龙湾区一中2018-2019学年下学期高二期中数学模拟题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙湾区一中2018-2019学年下学期高二期中数学模拟题
一、选择题
1. 数列中,若
,,则这个数列的第10项( ) A .19
B .21
C .
D .
2. 某一简单几何体的三视图如所示,该几何体的外接球的表面积是( )
A .13π
B .16π
C .25π
D .27π
3. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
A
.15 B
. C
.15 D
.15
【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力. 4. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )
5. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,
则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11
C .10
D .9
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
6. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
7. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( ) A .p ∧q B .p ∨q C .¬p ∨q D .p ∧¬q
8. 下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
9. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )
A .
B .或36+
C .36﹣
D .或36﹣
10.已知正项等差数列{}n a 中,12315a a a ++=,若1232,5,13a a a +++成等比数列,则10a =( ) A .19 B .20 C .21 D .22 11.设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )
A .1
B .0
C .﹣1
D .0或﹣1
12.若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( )
A .
B .
C .
D .
二、填空题
13.已知(x 2﹣
)n
)的展开式中第三项与第五项的系数之比为
,则展开式中常数项是 .
14.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .
15.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .
16.方程(x+y﹣1)=0所表示的曲线是.
17.一组数据2,x,4,6,10的平均值是5,则此组数据的标准差是.
18.已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x.给出如下结论:
①对任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”;其中所有正确结论的序号是.
三、解答题
19.计算:
(1)8+(﹣)0﹣;
(2)lg25+lg2﹣log29×log32.
20.设数列{a n}的前n项和为S n,a1=1,S n=na n﹣n(n﹣1).
(1)求证:数列{a n}为等差数列,并分别求出a n的表达式;
(2)设数列的前n项和为P n,求证:P n<;
(3)设C n=,T n=C1+C2+…+C n,试比较T n与的大小.
21.求下列各式的值(不使用计算器):
(1);
(2)lg2+lg5﹣log21+log39.
22.实数m 取什么数值时,复数z=m+1+(m ﹣1)i 分别是: (1)实数? (2)虚数? (3)纯虚数?
23.(本小题满分12分)已知12,F F 分别是椭圆C :22
221(0)x y a b a b
+=>>的两个焦点,且12||2F F =,点
在该椭圆上.
(1)求椭圆C 的方程;
(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两
点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.
24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .
龙湾区一中2018-2019学年下学期高二期中数学模拟题(参考答案)
一、选择题
1. 【答案】C
【解析】 因为
,所以
,所以数列构成以为首项,2为公差的等差数
列,通项公式为,所以
,所以
,故选C
答案:C
2. 【答案】C
【解析】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为
2.
则长方体外接球半径为r ,则
2r==5.∴
r=.∴长方体外接球的表面积
S=4πr 2=25π. 故选C .
【点评】本题考查了长方体的三视图,长方体与外接球的关系,属于中档题.
3. 【答案】C
【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,且VE ^平面
ABCD ,如图所示,所以此四棱锥表面积
为1S =262创
?11
23+2
2622
创创?
15=,故选C .
46
46
10
10
1
1
32
6
E V
D C
B
A
4. 【答案】B
【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .
【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.
5.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)
对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A,B,C,D的横坐标分别为a,b,c,d,
则a+d=4,b+c=4,由图象知另一交点横坐标为3,
故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,
即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.
故选:B.
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
6.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
7.【答案】C
【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.
垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.
则¬p∨q为真命题,其余都为假命题,
故选:C.
【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.
8.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为
,
∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
9.【答案】D
【解析】
【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:
或
.
故选D 10.【答案】C
【解析】设等差数列的公差为d ,且0d >. ∵12315a a a ++=,∴25a =. ∵1232,5,13a a a +++成等比数列, ∴2213(5)(2)(13)a a a +=++, ∴2222(5)(2)(13)a a d a d +=-+++,
∴2
10(7)(18)d d =-+,解得2d =.
∴102858221a a d =+=+⨯=.
11.【答案】B
【解析】解:∵(a ﹣i )•2i=2ai+2为正实数, ∴2a=0, 解得a=0. 故选:B .
