泛函分析习题答案第十章习题答案

合集下载

《实变函数和泛函分析基础》第二版-程其襄--第十章答案-10§1-7-答案

《实变函数和泛函分析基础》第二版-程其襄--第十章答案-10§1-7-答案

第十章 巴拿赫(Banach)空间中的基本定理1. 设X 是赋范线性空间,12,,,k x x x 是X 中K 个线性无关向量,12,,,k ααα是一组数,证明:在X 上存在满足下列两条件:(1)(),1,2,,v v f x v k α==,(2) M f ≤ 的线性连续泛函f 的充要条件为:对任何数12,,,k t t t ,11kkv vv vv v t Mt xα==≤∑∑都成立。

证明 必要性。

若线性连续泛函f 满足(1)和(2),则1111()kkkkv vv v v vv vv v v v t f t x ft xMt xα=====≤≤∑∑∑∑充分性。

若对任意数12,,,k t t t ,有11kkv vv vv v t Mt xα==≤∑∑。

令0X 为12,,,k x x x 张成的线性子空间。

对任意01kv vv t xX =∈∑,定义上线性泛函:0011:()kkv v v v v v f f t x t α===∑∑。

因0111()k kkv v v v v v v v v f t x t Mt x α====≤∑∑∑,故0f是有界的,且0f M ≤。

由泛函延拓定理,存在X 上的线性连续泛函f ,使f 限制在0X 上就是0f 。

f 显然满足条件(1)和(2)。

证毕。

2.设X 是赋范线性空间,Z 是X 的线性子空间,0x X ∈,又0(,)0d x Z >,证明存在'f X ∈,满足条件: 1)当x Z ∈时,()0f x =; 2)00()(,)f x d x Z = ;3)1f = 。

证明 记0{,}M x y C y Z λλ=+∈∈。

在M 上定义泛函0f :000()(,)f x y d x Z λλ+=,则以下三条件成立:1)当y Z ∈时,0()0f y =; 2)00()(,)f x d x Z =;3)0f 在M 上有界,且01Mf =。

