江山市高中2019-2020学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江山市高中2019-2020学年高二上学期第一次月考试卷数学
班级__________ 姓名__________ 分数__________ 一、选择题
1.若函数y=|x|(1﹣x)在区间A上是增函数,那么区间A最大为()
A.(﹣∞,0)B.C.[0,+∞)D.
2.圆锥的高扩大到原来的倍,底面半径缩短到原来的
1
2
,则圆锥的体积()
A.缩小到原来的一半
B.扩大到原来的倍
C.不变
D.缩小到原来的
1
6
3.已知命题p:2≤2,命题q:∃x0∈R,使得x02+2x0+2=0,则下列命题是真命题的是()
A.¬p B.¬p∨q C.p∧q D.p∨q
4.已知e为自然对数的底数,若对任意的
1
[,1]
x
e
∈,总存在唯一的[1,1]
y∈-,使得2
ln1y
x x a y e
-++=
成立,则实数a的取值范围是()
A.
1
[,]e
e
B.
2
(,]e
e
C.
2
(,)
e
+∞ D.
21
(,)
e
e e
+
【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.
5.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M中的元素按从大到小排列,则第2013个数是()
A.B.
C.D.
6.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.
杂质高杂质低
旧设备37 121
新设备22 202
根据以上数据,则()
A.含杂质的高低与设备改造有关
B.含杂质的高低与设备改造无关
C .设备是否改造决定含杂质的高低
D .以上答案都不对
7. 在二项式
的展开式中,含x 4
的项的系数是( )
A .﹣10
B .10
C .﹣5
D .5
8. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )
A .
B .
C .
D .
9. 已知集合 M={x||x|≤2,x ∈R},N={﹣1,0,2,3},则M ∩N=( ) A .{﹣1,0,2} B .{﹣1,0,1,2} C .{﹣1,0,2,3}
D .{0,1,2,3}
10.已知ω>0,0<φ<π,直线x=和x=是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,则φ=
( )
A .
B .
C .
D .
11.设a ,b ∈R ,i 为虚数单位,若2+a i
1+i =3+b i ,则a -b 为( )
A .3
B .2
C .1
D .0
12.已知函数f (x )=x 2﹣2x+3在[0,a]上有最大值3,最小值2,则a 的取值范围( )
A .[1,+∞)
B .[0.2}
C .[1,2]
D .(﹣∞,2]
二、填空题
13.已知函数f (x )=,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范
围是 .
14.设函数f (x )=
,
①若a=1,则f (x )的最小值为 ;
②若f (x )恰有2个零点,则实数a 的取值范围是 .
15.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .
16.定积分sintcostdt= .
17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .
18.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则
= .
三、解答题
19.已知向量,满足||=1,||=2,与的夹角为120°.
(1)求
及|+|;
(2)设向量+与﹣的夹角为θ,求cos θ的值.
20.数列{}n a 中,18a =,42a =,且满足*
2120()n n n a a a n N ++-+=∈.
(1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .
21.已知椭圆E :
=1(a >b >0)的焦距为2
,且该椭圆经过点
.
(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线
MN 与y 轴垂直时,求k 1k 2的值.
22.(本小题满分12分)已知圆()()22
:1225C x y -+-=,直线
()()():211740L m x m y m m R +++--=∈.
(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.
23.设函数f (x )=x 3﹣6x+5,x ∈R (Ⅰ)求f (x )的单调区间和极值;
(Ⅱ)若关于x 的方程f (x )=a 有3个不同实根,求实数a 的取值范围.
24.已知函数f(x)=.
(1)求函数f(x)的最小正周期及单调递减区间;
(2)当时,求f(x)的最大值,并求此时对应的x的值.
江山市高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:y=|x|(1﹣x )=,
再结合二次函数图象可知
函数y=|x|(1﹣x )的单调递增区间是:. 故选:B .
2. 【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2
113
V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为2
22111(2)326
V r h r h ππ=⨯=,所以122V V =,故选A.
考点:圆锥的体积公式.1 3. 【答案】D
【解析】解:命题p :2≤2是真命题,
方程x 2
+2x+2=0无实根,
故命题q :∃x 0∈R ,使得x 02
+2x 0+2=0是假命题,
故命题¬p ,¬p ∨q ,p ∧q 是假命题, 命题p ∨q 是真命题, 故选:D
4.【答案】B
【解析】
5.【答案】
A
【解析】
进行简单的合情推理.
【专题】规律型;探究型.
【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.
【解答】因为=(a1×103+a2×102+a3×10+a4),
括号内表示的10进制数,其最大值为9999;
从大到小排列,第2013个数为
9999﹣2013+1=7987
所以a1=7,a2=9,a3=8,a4=7
则第2013个数是
故选A.
【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.
6.【答案】
A
【解析】
独立性检验的应用.
【专题】计算题;概率与统计.
【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
【解答】解:由已知数据得到如下2×2列联表
杂质高杂质低合计
旧设备37 121 158
新设备22 202 224
合计59 323 382
由公式κ2=≈13.11,
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.
7.【答案】B
【解析】解:对于,
对于10﹣3r=4,
∴r=2,
则x4的项的系数是C52(﹣1)2=10
故选项为B
【点评】二项展开式的通项是解决二项展开式的特定项问题的工具.
8.【答案】C
【解析】解:如图所示,△BCD是圆内接等边三角形,
过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,
显然当弦为CD时就是△BCD的边长,
要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,
记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},
由几何概型概率公式得P(A)=,
即弦长超过圆内接等边三角形边长的概率是.
