2020-2021中考数学复习初中数学 旋转专项综合练含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学复习初中数学旋转专项综合练含答案解析
一、旋转
1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=
∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1
2 m°.
【解析】
分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明
△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到
M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1
2 m°.
详(1)证明:如图1中,
∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩
===,
∴△DAB ≌△EAC ,
∴BD=EC .
(2)证明:如图2中,延长DC 到E ,使得DB=DE .
∵DB=DE ,∠BDC=60°,
∴△BDE 是等边三角形,
∴∠BD=BE ,∠DBE=∠ABC=60°,
∴∠ABD=∠CBE ,
∵AB=BC ,
∴△ABD ≌△CBE ,
∴AD=EC ,
∴BD=DE=DC+CE=DC+AD .
∴AD+CD=BD .
(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .
由(1)可知△EAB ≌△GAC ,
∴∠1=∠2,BE=CG ,
∵BD=DC ,∠BDE=∠CDM ,DE=DM ,
∴△EDB ≌△MDC ,
∴EM=CM=CG ,∠EBC=∠MCD ,
∵∠EBC=∠ACF ,
∴∠MCD=∠ACF ,
∴∠FCM=∠ACB=∠ABC ,
∴∠1=3=∠2,
∴∠FCG=∠ACB=∠MCF ,
∵CF=CF ,CG=CM ,
∴△CFG ≌△CFM ,
∴FG=FM ,
∵ED=DM ,DF ⊥EM ,
∴FE=FM=FG ,
∵AE=AG ,AF=AF ,
∴△AFE ≌△AFG ,
∴∠EAF=∠FAG=12
m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
2.请认真阅读下面的数学小探究系列,完成所提出的问题:
()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 求证:BCD V 的面积为
21.(2
a 提示:过点D 作BC 边上的高DE ,可证ABC V ≌)BDE V ()2探究2:如图2,在一般的Rt ABC V 中,90ACB ∠=o ,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 请用含a 的式子表示BCD V 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90o 得到线段BD ,连接.CD 试探究用含a 的式子表示BCD V 的面积,要有探究过程.
【答案】(1)详见解析;(2)BCD V 的面积为
212a ,理由详见解析;(3)BCD V 的面积为214
a .
【解析】
【分析】
()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;
()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC V ≌BDE V ,就有DE BC a.==进而由三角形的面积公式得出结论;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出
1BF BC 2
=
,由条件可以得出AFB V ≌BED V 就可以得出BF DE =,由三角形的面积公式就可以得出结论.
【详解】 ()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,
BED ACB 90∠∠∴==o ,
由旋转知,AB AD =,ABD 90∠=o ,
ABC DBE 90∠∠∴+=o ,
A ABC 90∠∠+=o Q ,
A DBE ∠∠∴=,
在ABC V 和BDE V 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
ABC ∴V ≌()BDE AAS V
BC DE a ∴==,
BCD 1S BC DE 2
=⋅V Q , 2BCD 1S a 2
∴=V ; ()2BCD V 的面积为21a 2
, 理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,
BED ACB 90∠∠∴==o ,
Q 线段AB 绕点B 顺时针旋转90o 得到线段BE ,
AB BD ∴=,ABD 90∠=o ,
ABC DBE 90∠∠∴+=o ,
A ABC 90∠∠+=o Q ,
A DBE ∠∠∴=,
在ABC V 和BDE V 中,
ACB BED A DBE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
ABC ∴V ≌()BDE AAS V ,
BC DE a ∴==,
BCD 1
S BC DE 2
=⋅V Q , 2BCD 1S a 2
∴=V ; ()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,
AFB E 90∠∠∴==o ,11BF BC a 22
=
=, FAB ABF 90∠∠∴+=o ,
ABD 90∠=o Q ,
ABF DBE 90∠∠∴+=o , FAB EBD ∠∠∴=,
Q 线段BD 是由线段AB 旋转得到的,
AB BD ∴=,
在AFB V 和BED V 中,
AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
AFB ∴V ≌()BED AAS V , 1BF DE a 2∴
==
, 2BCD 1111S BC DE a a a 2224
=⋅=⋅⋅=V Q , BCD ∴V 的面积为21a 4
. 【点睛】
本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.