其中3)可以这样证明:若0x y M λ+∈,则00000()(,)yf x y d x Z x x y λλλλλ+=≤+=+,所以01Mf ≤。

刘炳初等 《泛函分析》第二版课后习题答案

刘炳初等 《泛函分析》第二版课后习题答案

刘炳初等 《泛函分析》第二版课后习题答案习题二1.设(,)X 是赋范空间. 对于,,x y X ∈令10,,1,,x y d x y x y =⎧=⎨-+≠⎩证明:1d 是X 上的距离但不是由范数诱导的距离.证明:显然1d 满足距离公理1)、2). 若x y =,显然有111(,)0(,)(,)d x y d x z d z y =≤+; 若x y ≠,则当,x z z y ≠≠时,111(,)112(,)(,)d x y x y x z z y x z z y d x z d z y =-+≤-+-+≤-+-+≤+; 当,x z z y =≠时,1111(,)11(,)(,)(,)d x y x y z y d z y d x z d z y =-+=-+==+; 当,x z z y ≠=时,1111(,)11(,)(,)(,)d x y x y x z d x z d x z d z y =-+=-+==+; 因此,1(,)d x y 满足距离公理3).但10,,(,)1,,x d x x x θθθ=⎧=⎨+≠⎩显然不满足11(,)(,)d x d x αθαθ=,因此1d 不是由范数诱导的距离.2.在l ∞中,按坐标定义线性运算且对,k x l x ξ∞∈=定义sup n nx ξ=,证明l ∞是一个赋范空间.证明:显然这是一个范数.3.设M 是空间l ∞中除有穷个坐标之外为0的元之全体构成的子空间. 证明M 不是闭子空间.证明:令01111111,,,,,0,0,,1,,,,,2323n x x n n ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ,则显然我们有n x M ∈,且01110,0,,,,0()121n x x n n n n ⎛⎫-==→→∞ ⎪+++⎝⎭ ,但0x M ∉,因此M 不是l ∞得闭子空间.4.试举例说明,在赋范空间中,由1n n x ∞=<∞∑,一般地不能推出1n n x ∞=∑收敛.例:5. 设(,)X 是赋范空间,0X 是X 中的稠密子集,证明:对于每一x X ∈,存在{}0n x X ⊂,使得1n n x x ∞==∑,并且1n n x ∞=<∞∑.证明:取10x X ∈,使得112x x -<,则112x x ≤+;0X X = ,∴可取20x X ∈,使得12212x x x --<,则2121211122x x x x x x ≤--+-<+<;同理可取30x X ∈,使得123312x x x x ---<,则31231223111222x x x x x x x x ≤---+--<+<;继续此法,可得{}0n x X ⊂,使得112ni ni x x =-<∑,且21(2,3,)2nn x n -<= ,由此知1n n x x ∞==∑,并且1n n x ∞=<∞∑11112n n x ∞-=⎛⎫≤++ ⎪⎝⎭∑.6. 设(,)X 是赋范空间,{}0X ≠,证明:X 是Banach 空间,当且仅当,X 中的单位球面{}:1S x X x =∈=是完备的.证明:必要性是显然的(S 为X 中闭集),下证充分性.若S 是完备的,设{}n x 为X 中的Cauchy 列,由于m n m n x x x x -≤-,从而lim n n x →∞存在,不妨设lim n n x a →∞=. 若0a =,则显然0()n x n →→∞.若0a ≠,不妨设0n x ≠,则n n x S x ⎧⎫⎪⎪⊂⎨⎬⎪⎪⎩⎭,因为11()0m n n m m n n m n m nn m nm nm nx xx x x x x x x x x x x x x x x x -=-≤-+-→也即n n x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为S 中的Cauchy 列,由S 的完备性,lim n n n x x →∞存在,不妨设limn n n x x S x →∞=∈,从而有1lim0n n n nn n x a ax ax x x x x x x a →∞-=-→-=,故 lim 0n n x ax →∞-=,即{}n x 收敛,从而证得X 是Banach 空间.7. 证明0c 是可分的Banach 空间. 证明:分以下三步来证明:1). 证明0c 是l ∞的线性子空间. 事实上收敛列必有界,从而显然0c l ∞∈,且设()()12120,,,,,,,,,n n x y c ξξξηηη==∈ ,则()1122,,,,n n x y αβαξβηαξβηαξβη+=+++ ,由于lim 0n x y αβ→∞+=,从而我们有0x y c αβ+∈,即0c 是l ∞的线性子空间.2). 证明0c 是l ∞的闭子空间. 事实上,设()()()()120,,,,,k k k k n x c ξξξ=∈()(0)(0)(0)012,,,,n x ξξξ= ,并且()(0)0sup 0()k k n n nx x k ξξ-=-→→∞,因此0ε∀>,1N ∃,使得当1k N >时,()(0)0sup 2k k n n nx x εξξ-=-<. 由于(0)()()(0)()1()2k k k n n n n n k N εξξξξξ≤+-<+>,又因0k x c ∈,()0()k n n ξ→→∞,故存在()1N N ≥,使得当n N >时恒有()2k n εξ<,从而(0)n ξε<,n N ∀>,即00x c ∈,由此知0c 是l ∞的闭子空间.3). 由于l ∞为Banach 空间,而0c 是l ∞的闭子空间,从而0c 是Banach 空间,下证0c 是可分的. 设M 为一切有限有理数列全体,即()12,,,,n n x M ξξξξ=∈⇔ 全为有理数,且存在x N ,使得当x n N >时,0n ξ=. 显然1n n M Q ∞= ,可知M 可数.()1200,,,,,n y c εηηη∀>=∈ ,由于0n η→,故存在N ,使得当n N >时,n ηε<. 对()12,,,N N R ηηη∈ ,存在()12,,,N N Q ξξξ∈ ,使得1sup n n n Nηξε≤≤-<,从而存在()012,,,,0,0,N x M ξξξ=∈ ,使得0y x ε-<,即M 在0c 中稠密. 综上可知0c 是可分的Banach 空间.8. 设(,)n n X 是一列赋范空间,{}(),1,2,n n n x x x X n =∈= 且满足条件1pkk x ∞=<∞∑,用X 表示所有x 的全体,按坐标定义线性运算构成的线性空间,在X 中定义11(1)ppkk x x p ∞=⎛⎫=≥ ⎪⎝⎭∑,证明(,)X 是一个赋范空间.证明:只需证明 是一个范数即可. 事实上,显然0x ≥,且0x =,即10pkk x ∞==∑,从而有0(1,2,)kkx k == ,又k X 是赋范空间,故(1,2,k x k θ== ,从而可得x θ=,即证明了范数公理的条件1)成立,而条件2)显然成立,下证条件3)成立. 设{}{}(),,,1,2,n n n n n x x y y x y X n ==∈= ,由离散情形的Minkowski 不等式,我们有111111ppppp p kk kk k k k x y x yx y x y ∞∞∞===⎛⎫⎛⎫⎛⎫+=+≤+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,从而证得 是一个范数,从而(,)X 是一个赋范空间.9. 证明:1) 离散情形的Hölder 不等式与Minkowski 不等式;2) ()1p l p ≥是可分的Banach 空间.证明:1). 首先证明离散情形的Hölder 不等式,即证明下列不等式成立:11111pqp q k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,其中111,1p p q ≥+=. 令11,pqp q k kk k A B ξη∞∞====∑∑,由不等式pqa b ab p q ≤+可得11p qk k k k AB p A q Bξηξη≤+ 从而有1111111111pqpq pqk kk kkk k k k k k A B AB p A q Bpqp qξηξηξη--∞∞∞∞∞=====≤+=+=+=∑∑∑∑∑,所以11111pqp q k k k k k k k AB ξηξη∞∞∞===⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑. 