福建省南充市长乐高级中学高三数学等差数列测试题doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
2.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8
B .10
C .12
D .14
4.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
5.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11
B .10
C .6
D .3
6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
7.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
8.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个 9.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
10.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( )
A .24
B .39
C .104
D .52
12.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15
B .20
C .25
D .30
13.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60
B .11
C .50
D .55
14.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103
B .107
C .109
D .105
15.已知数列{}n a 满足25111,,25
a a a ==且
*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19
B .20
C .21
D .22
16.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
17.记n S 为等差数列{}n a 的前n 项和,若542S S =,248a a +=,则5a 等于( ) A .6
B .7
C .8
D .10
18.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
19.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=
B .560a a +=
C .670a a +=
D .890a a +=
20.设等差数列{}n a 的前n 项和为n S ,10a <且111019
21
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
二、多选题
21.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4
n n n a S S n a -+=≥=,则下列说法正确的是( )
A .数列{}n a 的前n 项和为1
S 4n n
=
B .数列{}n a 的通项公式为1
4(1)
n a n n =
+
C .数列{}n a 为递增数列
D .数列1
{
}n
S 为递增数列 22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >23.题目文件
丢失!
24.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
25.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
26.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <
B .10a <
C .当5n =时n S 最小
D .0n S >时n 的最小值为8
27.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
28.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >
D .数列
{}n
a 也是等差数列
29.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且
32019
11
111
a a e e +≤++,则( )
A .当数列{}n a 为等差数列时,20210S ≥
B .当数列{}n a 为等差数列时,20210S ≤
C .当数列{}n a 为等比数列时,20210T >
D .当数列{}n a 为等比数列时,20210T <
30.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.A 【分析】 将11122
n n n a a -=
+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,111
22
n n n a a -=
+,所以11221n n n n a a --=+,而1123a = 所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2n n
n a +=
. 又因为
n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max
22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢
⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 2.A 【分析】
利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】
由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 3.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 4.B 【分析】
根据等差数列的性质,由题中条件,可直接得出结果. 【详解】
因为n S 为等差数列{}n a 的前n 项和,公差1d =,6
2
10S S ,
所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 5.A 【分析】
利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】
由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,
213a a d =+=,
解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 6.B
【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B 7.D 【分析】
设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出
(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出
111429m n =-,再由[]90,100m ∈求出n 的值.
【详解】
根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m +++++
+++=++=
则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 8.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-, 所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确.
又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
0n n a a +≥⎧⎨≤⎩求得.
9.C 【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 10.C 【分析】
可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】
因为{}n a ,{}n b 是等差数列,且
3221
n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,
又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴
1215(6121)71(4151)59
a k
b k ⨯-==⨯-, 故选:C . 11.D 【分析】
根据等差数列的性质计算求解. 【详解】
由题意()()357101341041073232236()1248a a a a a a a a a a ++++=⨯+⨯=+==,
74a =,∴11313713()
13134522
a a S a +=
==⨯=. 故选:D . 12.B 【分析】
设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入求和公式即可求解
【详解】
设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()51154
55254202
S a d a d ⨯=+=+=⨯= 故选:B 13.D 【分析】
根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】
因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()
1111161111552
a a S a +===.
故选:D. 14.B 【分析】
根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】
根据题意可知正整数能被21整除余2,
21+2n a n ∴=, 5215+2107a ∴=⨯=.
故选:B. 15.B 【分析】
由等差数列的性质可得数列1n a ⎧⎫
⎨⎬⎩⎭
为等差数列,再由等差数列的通项公式可得
1n
n a ,进
而可得1
n a n
=,再结合基本不等式即可得解. 【详解】 因为
*12121
0,n n n n a a a ++-+=∈N ,所以12
211n n n a a a ++=+, 所以数列1n a ⎧⎫
⎨
⎬⎩⎭
为等差数列,设其公差为d , 由25111,25
a a a ==可得25112,115a a a ==⋅,
所以11
11
2
1145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111
a d ⎧=⎪⎨⎪=⎩,
所以
()1111n n d n a a =+-=,所以1n a n
=,
所以不等式100n n a a +≥即100
n a n
+≥对任意的*n N ∈恒成立,
又10020n n +
≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 16.A 【分析】
根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】
因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()199998
3622
a a S +⨯===. 故选:A . 【点睛】
熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 17.D 【分析】
由等差数列的通项公式及前n 项和公式求出1a 和d ,即可求得5a . 【详解】
解:设数列{}n a 的首项为1a ,公差为d , 则由542S S =,248a a +=,
得:111154435242238a d a d a d a d ⨯⨯⎛⎫+=+ ⎪⎝
⎭+++=⎧⎪⎨⎪⎩
,
即
{
11320
24
a d a d +-+=, 解得:
{
123
a d =-=,
51424310a a d ∴=+=-+⨯=.
故选:D. 18.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2135
15
n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 19.B 【分析】
由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】
由等差数列的求和公式可得()
110101002
a a S +=
=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.B 【分析】 由题得出1392
a d =-,则2202n d
S n dn =-,利用二次函数的性质即可求解.
【详解】
设等差数列{}n a 的公差为d ,
由
111019
21
a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392
a d =-
,10a <,0d ∴>,
()211+
2022
n n n d
S na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.
故选:B. 【点睛】
方法点睛:求等差数列前n 项和最值,由于等差数列
()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
二、多选题
21.AD 【分析】
先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】
11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 1
1104n n n S S S -≠∴
-= 因此数列1{
}n S 为以1
1
4S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n
=+-=∴=,即A 正确; 当2n ≥时1111
44(1)4(1)
n n n a S S n n n n -=-=
-=--- 所以1,141,24(1)n n a n n n ⎧
=⎪⎪
=⎨⎪-≥-⎪⎩
,即B ,C 不正确;
故选:AD 【点睛】
本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题. 22.ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
23.无
24.AB 【分析】 由题意可得
111
11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则
11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22
⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣
⎦
,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 25.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 26.BD 【分析】
由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列{}n a 是递增数列,则0d >,A 选项错误;
753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;
()()()22
171117493222224n n n d n n d n n d S na nd n d -⎡⎤
--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
,
当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.
n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.
故选:BD. 27.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:
()()
111110022n n n d n n S na na --=+
=+= 整理得1200
21a n n
=
+-, 因为1a *
∈N ,所以n 为200的因数,()200
12n n
+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 28.AB 【分析】
根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,
1149249,2
a d a d =-=-
. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,149
2
a d =-
,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛
⎫=+-=-
+-=- ⎪⎝
⎭,令0n a ≥得5151
0,22n n -
≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,所以B 选项正确.
对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列
{}n
a 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.
故选:AB 【点睛】
等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解. 29.AC 【分析】 将
3201911111a a e e +≤++变形为32019
1111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 30.BD 【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】
解:1167891011950S S a a a a a a -=++++==, 因为10a >
所以90a =,0d <,89S S =最大, 故选:BD . 【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.。