巫溪县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巫溪县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.为了得到函数的图象,只需把函数y=sin3x的图象()
A.向右平移个单位长度B.向左平移个单位长度
C.向右平移个单位长度D.向左平移个单位长度
2.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是()
A.B.C.+D.++1
3.下列命题中正确的是()
A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题
B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
C.“”是“”的充分不必要条件
D.命题“∀x∈R,2x>0”的否定是“”
4.设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()
A.1 B.C.D.﹣1
5.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为()A.1372 B.2024 C.3136 D.4495
6.函数是()
A.最小正周期为2π的奇函数B.最小正周期为π的奇函数
C.最小正周期为2π的偶函数D.最小正周期为π的偶函数
7.设a=sin145°,b=cos52°,c=tan47°,则a,b,c的大小关系是()
A .a <b <c
B .c <b <a
C .b <a <c
D .a <c <b
8. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )
A .1
B .
C .
D .
9. 若复数满足
7
1i i z
+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -
10.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2
11.执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为( ) A .243 B .363 C .729 D .1092
【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.
12.设等比数列{a n}的公比q=2,前n项和为S n,则=()
A.2 B.4 C.D.
二、填空题
13.下列命题:
①函数y=sinx和y=tanx在第一象限都是增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;
④在△ABC中,A>B的充要条件是cos2A<cos2B;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是(把所有正确命题的序号都写上).
14.阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是.
15.设幂函数()
=的图象经过点()
f x kxα
4,2,则kα
+= ▲.
16.计算:×5﹣1=.
17.已知数列的前项和是, 则数列的通项__________
18.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是.
三、解答题
19.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.(1)求椭圆C的离心率的值;
(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.
20.已知不等式的解集为或
(1)求,的值
(2)解不等式.
21.设f(x)=x2﹣ax+2.当x∈,使得关于x的方程f(x)﹣tf(2a)=0有三个不相等的实数根,求实数t 的取值范围.
22.选修4﹣5:不等式选讲
已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|﹣2≤x≤1}.
(Ⅰ)求a的值;
(Ⅱ)若恒成立,求k的取值范围.
23.(本小题满分10分) 已知函数()|||2|f x x a x =++-.
(1)当3a =-时,求不等式()3f x ≥的解集; (2)若()|4|f x x ≤-的解集包含[1,2],求的取值范围.
24.已知函数()f x =1
21
x
a +- (1)求()f x 的定义域.
(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
(3)在(2)的条件下,令3
()()g x x f x =,求证:()0g x >
巫溪县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】解:把函数y=sin3x的图象向右平移个单位长度,可得y=sin3(x﹣)=sin(3x﹣)的图象,
故选:A.
【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
2.【答案】D
【解析】解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,
边AC上的高OB=1,PO=为底面上的高.
于是此几何体的表面积S=S
+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.
△PAC
故选:D
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
3.【答案】D
【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;
命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;
“”⇒“+2kπ,或,k∈Z”,
“”⇒“”,
故“”是“”的必要不充分条件,故C不正确;
命题“∀x∈R,2x>0”的否定是“”,故D正确.
故选D.
【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.
4.【答案】A
【解析】解:y'=2ax,
于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行
∴有2a=2
∴a=1
故选:A
【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.
5.【答案】
C
【解析】
【专题】排列组合.
【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.
【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,
再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.
另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,
再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.
综上可知,可得不同三角形的个数为1372+1764=3136.
故选:C.
【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.
6.【答案】B
【解析】解:因为
=
=cos(2x+)=﹣sin2x.
所以函数的周期为:=π.
因为f (﹣x )=﹣sin (﹣2x )=sin2x=﹣f (x ),所以函数是奇函数.
故选B .
【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.
7. 【答案】A
【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1, ∴y=sinx 在(0,90°)单调递增, ∴sin35°<sin38°<sin90°=1, ∴a <b <c 故选:A
【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.
8. 【答案】A
【解析】解:因为抛物线y 2
=8x ,由焦点公式求得:抛物线焦点为(2,0)
又双曲线
.渐近线为y=
有点到直线距离公式可得:d==1.
故选A .
【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.
9. 【答案】A 【解析】
试题分析:4
2
7
3
1,1i i i i i ==-∴==-,因为复数满足7
1i i z +=,所以()1,1i i i i z i z
+=-∴=-,所以复数的虚部为,故选A.
