山东省日照市第一中学高考数学压轴专题《等差数列》难题汇编百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .
53
B .2
C .8
D .13
2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10
C .12
D .14
3.定义
12n
n p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n ,又2n n a b =,则1223
910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
4.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
5.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S
B .5S
C . 6S
D . 7S
6.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7
B .10
C .13
D .16
7.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
8.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2
B .
43
C .4
D .4-
9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )
A .9
B .12
C .15
D .18
11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+
B .2
()4f x x =
C .3()4x
f x ⎛⎫= ⎪⎝⎭
D .4()log f x x =
12.设等差数列{}n a 的前n 和为n S ,若()*
111,m m a a a m m N
+-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
13.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
14.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18
B .19
C .20
D .21
15.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51
B .57
C .54
D .72
16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
17.已知数列{x n }满足x 1=1,x 2=23
,且
11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(
23
)n -1
B .(
23)n C .
21
n + D .
1
2
n + 18.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
19.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=
B .560a a +=
C .670a a +=
D .890a a +=
20.在数列{}n a 中,129a =-,()
*
13n n a a n +=+∈N ,则1220a a a ++
+=( )
A .10
B .145
C .300
D .320
二、多选题
21.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列22.题目文
件丢失!
23.题目文件丢失!
24.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
25.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
26.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )
A .若59S S =,则必有14S =0
B .若59S S =,则必有7S 是n S 中最大的项
C .若67S S >,则必有78S S >
D .若67S S >,则必有56S S >
27.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >
B .数列1n a ⎧⎫

⎬⎩⎭
是递增数列 C .0n S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
28.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0
B .10S 最小
C .712S S =
D .190S =
29.已知数列{}n a 是递增的等差数列,5105a a +=,
6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )
A .320n a n =-
B .325n a n =-+
C .当4n =时,n T 取最小值
D .当6n =时,n T 取最小值
30.设等差数列{}n a 的前n 项和为n S ,公差为d ,且满足10a >,1118S S =,则对n S 描述正确的有( ) A .14S 是唯一最小值 B .15S 是最小值 C .290S =
D .15S 是最大值
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.B 【分析】
设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】
设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2, 故选:B 2.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 3.D 【分析】
由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】
设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n
=,则:2
2n S n =, 当1n =时,112a S ==,
当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-,
故212
n
n a b n ==-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:
1223910
1111111111233517191.21891919b b b b b b +++
⎡⎤⎛⎫⎛⎫⎛⎫=
-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎝⎭⎣⎦
=⨯= 故选:D 4.B 【分析】
先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据
()
11313713132
a a S a +=
=求解出结果.
【详解】
因为()351041072244a a a a a a ++=+==,所以71a =,
又()
1131371313131132
a a S a +=
==⨯=, 故选:B. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
5.B 【分析】
根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】
依题意55647560
0000
a a a a a a a d >⎧>⎧⎪
⇒<⎨
⎨+=+<⎩⎪<⎩
,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 6.C 【分析】
由题建立关系求出公差,即可求解. 【详解】
设等差数列{}n a 的公差为d ,
141,16a S ==,
41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.
故选:C 7.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +==,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B. 8.C 【分析】
由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:
()111116
11111322
a a S a
+⨯=
==,
612a ∴=,

5620a a +=,
58a ∴=,
654d a a ∴=-=.
故选:C . 9.A 【分析】
利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】
由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 10.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 11.D 【分析】
把点列代入函数解析式,根据{x n }是等比数列,可知
1
n n
x x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】
对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于B ,函数2
()4f x x =上的点列{x n ,y n },有y n =2
4n x ,由于{x n }是等比数列,所以1
n n
x x +为
常数,
因此1n n y y +-=()
2222
14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于C ,函数3()4x
f x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1
n n
x x +为常数, 因此1n n y y +-=
133()()44
n n
x x +-=33()()144n q x ⎡⎤
-⎢⎥⎣⎦
,这是一个与n 有关的数,故{y n }不是等差数列;
对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x
,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=11
444
4log log log log n n n n
x x x x q ++-==为常数,故{y n }是等差数列;
故选:D . 【点睛】 方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法. 12.D 【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()
02
m m m a a S ++++=<. 故选:D. 13.B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】 由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈, 即11
2
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B 14.B 【分析】
由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得
10a .
【详解】
()122n n a a n --=≥,且11a =,
∴数列{}n a 是以1为首项,以2为公差的等差数列,
通项公式为()12121n a n n =+-=-,
10210119a ∴=⨯-=,
故选:B. 15.B 【分析】
根据等差数列的性质求出103a =,再由求和公式得出答案.
【详解】
317102a a a += 1039a ∴=,即103a =
()11910
19191921935722
a a a S +⨯∴===⨯=
故选:B 16.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列,
则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 17.C 【分析】
由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫
⎨⎬⎩⎭
的通项公式,进而得出答案.
【详解】 由已知可得数列1n x ⎧⎫

