黄骅市高中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄骅市高中2018-2019学年高三上学期11月月考数学试卷含答案
班级__________
姓名__________ 分数__________
一、选择题
1. 给出下列命题:
①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;
②若log m 3<log n 3<0,则0<n <m <1;
③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )
A .1
B .2
C .3
D .4
2. 已知为自然对数的底数,若对任意的,总存在唯一的,使得e 1[,1]x e
∈[1,1]y ∈-2ln 1y
x x a y e -++=成立,则实数的取值范围是( )
a A.
B.
C.
D.1[,]e e
2(,]e e
2(,)e +∞21(,)
e e e
+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.
3. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( )
A .C .D .时,函数f (x )的最大值与最小值的和为( )
A .a+3
B .6
C .2
D .3﹣a
4. △的内角,,所对的边分别为,,,已知,则
ABC A B C a =b =6
A π
∠=
( )111]
B ∠=A .
B .

C .

D .
4
π
4
π
34
π
3
π
23
π
3
π
5. 把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )
A .y=sin (2x ﹣)
B .y=sin (2x+

C .y=cos2x
D .y=﹣sin2x
6. 双曲线E 与椭圆C :+=1有相同焦点,且以E 的一个焦点为圆心与双曲线的渐近线相切的圆的面积
x 2
9y 2
3
为π,则E 的方程为( )
A.-=1
B.-=1
x 23y 2
3
x 24y 22
C.-y 2=1
D.-=1x 2
5x 2
2y 24
7. 某几何体三视图如下图所示,则该几何体的体积是(

A .1+
B .1+
C .1+
D .1+π
8. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )
A .20
B .25
C .22.5
D .22.75
9. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )
A .α∥β且l ∥α
B .α⊥β且l ⊥β
C .α与β相交,且交线垂直于l
D .α与β相交,且交线平行于l
10.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为(

A .11
B .11.5
C .12
D .12.5
11.已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( )A .一定相离B .一定相切
C .相交且一定不过圆心
D .相交且可能过圆心
12.若函数则函数的零点个数为( )21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>
⎩1
()2y f x x =+A .1
B .2
C .3
D .4
二、填空题
13.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 . 
14.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 
15.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为

16.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为 .
17.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .
18.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42
=F P 3||=PF 2C 1
22
22=-b
y a x (,)的渐近线恰好过点,则双曲线的离心率为 .
0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
三、解答题
19.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且csinA=acosC .
(I )求C 的值;
(Ⅱ)若c=2a ,b=2
,求△ABC 的面积.
20.如图,四棱锥中,,P ABC -,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====M 为线段上一点,为的中点.
AD 2,AM MD N =PC
(1)证明:平面;
//MN PAB (2)求直线与平面所成角的正弦值;
AN PMN
21.已知f (x )=|﹣x|﹣|+x|
(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围. 
22.过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,求抛物线的方程.
23.(本小题满分12分)
已知圆:的圆心在第二象限,半径为,且圆与直线及轴都
C 02
2
=++++F Ey Dx y x 2C 043=+y x y 相切.
(1)求;
F E D 、、(2)若直线与圆交于两点,求.
022=+-y x C B A 、||AB 24.已知:函数f (x )=log 2,g (x )=2ax+1﹣a ,又h (x )=f (x )+g (x ).
(1)当a=1时,求证:h (x )在x ∈(1,+∞)上单调递增,并证明函数h (x )有两个零点;(2)若关于x 的方程f (x )=log 2g (x )有两个不相等实数根,求a 的取值范围.
黄骅市高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,
1)上减,在(1,+∞)上增.函数y=x3是增函数.
∴有两个是增函数,命题①是假命题;
②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;
③若函数f(x)是奇函数,则其图象关于点(0,0)对称,
∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;
④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,
也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.
∴假命题的个数是1个.
故选:A.
【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.
2.【答案】B
【解析】
3.【答案】A
【解析】A.C.D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A .4. 【答案】B 【解析】
试题分析:由正弦定理可得
或,故选
B.
()sin 0,,4
B B B π
π=
∴=∈∴= 34π考点:1、正弦定理的应用;2、特殊角的三角函数.5. 【答案】D
【解析】解:把函数y=sin (2x ﹣
)的图象向右平移
个单位,
所得到的图象的函数解析式为:y=sin[2(x ﹣)﹣
]=sin (2x ﹣π)=﹣sin2x .
故选D .
【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x 加与减,上下平移,y 的另一侧加与减.
6. 【答案】
【解析】选C.可设双曲线E 的方程为-=1,
x 2
a 2y 2
b 2
渐近线方程为y =±x ,即bx ±ay =0,
b a
由题意得E 的一个焦点坐标为(,0),圆的半径为1,
6∴焦点到渐近线的距离为1.即=1,
|6b |
b 2+a 2
又a 2+b 2=6,∴b =1,a =,
5∴E 的方程为-y 2=1,故选C.
x 25
7. 【答案】A
【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V 正方体+=13+××π×12×1=1+