3.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .
(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .
(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;
(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度.
【答案】(1)1,22
PM BE BE MN =
=;(2)成立,理由见解析;(3)MN 17﹣117
【解析】
【分析】
(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;
(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,
推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12
PN AD =,推出PM PN =,90MPN ∠=︒,可得2222BE PM MN MN ==⨯
=; (3)有两种情形分别求解即可.
【详解】
(1)如图1中,
∵AM =ME ,AP =PB ,
∴PM ∥BE ,12
PM BE =
, ∵BN =DN ,AP =PB , ∴PN ∥AD ,12PN AD =
, ∵AC =BC ,CD =CE ,
∴AD =BE ,
∴PM =PN ,
∵∠ACB =90°,
∴AC ⊥BC ,
∴∵PM ∥BC ,PN ∥AC ,
∴PM ⊥PN , ∴△PMN 的等腰直角三角形,
∴2MN PM =
, ∴122MN BE =
, ∴2BE MN =,
故答案为12
PM BE =
,2BE MN =. (2)如图2中,结论仍然成立.
理由:连接AD 、延长BE 交AD 于点H .
∵△ABC 和△CDE 是等腰直角三角形,
∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,
∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,
∴∠ACD =∠ECB ,
∴△ECB ≌△DCA ,
∴BE =AD ,∠DAC =∠EBC ,
∵∠AHB =180°﹣(∠HAB +∠ABH )
=180°﹣(45°+∠HAC +∠ABH )
=∠180°﹣(45°+∠HBC +∠ABH )
=180°﹣90°
=90°,
∴BH ⊥AD ,
∵M 、N 、P 分别为AE 、BD 、AB 的中点,
∴PM ∥BE ,12PM BE =,PN ∥AD ,12
PN AD =, ∴PM =PN ,∠MPN =90°, ∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,
当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =
-=-=
∴342BE BG GE =-=
∴21712MN BE ==-. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===,
当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =
-=-=, ∴342BE BG GE =+=+,
∴21712
MN BE ==+. 综上所述,MN =17﹣1或17+1.
【点睛】
本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
4.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG .
(1) 求证:EG =CG ;
(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
【答案】解:(1)CG=EG
(2)(1)中结论没有发生变化,即EG=CG.
证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG.
∴ AG=CG.
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN.
在Rt△AMG 与Rt△ENG中,
∵ AM=EN, MG=NG,
∴△AMG≌△ENG.
∴ AG=EG
∴ EG=CG.
(3)(1)中的结论仍然成立.
【解析】
试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明
△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.还知道EG⊥CG;
试题解析:
解:(1)证明:在Rt△FCD中,
∵G为DF的中点,
∴,
同理,在Rt△DEF中,,
∴CG=EG;
(2)(1)中结论仍然成立,即EG=CG;
连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DC=DC,
∴△DAG≌△DCG,
∴AG=CG,
在△DMG与△FNG中,
∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG,
在矩形AENM中,AM=EN.,
在Rt△AMG与Rt△ENG中,
∵AM=EN,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG,
(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示:
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,
又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,
∴∠FEC+∠FEM=90°,即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG。
【点睛】本题解题关键是作出辅助线,且利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质,难度较大。
5.在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.
(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;
(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF 有怎样的数量关系?证明你发现的结论.
【答案】(1)△OFC是能成为等腰直角三角形,(2)OE=OF.(3)PE:PF=1:3.
【解析】
【小题1】由题意可知,①当F为BC的中点时,由AB=BC=5,可以推出CF和OF的长度,即可推出BF的长度,②当B与F重合时,根据直角三角形的相关性质,即可推出OF 的长度,即可推出BF的长度;
【小题2】连接OB,由已知条件推出△OEB≌△OFC,即可推出OE=OF;
【小题3】过点P做PM⊥AB,PN⊥BC,结合图形推出△PNF∽△PME,△APM∽△PNC,继而推出PM:PN=PE:PF,PM:PN=AP:PC,根据已知条件即可推出PA:AC=PE:PF=1:4.
6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.
(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;
(2)若PA=2,PB=4,∠APB=135°,求PC的长.
【答案】(1) S阴影=(a2-b2);(2)PC=6.