由离散情形的Hölder 不等式,我们可以推导相应的Minkowski 不等式:111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑事实上,由Hölder 不等式,我们得到111111111(1)(1)1111111111,pp p k k k k kk k kk k k pqpqp q p p q p k k k k k k k k k k qp p p p p k k k k k k k ξηξξηηξηξξηηξηξηξη∞∞∞--===∞∞∞∞--====∞∞∞===+≤+++⎛⎫⎛⎫⎛⎫⎛⎫≤+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑由此即可得到111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.2). 首先,由于(){}12,,,,,1,2,,n n i Q r r r r r Q i n ==∈= 为n R 中全体有理点集,它是n R 中稠密的可数集,因此n R 是可分空间.令(){}12,,,,;,,1,2,,n i M r r r r n N r Q i n ==∈∈= ,易知M 为p l 的可数子集,下证p M l =. 事实上,设()12,,,,,0,p n x l ξξξε=∈∀> 存在()N ε,使得12ppi i N εξ∞=+<∑,从而有()12,,,,0,N y r r r M =∈ ,使得111122p ppNpp p i i i pi i N x yr εεξξε∞==+⎛⎫⎛⎫-=-+<+= ⎪⎪⎝⎭⎝⎭∑∑,因此p M l =,即()1p l p ≥是可分的Banach 空间.10. 证明任意线性空间中存在Hamel 基.证明:设E 是线性空间X 中的线性无关集,令集合M 为包含E 的所有线性无关集全体,在M 上定义偏序关系为''''⊂,显然M 的全序子集都有上界(所有集合的并集),由Zorn 引理,M 有极大元,不妨设为B ,下证B 即为X 的Hamel 基,如若不然,则存在y X ∈,但y B ∉,即y 与B 中任何元素都线性无关,从而{}y B M ∈ ,这与B 的极大性矛盾.11. 设A 是线性空间X 中的子集. 证明:111():,01.nn n k k k k Co A x x X n x A αααα=⎧⎫=++∈∈≥=⎨⎬⎩⎭∑ 是任意自然数,且证明:若令S 表示上式右端,则A S ⊂而且S 是凸集,从而()Co A S ⊂. 反之,设F 是包含A 的任一凸集,那么(1,2,,)i x F i n ∈= ,从而1ni i i x F α=∈∑,即得S F ⊂,从而()S Co A ⊂.12. 设E 是直线上的Lebesgue 可测集,且mE <∞,用p 表示()(1)p L E p ≥的范数,∞ 表示()L E ∞的范数. 证明:对于每一()x L E ∞∈,lim pp xx ∞→∞=.证明:设x M ∞=,若0mE =或0M =,显然成立,下设0,0mE M ≠≠:i). 根据本性上确界的可达性,即存在0E E ⊂,使得00mE =,并且0\sup ()E E M x t =,所以0\\()d ()d d ppp pEE E E E x t t x t t M t M mE =≤=*⎰⎰⎰,所以()1ppx M mE ≤*. 因为当p →∞时,()11pmE →,即lim pp xM x ∞→∞≤=;ii). 对任意的0ε>,令{}1:()E t E x t M ε=∈>-,由上确界定义易知10mE >,从而11()d ()d ()p pp EE x t t x t t M mE ε≥≥-*⎰⎰,令p →∞,则lim pp xM ω→∞≥-,由ε的任意性,知lim pp xM →∞≥.从而lim pp xM x ∞→∞==.13. 设()11,X ,()22,X 是赋范空间,在乘积线性空间12X X ⨯中定义()1212112212,max ,z x x zx x =+=,其中()1212,,z X X z x x ∈⨯=.证明1z ,2z 是12X X ⨯上的等价范数.证明:显然2122z z z ≤≤,从而它们是等价范数.14.设X 是区间[],a b 上所有连续函数全体按通常方式定义线性运算所成的线性空间,对于x X ∈定义1sup ();()d ba a t bx x t x x t t ≤≤==⎰.证明: 和1 是X 上两个不等价的范数.证明:显然 和1 是X 上的两个范数,且1()x b a x ≤-,要证两个范数不等价,则只需证明不存在0c >,使得1x c x ≥,即证明存在[]C ,n x a b ∈,使得1n n x x →∞.令()()(),,2()2,,20,,n b aa n t a a t a nb a nbb ax t a b a t a b a n nb a a t b n-⎧+-≤≤+⎪⎪--⎪=--++≤≤+⎨-⎪⎪-+≤≤⎪⎩则()()12,,2n n b a b a x x b n-+==()()122n nx nx b b a b a =→∞-+.15. 设Banach 空间(,)X 具有Schauder 基{}n e ,用M 表示所有使得1k k k e ξ∞=∑在X中收敛的数列{}k ξ的全体,按通常方式定义线性运算构成的线性空间,对于每一{}k x M ξ=∈,定义11supnk knk x eξ==∑,证明(,)M 是Banach 空间.证明:首先易知1 是范数.设{}()m x M ∈是Cauchy 列,()()()()()12,,,,m m m m n x ξξξ=16. 设(,)X 是赋范空间,Y 是X 的子空间,对于x X ∈,令(),inf y Yd x Y x y δ∈==-.如果存在0y Y ∈,使得0x y δ-=,称0y 是x 的最佳逼近.1) 证明:如果Y 是X 的有穷维子空间,则对每一x X ∈,存在最佳逼近. 2) 试举例说明,当Y 不是有穷维空间时,1)的结论不成立. 3) 试举例说明,一般地,最佳逼近不惟一.4) 证明对于每一点x X ∈,x 关于子空间Y 的最佳逼近点集是凸集.证明:1).有下确界定义,0,n y Y ε∀>∃∈,使得n x y δδε≤-<+.因为Y 是有穷维子空间,从而存在子列{}{}k n n y y ⊂,使得0k n y y →,将上面不等式中的n 改为k n ,并令k →∞,便有0x y δδε≤-<+,由ε的任意性即可得到0x y δ-=,即0y 就是x 的最佳逼近元.2).例:在0c 空间中,令{}011:02n n nn n M x c ξξ∞∞==⎧⎫==∈=⎨⎬⎩⎭∑,则易证M 是0c 的闭子空间. 设()02,0,,0,x = ,下面说明对此0x ,M 中不存在最佳逼近元. 事实上,N m ∀∈,令()111,1,,1,0,0,2m m m x M -⎛⎫⎪=---∈ ⎪ ⎪⎝⎭个,则()00111(,)12m m m x x d x M →∞--=+⇒≤.下证0,1y M x y ∀∈->.用反证法.假设存在()12,,,,k y M ξξξ=∈ ,使得01x y -≤,则()0122,,,,k x y ξξξ-=--- ,011,2,12 1.k k x y ξξ⎧≤≥-≤⇒⎨-≤⎩又由()12211,21222kkk kkk k k ξξξξ∞∞==≤≥⇒≤<⇒<∑∑.这与121ξ-≤矛盾.所以0,1y M x y ∀∈->.两边取下确界,得到0(,)1d x M ≥,从而我们可以得到0(,)1d x M =,即在M 上找不到一点,使得该点是0x 的最佳逼近. 3).例:在2R 中,对()212,x x x R ∀=∈,定义范数12max(,)x x x =,并设()00,1x =,()11,0e =,a R ∈,则(){}01,1max ,1x ae a a -=-=,从而01min 1a Rx ae ∈-=,但最佳逼近元{}11a ae ≤不惟一.4).设M 为x 关于子空间Y 的最佳逼近点集,则对[]12,,0,1y y M λ∀∈∈,12(,)x y x y d x Y -=-=,从而()()()121212(1)(1)(1)(,)x y y x y x y x y x y d x Y λλλλλλ-+-=-+--≤-+--=又显然()12(1)(,)x y y d x Y λλ-+-≥,从而()12(1)(,)x y y d x Y λλ-+-=,即12(1)y y M λ+-∈,所以M 是凸集.17. 