考点:1、复数的基本概念;2、复数代数形式的乘除运算. 10.【答案】B
【解析】解:根据题意球的半径R 满足
(2R )2=6a 2
, 所以S 球=4πR 2=6πa 2
.
故选B
11.【答案】D
【解析】当3x =时,y 是整数;当2
3x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则
由31000n
x =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .
12.【答案】C
【解析】解:由于q=2,
∴
∴
;
故选:C .
二、填空题
13.【答案】 ②③④⑤
【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=
,
,但是
,
,因此不是单调递增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,∴
=5(a 6+a 5)>0,
=11a 6<0,
∴a 5+a 6>0,a 6<0,∴a 5>0.因此S n 最大值为S 5,正确;
④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确. 其中正确命题的序号是 ②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
14.【答案】 ﹣3 .
【解析】解:分析如图执行框图,
可知:该程序的作用是计算分段函数f (x )=的函数值.
当x=2时,f (x )=1﹣2×2=﹣3
故答案为:﹣3
【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.
15.【答案】3
2
【解析】
试题分析:由题意得11,422
k α
α==⇒=∴32k α+=
考点:幂函数定义 16.【答案】 9 .
【解析】解:
×5﹣1=
×=×=(﹣5)×(﹣9)×=9,
∴
×5﹣1
=9,
故答案为:9.
17.【答案】
【解析】 当时,
当
时,
,
两式相减得:
令得
,所以
答案:
18.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
三、解答题
19.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3;
∴c=;
∴;
即椭圆的离心率是;
(2);
∴x=带入椭圆方程得,y=;
所以Q(0,).
20.【答案】
【解析】
解:(1)因为不等式的解集为或
所以,是方程的两个解
所以,解得
(2)由(1)知原不等式为,即,当时,不等式解集为
当时,不等式解集为;
当时,不等式解集为;
21.【答案】
【解析】设f (x )=x 2
﹣ax+2.当x ∈,则t=,
∴对称轴m=∈(0,],且开口向下;
∴
时,t 取得最小值
,此时x=9
∴税率t 的最小值为
.
【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位! 22.【答案】
【解析】解:(Ⅰ)由|ax+1|≤3得﹣4≤ax ≤2 ∵不等式f (x )≤3的解集为{x|﹣2≤x ≤1}. ∴当a ≤0时,不合题意;
当a >0时,,
∴a=2;
(Ⅱ)记
,
∴h (x )=
∴|h (x )|≤1
∵恒成立,
∴k ≥1.
【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题.
23.【答案】(1){|1x x ≤或8}x ≥;(2)[3,0]-. 【解析】
试
题解析:(1)当3a =-时,25,2()1,
2325,3x x f x x x x -+≤⎧⎪
=<<⎨⎪-≥⎩
,当2x ≤时,由()3f x ≥得253x -+≥,解得1x ≤; 当23x <<时,()3f x ≥,无解;当3x ≥时,由()3f x ≥得253x -≥,解得8x ≥,∴()3f x ≥的解集为
{|1x x ≤或8}x ≥.
(2)()|4||4||2|||f x x x x x a ≤-⇔---≥+,当[1,2]x ∈时,|||4|422x a x x x +≤-=-+-=, ∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的的取值范围为[3,0]-. 考点:1、绝对值不等式的解法;2、不等式恒成立问题. 24.【答案】 【解析】
试
题解析:(1)由210x
-≠得:0x ≠
∴()f x 的定义域为{}
0x x ≠------------------------------2分
(2)由于()f x 的定义域关于原点对称,要使()f x 是奇函数,则对于定义域{}
0x x ≠内任意一个x ,都有
()()f x f x -=-即:112121x x
a a -⎛
⎫+
=-+ ⎪--⎝⎭
解得:1
2
a =
∴存在实数1
2
a =
,使()f x 是奇函数------------------------------------6分 (3)在(2)的条件下,12a =,则3
311()()221x g x x f x x ⎛⎫==+ ⎪-⎝⎭
()g x 的定义域为{}0x x ≠关于原点对称,且33()()()()()g x x f x x f x g x -=--==
则()g x 为偶函数,其图象关于y 轴对称。
当0x >时,21x
>即210x ->又210x +>,3
0x >
∴331
121()02212(21)x x x
g x x x +⎛⎫=+=> ⎪--⎝⎭
g 当0x <时,由对称性得:()0g x >分
综上:()0g x >成立。
--------------------------------------------10分. 考点:1.函数的定义域;2.函数的奇偶性。