【解析】
试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.
(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.
试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,
∴△PAB≌△P'CB,
∴S△PAB=S△P'CB,
S阴影=S扇形BAC-S扇形BPP′=(a2-b2);
(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,
∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,
∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;
又∵∠BP′C=∠BPA=135°,
∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.
PC==6.
考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.
7.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,
∠BAC=∠B1A1C=30°,点B,C,B1在同一条直线上.
(1)求证:AB=2BC
(2)如图2,将△ABC绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB与
A1C、A1B1分别交于点D、E,AC与A1B1交于点F.当α等于多少度时,AB与A1B1垂直?请说明理由.
(3)如图3,当△ABC 绕点C 顺时针方向旋转至如图所示的位置,使AB ∥CB 1,AB 与A 1C 交于点D ,试说明A 1D=CD .
【答案】(1)证明见解析
(2)当旋转角等于30°时,AB 与A 1B 1垂直.
(3)理由见解析
【解析】
试题分析:(1)由等边三角形的性质得AB =BB 1,又因为BB 1=2BC ,得出AB =2BC ;
(2) 利用AB 与A 1B 1垂直得∠A 1ED=90°,则∠A 1DE=90°-∠A 1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A 1CB=180°-∠BDC-∠B=60°,所以∠ACA 1=90°-∠A 1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB 与A 1B 1垂直;
(3)由于AB ∥CB 1,∠ACB 1=90°,根据平行线的性质得∠ADC=90°,在Rt △ADC 中,根据含30度的直角三角形三边的关系得到CD=12
AC ,再根据旋转的性质得AC=A 1C ,所以CD=
12
A 1C ,则A 1D=CD . 试题解析: (1)∵△AB
B 1是等边三角形;
∴ AB =BB 1
∵ BB 1=2BC
∴AB =2BC
(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°,
∴∠A 1DE=90°-∠A 1=90°-30°=60°,
∵∠B=60°,∴∠BCD=60°,
∴∠ACA 1=90°-60°=30°,
即当旋转角等于30°时,AB 与A 1B 1垂直.
(3)∵AB ∥CB 1,∠ACB 1=90°,
∴∠CDB=90°,即CD 是△ABC 的高,
设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122
ABC S BC AC AB CD ∆=⨯=⨯,
即11222ab a CD =⨯⨯ ∴12CD b =
,即CD=12
A 1C , ∴A 1D=CD. 【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.
8.已知:在△ABC 中,BC=a ,AC=b ,以AB 为边作等边三角形ABD .探究下列问题:
(1)如图1,当点D 与点C 位于直线AB 的两侧时,a=b=3,且∠ACB=60°,则CD= ; (2)如图2,当点D 与点C 位于直线AB 的同侧时,a=b=6,且∠ACB=90°,则CD= ; (3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.
【答案】(1)
;(2);(3)当∠ACB=120°时,CD 有最大值是a+b.
【解析】
【分析】 (1)a=b=3,且∠ACB=60°,△ABC 是等边三角形,且CD 是等边三角形的高线的2倍,据此即可求解;
(2)a=b=6,且∠ACB=90°,△ABC 是等腰直角三角形,且CD 是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;
(3)以点D 为中心,将△DBC 逆时针旋转60°,则点B 落在点A ,点C 落在点E .连接AE ,CE ,当点E 、A 、C 在一条直线上时,CD 有最大值,CD=CE=a+b .
【详解】
(1)∵a=b=3,且∠ACB=60°,
∴△ABC 是等边三角形,
∴OC=
, ∴CD=3
; (2)3;
(3)以点D为中心,将△DBC逆时针旋转60°,
则点B落在点A,点C落在点E.连接AE,CE,
∴CD=ED,∠CDE=60°,AE=CB=a,
∴△CDE为等边三角形,
∴CE=CD.
当点E、A、C不在一条直线上时,
有CD=CE<AE+AC=a+b;
当点E、A、C在一条直线上时,
CD有最大值,CD=CE=a+b;
只有当∠ACB=120°时,∠CAE=180°,
即A、C、E在一条直线上,此时AE最大
∴∠ACB=120°,
因此当∠ACB=120°时,CD有最大值是a+b.
【点睛】
本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.
