枣强县实验中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
枣强县实验中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1.下列说法正确的是()
A.类比推理是由特殊到一般的推理
B.演绎推理是特殊到一般的推理
C.归纳推理是个别到一般的推理
D.合情推理可以作为证明的步骤
2.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是()
A.4x+2y=5 B.4x﹣2y=5 C.x+2y=5 D.x﹣2y=5
3.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6 102,b=2 016时,输出的a为()
A.6
B.9
C.12
D.18
4.已知a为常数,则使得成立的一个充分而不必要条件是()
A.a>0 B.a<0 C.a>e D.a<e
5.求值:=()
A.tan 38°B.C.D.﹣
6.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()
A.﹣1 B.2 C.﹣5 D.﹣3
7.在长方体ABCD﹣A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是()
A.B.C.D.
8.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P,直线PF1(F1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为()
A.B.C.D.
9.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()
A.﹣16 B.14 C.28 D.30
10.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()
A. B. C.D.
11.设有直线m、n和平面α、β,下列四个命题中,正确的是()
A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β
C.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α
12.设,,
a b c分别是ABC
∆中,,,
A B C
∠∠∠所对边的边长,则直线sin0
A x ay c
++=与sin sin0
bx B y C
-+=的位置关系是()
A.平行B.重合C.垂直D.相交但不垂直二、填空题
13.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
14.已知f (x )=x (e x +a e -x )为偶函数,则a =________. 15.已知两个单位向量,a b 满足:1
2
a b ∙=-
,向量2a b -与的夹角为,则cos θ= . 16.已知x ,y
满足条件,则函数z=﹣2x+y 的最大值是 .
17.函数y=1﹣(x ∈R )的最大值与最小值的和为 2 .
18.已知函数f (x )=x 2
+
x ﹣
b+(a ,b
为正实数)只有一个零点,则
+的最小值为 .
三、解答题
19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.
(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
20.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯
(1
(2)在上述抽取的6人中选2人,求恰有一名女性的概率.
(3)为了研究心肺疾病是否与性别有关,请计算出统计量2
K ,判断心肺疾病与性别是否有关?
(参考公式:)
)()()(()(2
d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)
21f x =sin ωx+φω00φ2π
(2)求函数g (x )=f (x )+
sin2x 的单调递增区间.
22.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;
Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且
2
2
OM
OA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
23.已知椭圆C:=1(a>2)上一点P到它的两个焦点F1(左),F2(右)的距离的和是6.
(1)求椭圆C的离心率的值;
(2)若PF2⊥x轴,且p在y轴上的射影为点Q,求点Q的坐标.
24.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5
A B两班中各随机抽5名学生进行抽查,其成绩记录如下:
x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.
(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.
枣强县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C.
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
2.【答案】B
【解析】解:线段AB的中点为,k AB==﹣,
∴垂直平分线的斜率k==2,
∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,
故选B.
【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.
3.【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.
法二:a=6 102,b=2 016,r=54,
a=2 016,b=54,r=18,
a=54,b=18,r=0.
∴输出a=18,故选D.
4.【答案】C
【解析】解:由积分运算法则,得
=lnx=lne﹣ln1=1
因此,不等式即即a>1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a>e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
5.【答案】C
【解析】解:=tan(49°+11°)=tan60°=,
故选:C.
【点评】本题主要考查两角和的正切公式的应用,属于基础题.
6.【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f′(x)=0的两个根,
∵f(x)=ax3+bx2+cx+d,
∴f′(x)=3ax2+2bx+c,
由f′(x)=3ax2+2bx+c=0,
得2+(﹣1)==1,
﹣1×2==﹣2,
即c=﹣6a,2b=﹣3a,
即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),
则===﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
7.【答案】C
【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,
故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,
则易知A
H的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,
1
AO1=3,由A1O1•A1A=h•AO1,可得A1H=,
故选:C.
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
8.【答案】D
【解析】解:设F2为椭圆的右焦点
由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,
所以点P是切点,所以PF2=c并且PF1⊥PF2.
又因为F1F2=2c,所以∠PF1F2=30°,所以.
根据椭圆的定义可得|PF1|+|PF2|=2a,
所以|PF2|=2a﹣c.
所以2a﹣c=,所以e=.
故选D.
【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.
9.【答案】B
【解析】解:∵a n=(﹣1)n(3n﹣2),
∴S11=()+(a2+a4+a6+a8+a10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S20=(a1+a3+…+a19)+(a2+a4+…+a20)
=﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30,
∴S11+S20=﹣16+30=14.
故选:B.
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.10.【答案】A
【解析】解:0<a <1,实数x ,y 满足,即y=,故函数y 为偶函数,它的图象关于y 轴对称, 在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A .
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
11.【答案】D
【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行
的判定定理知少相交条件;
C 不对,由面面垂直的性质定理知,m 必须垂直交线; 故选:
D .
12.【答案】C 【解析】
试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,
则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系.
二、填空题
13.【答案】
【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.
