (equal==1){page2[place][1] =1;equal=0;}else{place = max(page2,Maxpage);page2[place][1]=1;page2[place][0]=p->virtualpage;count2++;}}p=p->next;}cout<<"LRU调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(24)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}#endif LRU_HOPT调度算法opt.h#ifndef OPT_H#define OPT_H#include<vector>using namespace std;int search(struct produce*place,int position);void opt(struct produce*first,int Maxpage){struct produce*p =first->next;vector<vector<int> > page3(Maxpage, vector<int>(2));int count1=0; //定义内存已被使用的页数int count2=0; //定义缺页次数int current=0; //定义当前工作位置int equal=0; //定义判断如果当前页数与比较的页数,如果相等则为1,否则为0int place=0; //定义要替换的位置for (int i=0;i<Maxpage;i++){page3[i][0]=-1;page3[i][1]=0;}while (p){//cout<<1111<<endl;if (count1<Maxpage){for (int i=0;i<Maxpage;i++){if (page3[i][0]==-1){page3[i][0]=p->virtualpage;page3[i][1]=search(p,current);count2++;break;}else if (page3[i][0]==p->virtualpage){page3[i][1]=search(p,current);}}count1++;}else{for (int i=0;i<Maxpage;i++){if (page3[i][0]==p->virtualpage){equal=1;place=i;break;}}if (equal==1){page3[place][1] =search(p,current);equal=0;}else{place = max(page3,Maxpage);page3[place][1]=search(p,current);page3[place][0]=p->virtualpage;count2 +=1;}}p=p->next;current +=1;}cout<<"OPT调度算法缺页次数缺页率命中率"<<endl;cout<<count2<<setw(25)<<double(count2)/MAX_LENGTH<<setw(10)<<1-dou ble(count2)/MAX_LENGTH<<endl;}int search(struct produce*place,int position){struct produce*p=place->next;int current=place->virtualpage;int position1=position+1;while(p){if (current==p->virtualpage){return position1;}position1++;p=p->next;}return position1;}#endif主函数控制台ccglmain.cpp#include<iostream.h>#include "produce_addstream.h"#include "fifo.h"#include "lru.h"#include "opt.h"void main(){int S; //定义变量记录用户选择char again; //定义变量用户选择继续还是退出cout<<"开始产生内存指令"<<endl;struct produce *first=creatlist();//产生随机指令cout<<"打印产生的指令信息"<<endl;print(first);//打印产生的指令信息while (1){int Maxpage=3;//定义内存最大页面数cout<<"输入你的选择"<<endl;cout<<"1:FIFO(先进先出)调度算法\n"<<"2:LRU(最近最少使用算法)\n"<<"3:OPT(最佳淘汰算法)\n"<<"4:清屏"<<endl;cin>>S;while(S>4||S<1){cout<<"输入错误重新输入"<<endl;cin>>S;}if (S!=4){while(Maxpage<=32){switch(S){case 1:fifo(first,Maxpage);break;case 2:lru(first,Maxpage);break;case 3:opt(first,Maxpage);break;default:break;}Maxpage++;}cout<<"是否继续调用其他算法?是请按y/Y,否请按其它键"<<endl;cin>>again;if(again=='y'||again=='Y'){continue;}else break;}else system("cls");}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三:内存管理班级:学号:姓名:一、实验目的1.通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解;2.熟悉虚存管理的页面淘汰算法;3.通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二、实验要求1.设计一个请求页式存储管理方案(自己指定页面大小),并予以程序实现。
并产生一个需要访问的指令地址流。
它是一系列需要访问的指令的地址。
为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列。
2.页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。
而不再判断它是否被改写过,也不将它写回到辅存。
3.系统运行既可以在Windows,也可以在Linux。
三、实验流程图图1 页式存储管理程序参考流程四、实验环境硬件设备:个人计算机。
系统软件:windows操作系统,Visual C++6.0编译环境。
五、实验结果说明:模拟产生35个指令地址,随机产生20个指令地址进行排队,假设主存中共有10个工作集页帧。
将前9个指令调入内存,因为前9个指令中,页号为13的指令有两个,所以调入内存中共有8页。
此时主存中还有两个空闲帧。
此时按刚才随机顺序进行访问指令工作。
前9页因都在主存中可直接调用。
第10个随机地址为页号为5的指令,也在主存中,也可直接调用。
页号为24,3因不在主存中,需要调用进主存。
此时主存已满。
然后主存需要进行调用页号为27号的指令,因主存已满,需要执行FIFO算法,将最先进入主存的页号为30的指令调出,将27号放入第1000000帧。
以后需要调用的页面按照存在就无需调用,否则按FIFO原则进行调页工作。