故选C.
【点评】本题考查了几何概型的运用;关键是找到事件A 对应的集合,利用几何概型公式解答.
9. 【答案】A
【解析】解:由M 中不等式解得:﹣2≤x ≤2,即M=[﹣2,2], ∵N={﹣1,0,2,3}, ∴M ∩N={﹣1,0,2}, 故选:A .
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
10.【答案】A
【解析】解:因为直线x=和x=
是函数f (x )=sin (ωx+φ)图象的两条相邻的对称轴,
所以T==2π.所以ω=1,并且sin (
+φ)与sin (
+φ)分别是最大值与最小值,0<
φ<π,
所以φ=.
故选A .
【点评】本题考查三角函数的解析式的求法,注意函数的最值的应用,考查计算能力.
11.【答案】
【解析】选A.由2+a i
1+i
=3+b i 得,
2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,
∴⎩
⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 12.【答案】C
【解析】解:f (x )=x 2﹣2x+3=(x ﹣1)2
+2,对称轴为x=1.
所以当x=1时,函数的最小值为2.
当x=0时,f(0)=3.
由f(x)=3得x2﹣2x+3=3,即x2﹣2x=0,解得x=0或x=2.
∴要使函数f(x)=x2﹣2x+3在[0,a]上有最大值3,最小值2,则1≤a≤2.
故选C.
【点评】本题主要考查二次函数的图象和性质,利用配方法是解决二次函数的基本方法.
二、填空题
13.【答案】(0,1).
【解析】解:画出函数f(x)的图象,如图示:
令y=k,由图象可以读出:0<k<1时,y=k和f(x)有3个交点,
即方程f(x)=k有三个不同的实根,
故答案为(0,1).
【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题.
14.【答案】≤a<1或a≥2.
【解析】解:①当a=1时,f(x)=,
当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,
当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,
当1<x<时,函数单调递减,当x>时,函数单调递增,
故当x=时,f(x)min=f()=﹣1,
②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a ) 若在x <1时,h (x )=与x 轴有一个交点,
所以a >0,并且当x=1时,h (1)=2﹣a >0,所以0<a <2,
而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1,
所以≤a <1,
若函数h (x )=2x
﹣a 在x <1时,与x 轴没有交点,
则函数g (x )=4(x ﹣a )(x ﹣2a )有两个交点,
当a ≤0时,h (x )与x 轴无交点,g (x )无交点,所以不满足题意(舍去),
当h (1)=2﹣a ≤0时,即a ≥2时,g (x )的两个交点满足x 1=a ,x 2=2a ,都是满足题意的,
综上所述a 的取值范围是≤a <1,或a ≥2.
15.【答案】1ln 2
【解析】 试题分析:
()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
16.【答案】 .
【解析】解: 0sintcostdt=
0sin2td (2t )=
(﹣cos2t )|=×(1+1)=.
故答案为:
17.【答案】
.
【解析】解:由题意图形折叠为三棱锥,底面为△EFC ,高为AC ,
所以三棱柱的体积:××1×1×2=,
故答案为:.
【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
18.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为
则
解得:
∴
又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
三、解答题
19.【答案】
【解析】解:(1)=;
∴=
;
∴
;
(2)同理可求得
;
;
∴=.
【点评】考查向量数量积的运算及其计算公式,根据求
的方法,以及向量夹角
余弦的计算公式.
20.【答案】(1)102n a n =-;(2)229(5)940(5)
n n n n S n n n ⎧-≤⎪
=⎨-+>⎪⎩.
【解析】
试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .
当5n ≤时,12||||||n n S a a a =++
2129n a a a n n =++
+=-
∴2
29(5)940(5)
n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1
考点:等差数列的通项公式;数列的求和. 21.【答案】
【解析】解:(Ⅰ)由题意得,2c=2
,
=1;
解得,a 2=4,b 2
=1;
故椭圆E 的方程为
+y 2=1;
(Ⅱ)由题意知,当k 1=0时,M 点的纵坐标为0,
直线MN 与y 轴垂直, 则点N 的纵坐标为0, 故k 2=k 1=0,这与k 2≠k 1矛盾. 当k 1≠0时,直线PM :y=k 1(x+2);
由
得,
(+4)y 2﹣=0;
解得,y M =
;
∴M (,),
同理N (,),
由直线MN 与y 轴垂直,则=
;
∴(k 2﹣k 1)(4k 2k 1﹣1)=0,
∴k 2k 1=.
【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.
22.【答案】(1)证明见解析;(2)250x y --=. 【解析】
试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可
证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.
1111]
(2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由1
2
AM k =-
得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 23.【答案】
【解析】解:(Ⅰ)
∴当
,
∴f (x )的单调递增区间是,单调递减区间是
当;当
(Ⅱ)由(Ⅰ)的分析可知y=f (x )图象的大致形状及走向,
∴当
的图象有3个不同交点,
即方程f (x )=α有三解.
24.【答案】
【解析】解:(1)f (x )=﹣
=sin 2x+sinxcosx ﹣
=
+
sin2x ﹣
=sin(2x﹣)…3分
周期T=π,
因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分
当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,
所以函数f(x)的单调递减区间为,,k∈Z…7分
(2)当,2x﹣∈,…9分
sin(2x﹣)∈(﹣,1),当x=时取最大值,
故当x=时函数f(x)取最大值为1…12分
【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.。