设(,)X 是赋范空间,如果对任意,,x y X x y ∈≠且1x y ==必有2x y +<,称(,)X 是严格凸赋范空间.1) 证明赋范空间(,)X 是严格凸的,当且仅当,对任意,x y X ∈,x y x y +=+必有(0)x y αα=>.2) 证明在严格凸赋范空间中,对于每一个x X ∈,x 关于任意子空间Y 的最佳逼近是惟一的.证明:1). 必要性. 设x y x y +=+,则11x y x y xy x y x y x x yy +=⇒+=+++,由严格凸性,x yc x y=,即c x x y y=,令c x yα=,即可得到x y α=.充分性.用反证法,如果存在,,x y X x y ∈≠且1x y ==,使得(1)1x y ββ+-=,即(1)(1)x y x y ββββ+-=+-,由假设,必存在α,使得(1)x y βαβ=-,又因为1x y ==,从而可得x y =,矛盾.2).用反证法.事实上,若(),0d x Y >,并有12(,)x y x y d x Y -=-=,则对[]0,1α∀∈,由严格凸性有()()()12121211(1)(1)(,)(,)(1)1(,)(,)x y y x y x y d x Y d x Y x y x y d x Y d x Y αααααα-+-=-+--⎛⎫⎛⎫--=+-< ⎪ ⎪⎝⎭⎝⎭即()12(1)(,)x y y d x Y αα-+-<,这显然与(,)d x Y 的定义矛盾.但若(),0d x Y =,12,y y 是相应的最佳逼近元,则必有12y x y ==,从而最佳逼近元必是惟一的. 18.设(,)X 是赋范空间,如果对任意0ε>,存在0δ>,当x y ε-≥,1x y ==时必有2x y δ-≤-,称(,)X 是一致凸的. 证明: 1) 一致凸赋范空间必是严格凸的. 2) [],C a b 不是一致凸的. 3) []1,L a b 不是一致凸的.证明:设X 是一致凸的赋范空间,,,x y X x y ∈≠且1x y ==,则必存在00ε>,使得0x y ε-≥(若不然,对0ε∀>,都有x y x y ε-<⇒=,矛盾). 由一致凸性,对此00ε>,必存在0δ>,使得22x y δ-≤-<,从而X 是严格凸的. 2). 由1),只需证明[],C a b 不是严格凸的即可.以[]0,1C 为例.取()1,()x t y t t ≡= 都满足1x y ==,但2x y +=.从而不是严格凸的.3). 同理. 取()1,()2x t y t t ≡=,都满足1x y ==,但2x y +=.从而不是严格凸的.习题三1. 设1sup n n α≥<∞,在1l 上定义算子:T y Tx =,其中{}{},k k x y ξη==,k k k ηαξ=(1,2,)k = . 证明T 是1l 上的有界线性算子并且1sup n n T α≥=.证明:111,sup k k k k k k k k k k x ηαξηαξα∞∞≥====≤∑∑ ,()112,,,,,k x l ξξξ∀=∈()112,,,,k y l ηηη∴=∈ ,且1sup k k Tx x α≥≤ ,1sup k k T α≥∴≤.另一方面,由上确界定义,对任意的n ,存在k n ,使得11sup k n k k n αα≥>-. 取()010,0,,1,0,k n x = 第项为,则显然01x =,且00k n Tx T x T α=≤=,从而11sup k k T nα≥-<. 令n →∞,则有1sup k k T α≥≤. 所以1sup k k T α≥=.3. 证明Banach 空间X 是自反的,当且仅当*X 是自反的.证明:必要性. 设X 是自反的,:**()J X X J X →=为典型映射,现证*X 也自反. 任取****:x x J X =→ k ,显然**x X ∈. 因为()****()()(*)x Jx x x Jx x ==,及X 的自反性得()**R J X =,因此对任意的****x X ∈,()*******(*)x x x x =,由此知1****J x x =,其中1:****J X X →为典型映射,且()1***R J X =,从而*X 是自反的.充分性. 设*X 自反,假设X 不是自反的,即0()J X X =为**X 的真闭子空间(因为J 是X 到0X 上的等距同构映射,且X 完备),由Hann —Banach 定理,存在0******x X ∈,满足0***1x =,且()**x J X ∀∈,()0*****0x x =. 因为()1****J X X =,故存在*0*x X ∈,使得********001001,()x x J x x ===,********001001,()x x J x x ===,因而对任意的****x X ∈,()****00(**)**x x x x =,但()()*****000()0,x x x x Jx x X ===∀∈,因此*0*x X θ=∈,这与*01x =矛盾,从而设X 是自反的. 20. 设X 是一致凸赋范空间,()0,1,2,n x x X n ∈= . 证明如果()0Wn x x n −−→→∞且()0n x x n →→∞,则()0n x x n →→∞.证明:不妨设00,n x x θ≠≠,用反证法. 为简单起见,设01n x x ==,且n x 不按范数收敛于0,那么可设00ε∃>,使得00n x x ε-≥,由空间的一致凸性,0δ∃>,使得02n x x δ+≤-. 由于0Wn x x −−→,故*f X ∀∈,且1f =有()()0n f x f x →,从而有()()002n f x x f x +→. 由于()002n n f x x f x x δ+≤+≤-及()()0001112sup sup lim22n n f fx f x f x x δ→∞==-==+≤知01x <,这与01x =矛盾,从而必有()0n x x n →→∞.22. 证明空间(1)pl p <<∞上的有界线性泛函的一般形式为()1k kk f x αξ∞==∑,其中{}pk x l ξ=∈,{}111qk y l p q α⎛⎫=∈+= ⎪⎝⎭并且11q k k f q α∞=⎛⎫= ⎪⎝⎭∑,()*p q l l =.证明:令()0,,0,1,0,n e = ,显然()12,,,,pn x l ξξξ∀=∈ ,有1i ii x eξ∞==∑. 设()1i i i f x ξη∞==∑,其中()12,,,,qn y l ηηη=∈ ,则由Hölder 不等式,我们可以得到 ()11111qpqpi i i i i i i f x y x ξηηξ∞∞∞===⎛⎫⎛⎫=≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑,从而可知()*pf l ∈,且f y ≤.反之,对任一()*p f l ∈,()()1,2,i i f e i η== ,()12,,,,n y ηηη= ,下证q y l ∈且()1i i i f x ξη∞==∑及f y =. 事实上,令11sgn nq p n ii i i x e l ηη-==∈∑,则()()111sgn nnq qn ii i i n i i f x f e f x ηηη-====≤∑∑. 由于()11111nnppp q q n ii i i x ηη-==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑,因此()111,2,nqq i i fn η=⎛⎫≤= ⎪⎝⎭∑ ,令n →∞得11nqq i i y fη=⎛⎫=≤ ⎪⎝⎭∑,令(),:*p q Tf y T l l =→,则y T f f =≤,从而y T f f ==. 又显然T 是线性算子,且为满射,故为()*p l 到q l 上的等距同构映射,从而()*p q l l =.习题四1. 设12,,,,n H H H 是一列内积空间,令{}21:,.n n n nn H x x H x ∞=⎧⎫=∈<∞⎨⎬⎩⎭∑对于{}{},n n x y H ∈,定义{}{}{}(,)n n n n x y x y αβαβαβ+=+∈k ,{}{}(),n n x y ()1,n n n x y ∞==∑.证明H 是内积空间,并且当每一个n H 都是Hilbert 空间时,H 是Hilbert 空间. 证明:先证H 是内积空间. 因为()()11222211111,,n n n n n n n n n n n n n x y x y x y x y ∞∞∞∞∞=====⎛⎫⎛⎫≤≤≤<∞ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑,故定义{}{}(),nnx y ()1,nnn x y ∞==∑是有意义的. 