故选:A .
【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量. 
8.【答案】C
【解析】解:根据频率分布直方图,得;
∵0.02×5+0.04×5=0.3<0.5,
0.3+0.08×5=0.7>0.5;
∴中位数应在20~25内,
设中位数为x,则
0.3+(x﹣20)×0.08=0.5,
解得x=22.5;
∴这批产品的中位数是22.5.
故选:C.
【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.
9.【答案】D
【解析】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,
又n⊥平面β,l⊥n,l⊄β,所以l∥β.
由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,
与m,n异面矛盾.
故α与β相交,且交线平行于l.
故选D.
【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.
10.【答案】C
【解析】解:由题意,0.06×5+x×0.1=0.5,所以x为2,所以由图可估计样本重量的中位数是12.
故选:C.
11.【答案】C
【解析】
【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.
【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,
∴圆心C(1,0),半径r=,
∵≥>1,
∴圆心到直线l 的距离d=<=r ,且圆心(1,0)不在直线l 上,
∴直线l 与圆相交且一定不过圆心.故选C 12.【答案】D 【



考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
二、填空题
13.【答案】 (2,2) .
【解析】解:∵log a 1=0,∴当x ﹣1=1,即x=2时,y=2,
则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).故答案为:(2,2).
【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题. 
14.【答案】 .
【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,
故当sinx=时,函数f(x)取得最大值为,
故答案为:.
【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.
15.【答案】 (±,0) y=±2x .
【解析】解:双曲线的a=2,b=4,
c==2,
可得焦点的坐标为(±,0),
渐近线方程为y=±x,即为y=±2x.
故答案为:(±,0),y=±2x.
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
16.【答案】 .
【解析】解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,
并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1.
Rt△AOC中,r=AO==,
从而弧长为αr=2×=,
故答案为.
【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键,属于基础题.
17.【答案】=1
【解析】解:由题意得,圆心C(1,0),半径等于4,
连接MA,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,
∴b=,
∴椭圆的方程为=1.
故答案为:=1.
【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.
18.【答案】3
三、解答题
19.【答案】
【解析】解:(I)∵a,b,c分别是△ABC内角A,B,C的对边,且csinA=acosC,
∴sinCsinA=sinAcosC,∴sinCsinA﹣sinAcosC=0,
∴sinC=cosC,∴tanC==,
由三角形内角的范围可得C=;
(Ⅱ)∵c=2a,b=2,C=,
∴由余弦定理可得c2=a2+b2﹣2abcosC,
∴4a 2=a 2+12﹣4a •,解得a=﹣1+,或a=﹣1﹣(舍去)
∴△ABC 的面积S=absinC== 
20.【答案】(1)证明见解析;(2.【解析】试题解析:
(2)在三角形中,由,得AMC 22,3,cos 3
AM AC MAC ==∠=,
2222cos 5CM AC AM AC AN MAC =+-∠=A A
,则,
222AM MC AC +=AM MC ⊥∵底面平面,
PA ⊥,ABCD PA ⊂PAD ∴平面平面,且平面平面,
ABCD ⊥PAD ABCD PAD AD =∴平面,则平面平面,
CM ⊥PAD PNM ⊥PAD 在平面内,过作,交于,连结,则为直线与平面所成角。

PAD A AF PM ⊥PM F NF ANF ∠AN PMN
在中,由,得,Rt PAM ∆PA AM PM AF =A A AF =
sin ANF ∠=
所以直线与平面.1AN PMN
考点:立体几何证明垂直与平行.
21.【答案】
【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2﹣3a 恒成立.
由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,
∴﹣2≥a 2﹣3a ,求得1≤a ≤2.
(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.
【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.
22.【答案】
【解析】解:由题意可知过焦点的直线方程为y=x ﹣,联立,
得,
设A (x 1,y 1),B (x 2,y 2)
根据抛物线的定义,得|AB|=x 1+x 2+p=4p=8,
解得p=2.
∴抛物线的方程为y 2=4x .
【点评】本题给出直线与抛物线相交,在已知被截得弦长的情况下求焦参数p 的值.着重考查了抛物线的标准方程和直线与圆锥曲线位置关系等知识,属于中档题.
23.【答案】(1) ,,;(2).
22=D 24-=E 8=F 2=AB 【解析】

题解析:(1)由题意,圆方程为,且,C 2)()(22=-+-b y a x 0,0><b a ∵圆与直线及轴都相切,∴,
,∴,C 043=+y x y 2-=a 25|43|=+b a 22=b ∴圆方程为,C 2)22()2(22=-++
y x 化为一般方程为,
08242222=+-++y x y x ∴,,.
22=D 24-=E 8=F (2)圆心到直线的距离为,22,2(-C 022=+-y x 12
|22222|=+--=
d ∴.21222||22=-=-=d r AB 考点:圆的方程;2.直线与圆的位置关系.1
24.【答案】
【解析】解:(1)证明:h (x )=f (x )+g (x )=log 2
+2x ,=log 2(1﹣
)+2x ;∵y=1﹣在(1,+∞)上是增函数,
故y=log 2(1﹣
)在(1,+∞)上是增函数;又∵y=2x 在(1,+∞)上是增函数;
∴h(x)在x∈(1,+∞)上单调递增;
同理可证,h(x)在(﹣∞,﹣1)上单调递增;
而h(1.1)=﹣log221+2.2<0,
h(2)=﹣log23+4>0;
故h(x)在(1,+∞)上有且仅有一个零点,
同理可证h(x)在(﹣∞,﹣1)上有且仅有一个零点,
故函数h(x)有两个零点;
(2)由题意,关于x的方程f(x)=log2g(x)有两个不相等实数根可化为
1﹣=2ax+1﹣a在(﹣∞,﹣1)∪(1,+∞)上有两个不相等实数根;
故a=;
结合函数a=的图象可得,
<a<0;
即﹣1<a<0.
【点评】本题考查了复合函数的单调性的证明与函数零点的判断,属于中档题. 。

相关文档
最新文档