9.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.
【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)
t=1或
【解析】
试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;
(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.
(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.
试题解析:(1)∵△PQN与△ABC都是等边三角形,
∴当点N落在边BC上时,点Q与点B重合.
∴DQ=3
∴2t=3.
∴t=;
(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,
∴PD=DQ,
当0<t<时,
此时,PD=t,DQ=2t
∴t=2t
∴t=0(不合题意,舍去),
当≤t<3时,
此时,PD=t,DQ=6﹣2t
∴t=6﹣2t,
解得t=2;
综上所述,当点N到点A、B的距离相等时,t=2;
(3)由题意知:此时,PD=t,DQ=2t
当点M在BC边上时,
∴MN=BQ
∵PQ=MN=3t,BQ=3﹣2t
∴3t=3﹣2t
∴解得t=
如图①,当0≤t≤时,
S△PNQ=PQ2=t2;
∴S=S菱形PQMN=2S△PNQ=t2,
如图②,当≤t≤时,
设MN、MQ与边BC的交点分别是E、F,
∵MN=PQ=3t,NE=BQ=3﹣2t,
∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,
∵△EMF是等边三角形,
∴S△EMF=ME2=(5t﹣3)2
.
;
(4)MN、MQ与边BC的交点分别是E、F,此时<t<,
t=1或.
考点:几何变换综合题
10.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;
(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.
【答案】(1)1
3
;(2)不公平.
【解析】
试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.
试题解析:(1)共有12种等可能的结果,小于10的情况有4种,
所以指针所指区域内的数字和小于10的概率为1
3
.
(2)不公平,因为小颖获胜的概率为;
小亮获胜的概率为
5
12
.小亮获胜的可能性大,所以不公平.
可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.
考点:1.游戏公平性;2.列表法与树状图法.
11.如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结
EO并延长交BC的延长线于点F,则有S四边形EBCD=S△EBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,
0)、(6,3)、(,)、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.
【答案】(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小;(2)10.【解析】
试题分析:(1)当直线旋转到点P是MN的中点时S△MON最小,过点M作MG∥OB交EF 于G.由全等三角形的性质可以得出结论;
(2)①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N,由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大,S =S△OAD-S△MND.
四边形OANM
②如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N,利用S
=S△OCT-S△MN T,进而得出答案.
四边形OCMN
试题解析:(1)当直线MN旋转到点P是线段MN的中点时,△MON的面积最小.
如图2,过点P的另一条直线EF交OA、OB于点E、F,设PF<PE,过点M作MG∥OB交EF于G,
可以得出当P是MN的中点时S四边形MOFG=S△MON.
∵S四边形MOFG<S△EOF,∴S△MON<S△EOF.
∴当点P是MN的中点时S△MON最小.
(2)分两种情况:
①如图3①过点P的直线l 与四边形OABC 的一组对边 OC、AB分别交于点M、N.
延长OC、AB交于点D,易知AD = 6,S△OAD=18 .
由(1)的结论知,当PM=PN时,△MND的面积最小,此时四边形OANM的面积最大.过点P、M分别作PP1⊥OA,MM1⊥OA,垂足分别为P1、M1.
由题意得M1P1=P1A = 2,从而OM1=MM1= 2.又P(4,2),B(6,3)
∴P1A=M1P1="O" M1=P1P=2,M1M=OM=2,可证四边形MM1P1P是正方形.
∴MN∥OA,∠MND=90°,NM=4,DN=4.求得S△MND=8.
∴.
② 如图3②,过点P的直线l与四边形OABC的另一组对边CB、OA分别交M、N.
延长CB交x轴于T点,由B、C的坐标可得直线BC对应的函数关系式为 y =-x+9 .
则T点的坐标为(9,0).
∴S△OCT=×9×=.
由(1)的结论知:当PM=PN时,△MNT的面积最小,此时四边形OCMN的面积最大.
过点P、M点分别作PP1⊥OA,MM1⊥OA,垂足为P1,M1.
从而 NP1=P1M1,MM1=2PP1=4.
∴点M的横坐标为5,点P(4、2),P1M1= NP1= 1,TN =6.
∴S△MNT=×6×4=12,S四边形OCMN=S△OCT-S△MNT =-12=<10.