又由{}{}{}()()()(){}{}(){}{}()111,,,,,,nnnnn n n n n n n n n n n n n x y z xy z x z y z x z y z αβαβαβαβ∞∞∞===+=+=+=+∑∑∑及{}{}()()()(){}{}()111,,,,,nnnnnnnnnnn n n x y x y y x y x y x ∞∞∞=======∑∑∑,而且{}{}()()1,,0nnnnn x x x x ∞==≥∑及{}{}()()(),0,01,2,n n n n x x x x n =⇔==⇔(){}1,2,n n x n x θθ==⇔= ,由内积定义可知H 是内积空间.再证H 是完备的. 设{}()1i i x ∞=是H 中的Cauchy 列,其中()()()()()12,,,,i i i i n x x x x = .由定义00,i ε∀>∃,使得当0,i j i >时,有()()i j x x ε-<,即122()()1i jn nn x x ε∞=⎛⎫-< ⎪⎝⎭∑,于是()()i j n n x x ε-<,所以{}()1i n n x ∞=是n H 中的Cauchy 列(n 固定),设()(0)i n n x x →,并令()(0)(0)(0)12,,,,n x x x x = ,由前证122()()1i j n n n x x ε∞=⎛⎫-< ⎪⎝⎭∑,0,i j i ∀>,故对固定的k 使得2()()21ki j n nn x x ε=-<∑. 令j →∞,则2()(0)21ki n nn x x ε=-≤∑,再令k →∞,就有2()(0)21i n nn x x ε∞=-≤<∞∑,即()i x x H -∈. 因为H 是线性空间,于是有()()()i i x x x x H =--∈,故点列()()1,2,i x i = 按H 中范数收敛于x ,于是H 是完备的,即是Hilbert 空间.2. 设H 是Hilbert 空间,M 是H 的闭子空间. 证明M 是H 上某个非零连续线性泛函的零空间,当且仅当M ⊥是一维子空间.证明:必要性. 若M 是H 上某个非零连续线性泛函的零空间,由Riesz 表示定理知存在f y H ∈,使得()(),,f f x x y x H =∀∈,于是()(){}{}:,0,f f f M x f x x y y H y ⊥===∈=,由本节题4知.{}(){}span f f M y y ⊥⊥⊥==是一维子空间.充分性. 若M ⊥是非零元y 生成的一维子空间,,x H ∀∈令()(),f x x y =,则显然有()0f x x y =⇔⊥,即()x M M ⊥⊥∈=,所以M 是非零连续线性泛函f 的零空间.4. 设M 是Hilbert 空间H 上的非空子集,证明()M ⊥⊥是包含M 的最小闭子空间.证明:记span Y M =,则Y 是包含M 的最小闭子空间,故只需证()M Y ⊥⊥=.事实上,x Y ∀∈,有s p a n n x M ∈,使得n x x →. y M ⊥∀∈有()(),lim ,0n n x y x y →∞==,故()x M ⊥⊥∈,即有()Y M ⊥⊥⊂. 又因为Y 是闭子空间,故有()Y Y ⊥⊥=(证明见指南P63例5). 于是由M Y ⊂可得Y M ⊥⊥⊂,进而可得()()M Y Y ⊥⊥⊥⊥⊂=,所以可得()span M Y M ⊥⊥==.5. 设H 是内积空间,M 是H 的线性子空间. 证明如果对于每一个x H ∈,它在M 上的正交投影存在,则M 必是闭子空间.证明:x M ∀∈,存在{}n x M ⊂,使得lim n n x x →∞=. 由条件0101,,x x x x M x M ⊥=+∈∈, 于是001n x x x x x M ⊥-→-=∈. 注意到0n x x M -∈,故有()()1101,lim ,0n n x x x x x →∞=-=即1x θ=,从而0x x M =∈,从而M 是闭子空间.6. 证明在可分内积空间中,任一标准正交系最多为一可数集.证明:设H 为可分的内积空间,{}1n n x ∞=为H 的可数稠密子集,又设{}:e λλ∈Λ为H 中任意一簇标准正交系,则,n x λ∀∈Λ∃,使得2n x e λ-<. 若Λ不可数,则必有{}1k n n x x ∞=∈以及,','λλλλ∈Λ≠,使得',22k k x e x e λλ-<-<,于是''k k e e x e x e λλλλ-≤-+-<但由勾股定理,有222''2e e e e λλλλ-=+=,即'e e λλ-=H 中的任一标准正交系最多为可数集. 7. 设{}e I αα∈是内积空间H 中的标准正交系. 证明对于每一个x H ∈,x 关于这个标准正交系的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.证明:记{}:F e I αα=∈,由Bessel 不等式, x X ∀∈,若取n 个F 中元素e λ排成一列,不妨设为12,,,n e e e ,则有()221,ni i x e x =≤∑,于是在F 中使(),x e λ≥得e λ只能为有限个,记():,,n F e x e λλλ⎧=∈Λ≥⎨⎩及1ˆnn F F ∞== . 显然ˆF 为可数集,且当ˆe F F λ∈-时,(),0x e λ=,即x 的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.8. 设H 为Hilbert 空间,()0,1,2,n x x H n ∈= .当n →∞时,0Wn x x −−→,且0n x x →,证明()0n x x n →→∞.证明:由()()()()()2,,,,,n n n n n n n x x x x x x x x x x x x x x -=--=--+,故当n →∞时,()2222,0n x x x x x -→-=,即()0n x x n →→∞.11. 设T 是Hilbert 空间H 上的线性算子且对所有,x y H ∈,()(),,Tx y x Ty =.证明T 是有界算子.证明:只需证明T 是H 上的闭线性算子. 设n x H ∈,且满足00,n n x x Tx y →→,则y H ∀∈,由条件()(),,n n Tx y x Ty =. 令n →∞,则有()()()000,,,y y x Ty Tx y ==,故00y Tx =,即T 是闭线性算子,从而由闭图像定理可知T 有界.13. 设H 是Hilbert 空间,(),x y ϕ是定义在H H ⨯上的泛函且关于x 是线性的,关于y 是共轭线性的并且存在常数C ,使得()(),,x y C x y x y H ϕ≤∈.证明:存在惟一算子()A B H ∈,使得对所有,x y H ∈,()(),,x y Ax y ϕ=且A ϕ=,其中()11sup ,x y x y ϕϕ===.证明:因(),x y ϕ关于y 是共轭线性的,故(),x y ϕ关于y 是线性的,固定x H ∈,则(),x y ϕ为H 上的有界线性泛函,由Riesz 表示定理,存在惟一*x H ∈,使得()(),,*x y y x ϕ=,即()(),*,x y x y ϕ=. 作映射:*A x x ,有()()(),*,,x y x y Ax y ϕ==由于()()()()()()()()1212121212,,,,,,,A x x y x x y x y x y Ax y Ax y Ax Ax y αβϕαβαϕβϕαβαβ+=+=+=+=+,即()1212A x x Ax Ax αβαβ+=+又因为()()2,,Ax Ax Ax x Ax x y ϕϕ==≤,即A ϕ≤,所以()A B H ∈.再由Schwartz 不等式,有()(),,x y Ax y Ax y A x y ϕ=≤≤,故A ϕ≤,于是 A ϕ=. 若设()T B H ∈,且满足()(),,x y Tx y ϕ=,则()(),,,,A xy T x y xy H =∀∈,即()(),0,,A T x y x y H -=∀∈. 特别地,令()y A T x =-,得()20A T x -=,因此(),A T x x H θ-=∀∈,故0A T -=,所以A T =.14. 设{}n T 是Hilbert 空间H 上的有界自共轭算子列且()0n T T n -→→∞. 证明T 也是自共轭的.证明:由()()***0n n n T T T T T T n -=-=-→→∞,即可得**n T T →,由n T 的自共轭性即可得T 也是自共轭的.2011年博士研究生第二次公开招考报考须知发布时间:2011-02-24 08:37 来源:本站点击量:303一、报名2011博士研究生第二次公开招考网上报名时间:2011年3月4日-13日,网址:/hityzb/zs.jsp?cla=2。