答案:4 14.【答案】
【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立,
即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-1 15.【答案】27
-. 【解析】
考点:向量的夹角.
【名师点睛】平面向量数量积的类型及求法 (1)
求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;
三是利用数量积的几何意义.
(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 16.【答案】 4 .
【解析】解:由约束条件
作出可行域如图,
化目标函数z=﹣2x+y 为y=2x+z ,由图可知,当直线y=2x+z 过点A (﹣2,0)时, 直线y=2x+z 在y 轴上的截距最大,即z 最大,此时z=﹣2×(﹣2)+0=4.
故答案为:4.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
17.【答案】2
【解析】解:设f(x)=﹣,则f(x)为奇函数,所以函数f(x)的最大值与最小值互为相反数,
即f(x)的最大值与最小值之和为0.
将函数f(x)向上平移一个单位得到函数y=1﹣的图象,所以此时函数y=1﹣(x∈R)
的最大值与最小值的和为2.
故答案为:2.
【点评】本题考查了函数奇偶性的应用以及函数图象之间的关系,奇函数的最大值和最小值互为相反数是解决本题的关键.
18.【答案】9+4.
【解析】解:∵函数f(x)=x2
+x﹣b+只有一个零点,
∴△=a﹣4(﹣b+)=0,∴a+4b=1,
∵a,b为正实数,
∴+=(+)(a+4b)=9++
≥9+2=9+4
当且仅当=,即a=b时取等号,
∴+的最小值为:9+4
故答案为:9+4
【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.
三、解答题
19.【答案】
【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.
所以,直线l的方程为…
由消y并整理,得…
设A(x1,y1),B(x2,y2)
则x1+x2=3p,
又|AB|=|AF|+|BF|=x1+x2+p=4,
所以,3p+p=4,所以p=1…
(II)由(I)可知,抛物线的方程为y2=2x.
由题意,直线m的方程为y=kx+(2k﹣1).…
由方程组(1)
可得ky2﹣2y+4k﹣2=0(2)…
当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y2=2x,得.
这时.直线m与抛物线只有一个公共点.…
当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).
由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.
解得.
于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…
因此,所求m的取值范围是.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
20.【答案】
【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.
21.【答案】
【解析】(本题满分12分)
解:(1)由表格给出的信息知,函数f (x )的周期为T=2(﹣0)=π.
所以ω=
=2,由sin (2×0+φ)=1,且0<φ<2π,所以φ=
.
所以函数的解析式为f (x )=sin (2x+)=cos2x …6分
(2)g (x )=f (x )+sin2x=
sin2x+cos2x=2sin (2x+
),
令2k
≤2x+
≤2k
,k ∈Z 则得k π﹣≤x ≤k π+,k ∈Z
故函数g (x )=f (x )+sin2x 的单调递增区间是:,k ∈Z …12分
【点评】本题主要考查了由y=Asin (ωx+φ)的部分图象确定其解析式,正弦函数的单调性,周期公式的应
用,属于基本知识的考查.
22.【答案】
【解析】Ⅰ由已知
224c a b a =+=,又222a b c =+,解得223,1a b ==,
所以椭圆C 的长轴长Ⅱ以O 为坐标原点长轴所在直线为x 轴建立如图平面直角坐标系xOy ,
不妨设椭圆C 的焦点在x 轴上,则由1可知椭圆C 的方程为2
213
x y +=;
设A 11(,)x y ,D 22(,)x y ,则A 11(,)x y --
∵2
2
OM OA OM =⋅ ∴M 1(2,0)x
根据题意,BM 满足题意的直线斜率存在,设1:(2)l y k x x =-, 联立22
1
13(2)x y y k x x ⎧+=⎪⎨⎪=-⎩,消去y 得2222211(13)121230k x k x x k x +-+-=,
22222222111(12)4(13)(123)12(413)0k x k k x k x k ∆=--+-=-++>,
22211121222
12123,,1313k x k x x x x x k k
--+=-⋅=++ 212111************
(2)(2)(5)4112313AD y y k x x k x x k x x kx k k k x x x x x x x k k --+---====-=----+
11111
(2)3AB y k x x k k x x ---===
1AD AB k k ∴⋅=- ∴AD ⊥AB
23.【答案】
【解析】解:(1)根据椭圆的定义得2a=6,a=3; ∴
c=;
∴
;
即椭圆的离心率是; (2
);
∴
x=
带入椭圆方程
得,
y=
;
所以Q (0
,).
24.【答案】
【解析】解:(Ⅰ)
∵(7+7+7.5+9+9.5)=8,
=(6+x+8.5+8.5+y ),
∵,∴x+y=17,①
∵
,
=,
∵,得(x﹣8)2+(y﹣8)2=1,②
由①②解得或,
∵x<y,∴x=8,y=9,
记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,
共有个基本事件,
∴P(C)=,
即2名学生颁发了荣誉证书的概率为.
(Ⅱ)由题意知X所有可能的取值为0,1,2,3,
P(X=0)==,
P(X=1)==,
P(X=2)==,
P(X=3)==,
EX==.
【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.。