⎬⎩⎭
是等差数列,且121131,2x x ==,故公差12d = 则
()1111122n n n x +=+-⨯=,故21
n x n =+
故选:C 18.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()
11515815151581202
a a S a +===⨯=. 故选:B 19.B 【分析】
由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】
由等差数列的求和公式可得()
110101002
a a S +=
=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 20.C 【分析】
由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

【详解】
因为129a =-,()
*
13n n a a n N +=+∈,
所以数列{}n a 是以29-为首项,公差为3的等差数列, 所以()11332n a a n d n =+-=-,
所以当10n ≤时,0n a <;当11n ≥时,0n a >; 所以()()12201210111220a a a a a a a a a ++
+=-++⋅⋅⋅++++⋅⋅⋅+
1101120292128
101010103002222a a a a ++--+=-
⨯+⨯=-⨯+⨯=. 故选:C. 二、多选题
21.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
22.无
23.无
24.AB
【分析】
根据等差数列的性质及717S S =可分析出结果.
【详解】
因为等差数列中717S S =,
所以89161712135()0a a a a a a ++
++=+=, 又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +=
=<,故D 错误, 故选:AB
【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.
25.BD
【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案.
【详解】
解:1167891011950S S a a a a a a -=++++==,
因为10a >
所以90a =,0d <,89S S =最大,
故选:BD .
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 26.ABC
【分析】
根据等差数列性质依次分析即可得答案.
【详解】
解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以
()114141402
a a S +==,故A 选项正确;
对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;
C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误.
故选:ABC .
【点睛】
本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.
27.ACD
【分析】
由已知得()()612112712+12+220a a a a S =
=>,又70a <,所以6>0a ,可判断A ;由已知得出2437
d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n
a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,可判断B ;由
()313117713+122
03213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ;
【详解】
由已知得311+212,122d a a a d ===-,()
()
612112712+12+220a a a a S ==>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,10n a <, 所以1n a 在1,6n n N 上单调递增,1n a 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是递增数列,故B 不正确;
由于()
313117713+122
03213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n n
S a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭
中最小项为第7项,故D 正确; 【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 28.ACD
【分析】
由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确.
【详解】
因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;
当0d <时,1(1)(1)922n n n n n S na d dn d --=+
=-+2(19)2d n n =-无最小值,故B 错误;
因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a +⨯===,故D 正确.
故选:ACD.
【点睛】
本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 29.AC
【分析】
由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.
【详解】
解:在递增的等差数列{}n a 中,
由5105a a +=,得695a a +=,
又6914a a =-,联立解得62a =-,97a =,
则967(2)3963
a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.
故A 正确,B 错误;
12(320)(317)(314)n n n n b a a a n n n ++==---
可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.
∴当4n =时,n T 取最小值,故C 正确,D 错误.
故选:AC .
【点睛】
本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.
30.CD
【分析】
根据等差数列中1118S S =可得数列的公差0d <,再根据二次函数的性质可知15S 是最大值,同时可得150a =,进而得到290S =,即可得答案;
【详解】
1118S S =,∴0d <,
设2n S An Bn =+,则点(,)n n S 在抛物线2y Ax Bx =+上,
抛物线的开口向下,对称轴为14.5x =,
∴1514S S =且为n S 的最大值,
1118S S =12131815070a a a a ⇒++
+=⇒=, ∴129291529()2902
a a S a +===, 故选:CD.
【点睛】
本题考查利用二次函数的性质研究等差数列的前n 项和的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.。

相关文档
最新文档