实变函数论与泛函分析课后答案

实变函数论与泛函分析课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(i n f s u p =≥∈x mA nm N b χ ,即)(in f l i m x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

《泛函分析》习题解答(不完全版)

《泛函分析》习题解答(不完全版)

( x1 , y) ( x1 , x2 ) ( x2 , y) , ( x2 , y ) (x2 , x1 ) (x1 , y ).
对两端关于 y A 取下确界, 可以得到 . inf ( x1 , y) ( x1 , x2 ) inf ( x2 , y) , inf (x2 , y ) (x2 , x1 ) inf (x1 ,y )
1 1
f ( x) L1 ([a, b]) , 需要证明: 对于任意的 0 , 存在 g ( x) C[a, b] , 使得
( f , g)
[ a ,b ]
| f ( x ) g ( x) | dx .
事实上, 首先根据积分的绝对连续性, 存在 0 , 使得当 E [a, b] , 只要 mE , 就有
x n , 0 x 1, f n ( x ) : 1, 1 x 2.
则 { f n ( x )} C ([0,2]) 在本题所定义的距离的意义下是 Cauchy 列, 因为
( f n , f m ) | f n ( x) f m ( x) | dx

因此, 根据 Lebesgue 有界收敛定理, 可以得到
( f n , g ) | f n ( x ) g ( x ) | dx
0
1
| x n 0 | dx x n dx
0 0
1
1
1 0. n 1
但 g ( x) C ([0,2]) . (2) C ([a, b]) 的完备化空间是 L ([a, b]) . 因为 (i) 在距离 的意义下, C ([a, b]) 是 L ([a, b]) 的稠密子集. 事实上, 任意取定一个

《实变函数与泛函分析基础》第二版_程其襄第十章答案

《实变函数与泛函分析基础》第二版_程其襄第十章答案

{ (
)
}
记 S 2 = x d x, x N 2 ≤

(
)
1 1 ,L L . 存 在 N k > N k −1 , 当 m, m′ > N k 时 , d ( xm , xm′ ) < k , 记 2 2
1 ∞ Sk = x d x, xNk ≤ k −1 ,L L .这样得到一列闭球 { Sk }k =1 ,对任意的 k 和 x ∈ Sk ,有 2
Si = x d ( x, xi ) ≤ ε i , i = 1, 2,L , 且 S1 ⊃ S2 ⊃ L ⊃ S n ⊃ L , ε i → 0 ( i → ∞ ) , 则存在唯一

{
}
的 x∈
I
Si ;反之,若在度量空间 X 中成立闭球套定理,则 X 是完备度量空间.
i =1
证 设 X 是完备度量空间, { Si } 为一列闭球套.因为 εi → 0( i →∞) ,所以,对 ∀ε > 0,∃N ∈¢ + , 当 n, m > N 时,有 d ( xn , xm ) < ε ,因而 { xi } 是 Cauchy 列.设 lim xn = x0 ∈ X .
(
)
d x, xN k −1 ≤ d x, xNk + d xNk , xN k −1 ≤
(
)
(
) (
)
1 2
k −1
+
1 2
k −1
=
1 2
k −2
,

{ xn }n =1 是线性无关的,故 xn+1 ∉ Mn ,由上述习题 2 知, ∃fn ∈ X ′ ,使

泛函分析习题及参考答案

泛函分析习题及参考答案
p p
En
∫x
n
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
泛函分析习题及参考答案
一、在 R 中定义如下三种距离: x = ( x1 , x2 ), y = ( y1 , y2 ) ∈ R ,
2
2
d1 ( x, y ) = ( x1 − y1 ) 2 + ( x2 − y2 ) 2 , d 2 ( x, y ) = max{ x1 − y1 , x2 − y2 } ,
i =1
= ∑ ξi( n ) − ξi +
p i =1
K
i = K +1∑∞ξi( n ) − ξi
p
≤∑ξ
i =1
K
(n) i
− ξi
p
∞ p 1 ⎛ ∞ p 1 ⎞ + ⎜ ( ∑ ξi( n ) ) p + ( ∑ ξi ) p ⎟ < 2ε p 。 i = K +1 ⎝ i = K +1 ⎠
1
取 δ = min(δ 1 , δ 2 ) ,则 e ⊂ E , me < δ 时,

e
x n (t ) dt ) p < ε ,对每个自然数 n 成立。
p
即 {x n (t )} 在 [a, b] 上具有等度绝对连续的积分。 充分性证明,对任何 ε > 0 ,令 E n (ε ) = E ( x n − x ≥ ε ) ,则 mE n (ε ) → 0 。由此可知, 对任何 δ > 0 ,存在 N > 0 ,使得 n > N 时, mE n (ε ) < δ 。 令 Fn (ε ) = E ( x n − x < ε ) ,则 ρ ( x n , x ) =

北大出版社 泛函分析 习题答案

北大出版社 泛函分析 习题答案
2.3.4 设 X , Y 是 B∗ 空间, D 是 X 的线性子空间并且 A : D → Y 是线性映射. 求证: (1) 如果 A 连续且 D 是闭的, 则 A 是闭算子; (2) 如果 A 连续且是闭算子, 那么 Y 完备蕴涵 D 完备; (3) 如果 A 是单射的闭算子, 则 A−1 也是闭算子; (4) 如果 X 完备, A 是单射的闭算子, R(A) 在 Y 中稠密并且 A−1 连续, 那么 R(A) = Y .
4.3 紧算子的谱理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Hilbert-Schmidt 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
由习题 1.4.7, 存在 x0 ∈ X , 使 x0 ≤ 2 [x0] 0 ≤ 2M y0 .
若 y0 = 0, 由习题 1.4.7, 存在 xn ∈ [xn], xn ≤ 2 [xn] 0 ≤ 2M yn → 0.