综上所述:截得四边形面积的最大值为10.
考点:1.线动旋转问题;2.正方形的判定和性质;3.图形面积求法;4.分类思想的应用.
12.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将
△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM =BD,EN=CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是________________;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k·AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证
明.
【答案】(1)①BD=CE;
②AM=AN,∠MAN=∠BAC 理由如下:
∵在图①中,DE//BC,AB=AC
∴AD="AE."
在△ABD与△ACE中∴△ABD≌△ACE.
∴BD=CE,∠ACE=∠ABD.
在△DAM与△EAN中,
∵DM=BD,EN=CE,BD=CE,∴DM=EN,∵∠AEN=∠ACE+∠CAE,
∠ADM=∠ABD+∠BAD,∴∠AEN=∠ADM.
又∵AE=AD,∴△ADM≌△AEN.∴AM=AN,∠DAM=∠EAN.∴∠MAN=∠DAE=∠BAC.
∴AM=AN,∠MAN=∠BAC.
(2)AM=kAN,∠MAN=∠BAC.
【解析】
(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;
②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和
△ACN中,
DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.
(2)直接类比(1)中结果可知AM=k•AN,∠MAN=∠BAC.
13.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到
△OC′D′.
(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;
②AC′⊥BD′;
(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想
∠AEB=θ是否成立?请说明理由.
【答案】(1)证明见解析;
(2)成立,理由见解析
【解析】
试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出
OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;
②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;
(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式
,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相
等和三角形内角和定理即可得出∠AEB=θ.
试题解析:(1)证明:①∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵OA=OB,C、D为OA、OB的中点,
∴OC=OD,
∴OC′=OD′,
在△AOC′和△BOD′中,,
∴△A OC′≌△BOD′(SAS),
∴AC′=BD′;
②延长AC′交BD′于E,交BO于F,如图1所示:
∵△AOC′≌△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,∠OAC′+∠AFO=90°,
∴∠OBD′+∠BFE=90°,
∴∠BEA=90°,
∴AC′⊥BD′;
(2)解:∠AEB=θ成立,理由如下:如图2所示:
∵△OCD旋转到△OC′D′,
∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,
∵CD∥AB,
∴,
∴,
∴,
又∠AOC′=∠BOD′,
∴△AOC′∽△BOD′,
∴∠OAC′=∠OBD′,
又∠AFO=∠BFE,
∴∠AEB=∠AOB=θ.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.
14.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.
(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.
【答案】(1)证明见解析(2)BF+EQ=BP(3)BF+BP=EQ
【解析】
试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG).证明如下:
∵点E、F、G分别是正方形边AD、AB、BC的中点,
∴△AEF和△BGD是两个全等的等腰直角三角形.
∴EF=FG,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF⊥FG.
(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此()
EF2BP EQ
=-.
(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,
()()
EF GF2BG2GP BP2EQ BP
===-=-.
15.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t 秒.
(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;
(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)
【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)1
2
或
37
2
.
【解析】
【分析】
(1)由图可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分线及平角的定义求出.
(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三种情况分别进行讨论,建立关于t的方程,解方程即可.
(3)分别用含t的代数式表示出∠COD和∠BOD,再根据OC平分∠BOD建立方程解方程即可,注意分情况讨论.
【详解】
(1)解:∵∠COE=140°,
∴∠COD=180°﹣∠COE=40°,
又∵OA平分∠COD,
∴∠AOC=1
2
∠COD=20°,
∵∠AOB=90°,
∴∠BOC=90°﹣∠AOC=70°;
(2)存在
①当OA平分∠COD时,∠AOD=∠AOC,即10°t=20°,解得:t=2;
②当OC平分∠AOD时,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;
③当OD平分∠AOC时,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;综上所述:t=2,t=8或32;
(3)1
2
或
37
2
,理由如下:
设运动时间为t,则有
①当90+10t=2(40+15t)时,t=1 2
②当270﹣10t=2(320﹣15t)时,t=37 2
所以t的值为1
2
或
37
2
.
【点睛】
本题主要考查角平分线的定义以及图形的旋转,根据题意,找到两个角之间的等量关系建立方程并分情况讨论是解题的关键.。