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
12.【答案】A
【解析】解:∵双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形, ∴由正方形的对称性得,其对称中心在原点, 且在第一象限的顶点坐标为(x ,x ),
∴双曲线渐近线的斜率k=>1,
∴双曲线离心率e=
>
.
∴双曲线M 的离心率的取值范围是(,+∞).
故选:A .
【点评】本题考查双曲线的离心率的取值的范围的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.
二、填空题
13.【答案】 45 .
【解析】解:第三项的系数为C n2,第五项的系数为C n4,
由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10﹣i(﹣)i=(﹣1)i C10i=,
令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C108=45,
故答案为:45.
14.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.
故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
15.【答案】5.
【解析】解:∵,B=45°,面积S=2,
∴S=acsinB==2a=2.
∴a=1
由余弦定理得b2
=a2+c2﹣2accosB=12+(4)2﹣2×1××=25
∴b=5.
故答案为:5.
【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.
16.【答案】两条射线和一个圆.
【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.
由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,
故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,
故答案为:两条射线和一个圆.
【点评】本题主要考查直线和圆的方程的特征,属于基础题.
17.【答案】2.
【解析】解:∵一组数据2,x,4,6,10的平均值是5,
∴2+x+4+6+10=5×5,
解得x=3,
∴此组数据的方差[(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,
∴此组数据的标准差S==2.
故答案为:2.
【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.18.【答案】①②④.
【解析】解:∵x∈(1,2]时,f(x)=2﹣x.
∴f(2)=0.f(1)=f(2)=0.
∵f(2x)=2f(x),
∴f(2k x)=2k f(x).
①f(2m)=f(2•2m﹣1)=2f(2m﹣1)=…=2m﹣1f(2)=0,故正确;
②设x∈(2,4]时,则x∈(1,2],∴f(x)=2f()=4﹣x≥0.
若x∈(4,8]时,则x∈(2,4],∴f(x)=2f()=8﹣x≥0.
…
一般地当x∈(2m,2m+1),
则∈(1,2],f(x)=2m+1﹣x≥0,
从而f(x)∈[0,+∞),故正确;
③由②知当x∈(2m,2m+1),f(x)=2m+1﹣x≥0,
∴f(2n+1)=2n+1﹣2n﹣1=2n﹣1,假设存在n使f(2n+1)=9,
即2n﹣1=9,∴2n=10,
∵n∈Z,
∴2n=10不成立,故错误;
④由②知当x∈(2k,2k+1)时,f(x)=2k+1﹣x单调递减,为减函数,
∴若(a,b)⊆(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确.
故答案为:①②④.
三、解答题
19.【答案】
【解析】解:(1)8+(﹣)0﹣
=2﹣1+1﹣(3﹣e)
=e﹣.
(2)lg25+lg2﹣log29×log32
=
=
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.
20.【答案】
【解析】解:(1)证明:∵S n=na n﹣n(n﹣1)
∴S n+1=(n+1)a n+1﹣(n+1)n…
∴a n+1=S n+1﹣S n=(n+1)a n+1﹣na n﹣2n…
∴na n+1﹣na n﹣2n=0
∴a n+1﹣a n=2,
∴{a n}是以首项为a1=1,公差为2的等差数列…
由等差数列的通项公式可知:a n=1+(n﹣1)×2=2n﹣1,
数列{a n}通项公式a n=2n﹣1;…
(2)证明:由(1)可得,
…
=…
(3)∴,
=,
两式相减得…
=,
=,
=,
=,
∴…
∴…
∵n∈N*,
∴2n>1,
∴,
∴…
21.【答案】
【解析】解:(1)
=4+1﹣﹣
=1;
(2)lg2+lg5﹣log21+log39
=1﹣0+2
=3.
【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.
22.【答案】
【解析】解:(1)当m﹣1=0,即m=1时,复数z是实数;
(2)当m﹣1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m﹣1≠0时,即m=﹣1时,复数z 是纯虚数.
【点评】本题考查复数的概念,属于基础题.
23.【答案】
【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.
【解析】
(2)由三视图可知,
该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD
C 均为矩形,
2(11112)6S =⨯++⨯=+ 1
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.。