若 y0 [zn] ∈
= 0, 由 yn X /N (A), 使
→ y0, 则存在 k, 当 n A˜[zn] = yn − y0. 由习题
4 紧算子与 Fredholm 算子
8
4.1 紧算子的定义和基本性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Riesz-Fredholm 理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

泛函分析部分课后习题答案

泛函分析部分课后习题答案
n
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b

xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。

泛函分析答案

泛函分析答案

泛函分析答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--泛函分析答案:1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。

子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。

3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。

4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。

5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x)(3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x,y)=(21||ni i i x y =-∑)1/2d 1(x,y)=1||ni i i x y =-∑d p (x,y) = (1||np i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i nx y ≤≤-6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n?∞),这时记作0lim nn xx -->∞=,或简单地记作x n ?x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。

泛函分析(含答案)

泛函分析(含答案)

泛函分析(含答案)山东师范大学试题(时间:120分钟共100分)课程编号: 4081331 课程名称:数学分析方法适用年级: 2004 学制: 四适用专业:数学与应用数学试题类别: 补考二、证明题题号一二三阅卷人复核人得得分分阅卷考生注意事项人1、全题三个大题,22个小题。

(本题共五个小题,每小题14分,共70分):一、判断题 1、证明:连续函数空间在范数下构成一Banach空间。

,,C,,a,bf,maxfxa,x,b得分阅卷人 ,1证显然为一线性空间; C,,a,b判断正确(?)与错误(×)(本题10个小题,每题3分,共30分):,**2 ; ,,,,,,f,maxfx,0;f,0,maxfx,0,fx,0X,,,,1、 ( )距离空间中的序列收敛于的充要条件是的任意子列收敛于;t xxxx,Xnna,x,ba,x,b P311 2 ,,,,,f,max,fx,,maxfx,,fa,x,ba,x,b2、 ( )任一离散空间必是完备的;t 311 93、 ( )全有界集不一定可分;f 312 21 ,,,,,,,,f,g,maxfx,gx,maxfx,maxgx,f,ga,x,ba,x,ba,x,b4、 ( )相对紧集的闭包是紧集; t 313 345、 ( )完备距离空间的闭子空间可能是完备的;f 313 29 因而为一赋范线性空间 C,,a,bXT:F,F,X闭6、 ()是完备距离空间,,如果存在,使,,,,0,1, 下证的完备性 C,,a,b3***,则使得;f 280 Th1 ,,,,,Tx,Ty,,x,y,,x,y,F,!x,FTx,xm,n,N 设,,是的一基本列,及,,使得时,有,,,0,N,0fC,,a,bn7、 ( )有界数列空间不是可分的;t 292 7.6.5 m8、 ( )函相对紧集未必是有界的;f 294 系1 ,,,f,f,f,f,,。

依范数定义有,对有 ,x,,,a,bmnmnTT9、 ( )紧有界线性算子连续有界; t 318 Th2 , ,,,,,,,,,fx,fx,maxfx,fx,f,f,,,x,y,x,y10、 ( )在空间,中,是相对紧集。

《泛函分析》课后习题答案(张恭庆)

《泛函分析》课后习题答案(张恭庆)

2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须

6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn


m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f

泛函分析习题参考答案

泛函分析习题参考答案

泛函分析习题参考答案一、设),(y x d 为空间X 上的距离,试证:),(1),(),(~x y d x y d x y d +=也是X 上的距离。

证明:显然,0),(~≥y x d 并且y x y x d y x d =⇔=⇔=0),(0),(~。

再者,),(~),(1),(),(1),(),(~y x d y x d y x d x y d x y d x y d =+=+=;最后,由tt t +-=+1111的单调增加性及),(),(),(y z d z x d y x d +≤,可得 ),(),(1),(),(),(1),(),(),(1),(),(),(1),(),(~y z d z x d y z d y z d z x d z x d y z d z x d y z d z x d y x d y x d y x d +++++=+++≤+=),(~),(~),(1),(),(1),(y z d z x d y z d y z d z x d z x d +=+++≤。

二、设1p ≥,1()()(,,,)i n n p n x l ξξ=∈, ,2,1=n ,1(,,,)pi x l ξξ=∈,则n →∞时,1()1(,)0pp n n i i i d x x ξξ∞=⎛⎫=-→ ⎪⎝⎭∑的充要条件为)1(n →∞时,()n i i ξξ→,1,2,i =;)2(0ε∀>,存在0N >,使得()1pn i i N ξε∞=+<∑对任何自然数n 成立。

必要性证明:由1()1(,)0ppn n i i i d x x ξξ∞=⎛⎫=-→ ⎪⎝⎭∑可知,()n i i ξξ→,1,2,i =。

由1(,,,)pi x lξξ=∈可知,ε∀>,存在10N >,使得11(2ppi i N εξ∞=+<∑,并且1n N >时,()1(2p n p i i i εξξ∞=-<∑。

(完整word版)泛函分析习题标准答案

(完整word版)泛函分析习题标准答案

(完整word版)泛函分析习题标准答案第⼆章度量空间作业题答案提⽰ 1、试问在R 上,()()2,x y x y ρ=-能定义度量吗?答:不能,因为三⾓不等式不成⽴。

如取则有(),4x y ρ=,⽽(),1x z ρ=,(),1z x ρ= 2、试证明:(1)()12,x y x y ρ=-;(2)(),1x y x y x yρ-=+-在R 上都定义了度量。

证:(1)仅证明三⾓不等式。

注意到21122x y x z z y x z z y ??-≤-+-≤-+- ?故有111222x yx z z y-≤-+-(2)仅证明三⾓不等式易证函数()1xx x=+在R +上是单调增加的,所以有()()a b a b ??+≤+,从⽽有1111a b a b a b++≤≤+++++++令,,x y z R ?∈,令,a z x b y z =-=- 即111y x z x y zy x z x y z---≤++-+-+-4.试证明在[]b a C ,1上,)12.3.2()()(),(?-=ba dt t y t x y x ρ定义了度量。

证:(1)0)()(0),(≡-?=t y t x y x ρ(因为x,y 是连续函数) 0),(≥y x ρ及),(),(x y y x ρρ=显然成⽴。

[]),(),()()()()()()()()()()(),()2(y z z x dtt y t z dt t z t x dtt y t z dt t z t x dtt y t x y x bab ab aba ρρρ+≤-+-≤-+-≤-=5.试由Cauchy-Schwarz 不等式证明∑∑==≤??ni in i i x n x 1221证:∑∑∑∑=====?≤??ni in i n i i n i i x n x x 1212122118.试证明下列各式都在度量空间()11,ρR 和()21,R R 的Descartes 积21R R R ?=上定义了度量{}212/1222121,max ~~)3(;)(~)2(;)1(ρρρρρρρρρ=+=+= 证:仅证三⾓不等式。

泛函分析习题答案第十章习题答案

泛函分析习题答案第十章习题答案

aij 2
aij 2 x 2 n

n
aij 2
n
aij 2

aij 2 x 2
i1 jn1
in1 j1

i1 j1
i1 j1
in1 j1




n
aij 2
n aij 2 x 2
i1 j1
第十章 全连续线性算子
1. 设E1、E2是赋范线性空间,T : E1 E2为有界线性算子,试证:如果 E1、E2中 有 一 个 是 有 限 维 的 ,则T必 是 全 连 续 的.
设E2是有限维的,M为E1中的有界集,因为T有界,所以T(M )是 E2中 的 有 界 集 , 从 而 是 列紧 集 , 所 以T是 全 连 续 的.
因为E是无限维的,故E中单位球B不是列紧集,又I(B) B, 故I不是全连续的.
3.设E为Banach 空间,A : E E为全连续算子,试证: I A把E中有界闭集映成有界闭集.
设M为E中 有 界 闭 集 ,A全 连 续 , 故A(M )为E中 列 紧 集 , 从 而 是E中 有 界 集 ,
所 以An作 为L2 ( , ) L2 ( , )的 线 性 算 子 是 全 连 续 的. 又
A An



|

K ( x,
y)

K n ( x,
y)
|2
1/ 2


0
故A是




(xn
(
x
)为I

n





.)