六、实验感想七、实验代码#include <iostream>#include <iomanip>#include <stdlib.h>#include <time.h>#include <vector>#include <queue>//#include <algorithm>using namespace std ;#define PAGETABLE_NUM 35 //模拟进程的页表表项数量;#define AVAILABLEFRAME_NUM 10 //主存中固定工作集页帧的数量;#define RANDOMNUMBER_NUM 20 //产生随机指令地址的数量;structPageTableEntry{unsignedintFrameNum ;boolPressent ;};voidInitRandomAddr(vector<unsigned int>&RandomAddr) ;voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue) ;voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue) ;voidSetPTE(PageTableEntry&PTE) ;int main(){int a ;//初始化RANDERNUMBER_NUM条随机的32位指令地址;vector<unsigned int>RandomAddr(RANDOMNUMBER_NUM) ;InitRandomAddr(RandomAddr) ;//初始化FIFS指针;vector<unsigned int>::iterator FIFS_pintor ;FIFS_pintor = RandomAddr.begin() ;//初始空闲帧队列;queue<unsigned int>IdleFrameQueue, ActiveFrameQueue ;InitIdleFrameQueue(IdleFrameQueue) ;//初始进程页表(模拟进程初始时,工作集已经使用至少10个页帧);vector<PageTableEntry>PageTable(PAGETABLE_NUM) ;InitPageTable(PageTable, RandomAddr, IdleFrameQueue, ActiveFrameQueue) ;//Testcout<<" 开始访问指令地址\n" ;vector<unsigned int>::iterator pt_RandomAddr ;for(pt_RandomAddr = RandomAddr.begin(); pt_RandomAddr != RandomAddr.end(); pt_RandomAddr++ ){unsignedintPageNum = (*pt_RandomAddr) >> 12 ;cout<<"地址:0x"<<hex<<*pt_RandomAddr<<dec<<"\t页号:"<<PageNum;if ( PageTable[PageNum].Pressent == 0 ) //该页不在主存中;{cout<<"\t该页不在主存,";if (IdleFrameQueue.empty()) //工作集空闲页帧已用完;{cout<<"执行FIFO淘汰算法\t";//FIFS算法淘汰一页;unsignedintFrame_Num ;Frame_Num = ActiveFrameQueue.front() ;ActiveFrameQueue.pop() ;PageTable[(*FIFS_pintor) >> 12].Pressent = 0 ; //标记此页已经被置换出主存;//置换进新页;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;//移动FIFS指针;FIFS_pintor++ ;}else{cout<<"调入所需页到空闲页\t";//调入当前所需的页到空闲页中;unsignedintFrame_Num ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[PageNum].FrameNum = Frame_Num ;PageTable[PageNum].Pressent = 1 ;ActiveFrameQueue.push(Frame_Num) ;}}elsecout<<"\t该页在主存";cout<<"\t帧号:"<<PageTable[PageNum].FrameNum<<endl ;}return 0 ;}voidInitRandomAddr(vector<unsigned int>&RandomAddr){cout<<" 生成随机指令地址\n" ;vector<unsigned int>::iterator pd ;srand( (unsigned)time( NULL ) );for(pd = RandomAddr.begin(); pd != RandomAddr.end(); pd++ ){//产生随机页号0~PAGETABLE_NUM - 1;unsignedint High_20 = rand() % PAGETABLE_NUM ;//产生随机偏移量0~4095 ;unsignedint Low_12 = rand() % 4096 ;unsignedintAddr = (High_20 << 12) | Low_12 ;*pd = Addr ;cout<<"随机指令地址:0x"<<setw(8)<<setfill('0') <<setiosflags(ios::uppercase | ios::fixed)<<hex<<*pd<<"\t页号:"<<dec<<High_20<<"\t偏移量:0x"<<hex<<Low_12<<dec<<endl ;}}voidInitIdleFrameQueue(queue<unsigned int>&IdleFrameQueue){//帧号从0~1048575,这里取1000000~1000016;for ( unsigned intFrameNum = 1000000; FrameNum< 1000000 + AVAILABLEFRAME_NUM; FrameNum++ )IdleFrameQueue.push(FrameNum) ;}voidInitPageTable(vector<PageTableEntry>&PageTable, vector<unsigned int>&RandomAddr, queue<unsigned int>&IdleFrameQueue, queue<unsigned int>&AvtiveFrameQueue){cout<<" 初始化页表; \n" ;for_each(PageTable.begin(), PageTable.end(), SetPTE) ;unsignedintPage_Num, Frame_Num ;for ( int count = 0; count < 9; count++){while(true){Page_Num = RandomAddr[count] >> 12 ;if ( PageTable[Page_Num].Pressent != 0 )break ;Frame_Num = IdleFrameQueue.front() ;IdleFrameQueue.pop() ;PageTable[Page_Num].FrameNum = Frame_Num ; //设置页帧号;PageTable[Page_Num].Pressent = 1 ; //标记页帧在主存中;AvtiveFrameQueue.push(Frame_Num) ; //记录活动页帧;cout<<"将模拟进程的第"<<Page_Num<<"页初始化至主存中,帧号为:"<<Frame_Num<<endl;}}cout<<endl ;}voidSetPTE(PageTableEntry&PTE){PTE.FrameNum = PTE.Pressent = 0 ; }。