刘炳初泛函分析部分习题解答

刘炳初泛函分析部分习题解答

证 设 px sup F x ,记 wk : x X : px k ~
F f
~ F f
x X : F x k.
由 F 的 连 续 性 知 x X : F x k 为 X 中 的 闭 集 . 事 实 上 , 设
5
x x X : F x k A 且 xn x0 , n
d Tx, Ty Tx Ty x y d x, y d x, y , 1
因 T 为 0, 上的压缩映射, 则 T 在 0, 没有不动点. 否则, 若 T 在 0, 有 不 动 点 , 可 设 x 0, 且 为 T 的 不 动 点 , 则 有 T x x . 即
刘炳初泛函分析部分习题解答泛函分析刘炳初答案泛函分析习题集泛函分析课后习题答案泛函分析讲义习题精解泛函分析习题泛函分析实变函数与泛函分析泛函分析pdf泛函分析讲义
部分习题解答
习题一(P34) (6)证明在距离空间中,如果一个半径为 7 的开球包含在一个半径为 3 的开球 中,则两个球重合. 证 设 s0,7 s0,3 X , d ,下证: s0,7 s0,3 . 假设 s0,7 s0,3 , 则至少存在一点 x s0,3 . 但 x s 0,7 ,故有 d x,0 7 . 由三角不等式
1
1 0, t , n xn t 1 nt , 0 t 1 . n
则点列 xn 为 C 0, 1 中的有界集. 但点列 xn 不是完全有界的 . 否则若 xn 完全 有界,由 C 0, 1 完备,由定理 1 p 知 xn 是列紧的,故 xn 在 C 0, 1 中存在收 31 敛子列,但

《应用泛函分析》习题解答

《应用泛函分析》习题解答

1泛函分析与应用-国防科技大学 第 一 章第 一 节3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞<N∈k k x sup 。

证明:0>∀ε,0N ∃,当0,N n m >时,有εε<-⇒<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。

取0N m =,则有0 ,0N n x x N n >+<ε,令},,,,max{0021ε+=N N x x x x c ,则1 ,≥<n c x n 。

6.设E 是Banach 空间,E 中的点列满足∞<∑∞=1k kx(此时称级数∑∞=1k k x 绝对收敛),证明存在E ∈x ,使∑∞=∞→=1lim k kn xx (此时记x 为∑∞=1k kx,即∑∞==1k kxx ).证明:令∑==nk kn xy 1,则∑∑++=++=+≤=-pn n k kpn n k kn p n xxy y 11。

由于∞<∑∞=1k kx绝对收敛,则它的一般项0→k x 。

因此0>∀ε,总0N ∃,当0,N p n ≥时,有ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必存在E ∈x ,使得∑∑∞==∞→==11limk k nk kn x xx 。

9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。

若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。

此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。

通常用E dim 表示E 的维数,并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K ( x, y) f ( y)dy
f ( x) L2( , )
问A是 否L2( , )上 的 全 连 续 线 性 算 子.
记I n
[n, n], 令Kn ( x,
y)
K ( x,
0
y)
(x, y) In In (x, y) In In
考 虑Kn ( x, y)所 定 义 的 线 性 算 子An : L2 ( , ) L2 ( , ),
5. 设 aij 2 A:x (i ) (i ) x l 2,其中i aij j
i , j1
j 1
证 明A是 全 连 续 的.
i 1,2,
设x (i ) l 2,y (i ) Ax, 则
2
Ax 2
i2
aij j
aij 2 j 2
aij 2 x 2,
第十章 全连续线性算子
1. 设E1、E2是赋范线性空间,T : E1 E2为有界线性算子,试证:如果 E1、E2中 有 一 个 是 有 限 维 的 ,则T必 是 全 连 续 的.
设E2是有限维的,M为E1中的有界集,因为T有界,所以T(M )是 E2中 的 有 界 集 , 从 而 是 列紧 集 , 所 以T是 全 连 续 的.
当E1是 有 限 维 的 , 因 为T是 线 性 算 子 , 故T (E1 )( E2 )是E2的 有 限 维 子 空 间 , T的象 空间 既是 有限 维的,由前 段所 证,T是全 连续 的(. T可看 作E1 T (E1 ) 的有界线性算子)
2. 设E是无限维的Banach 空间,I : E E为恒同算子,(即Ix x,x E) 则I不是全连续的.
i 1,2,
则An (l 2 )是l 2的 有 限 维 子 空 间 , 故An是 全 连 续 算 子 , 又x (i ) l 2
5.
则An (l 2 )是l 2的 有 限 维 子 空 间 , 故An是 全 连 续 算 子 , 又x (i ) l 2
Ax An x 2 n aij j 2 aij j 2
j1 i 1
故A的 共 轭 算 子A* : l 2 l 2由( j ) ( aij j ) 确 定. i 1
8. 设K ( x, y)是 全 平 面 上Lebesgue可 积 函 数 , 且 | K ( x, y) |2 dxdy M 2 ,
作L2( , )上 的 线 性 算 子A:( Af )(x)
i 1 jn1
i n1 j1
n aij 2 j 2 aij 2 j 2
i1 jn1
jn1
in1 j1
j1
aij 2
aij 2 x 2 n
n
aij 2
n
aij 2
aij 2 x 2
i1 jn1
in1 j1
i 1
i 1 j1
i 1 j1
j1
i, j1
所 以A是 有 界 线 性 算 子 , 且A aij 2 1/ 2
i, j1



对Leabharlann 自然数n,

n ij
a

ij
1
i,
j
n;
n ij
0,
i
n或
j n,
n
然 后 定 义An : l 2 l 2 : x (i ) (i ) : i ij n j j 1
,
)
1 n1
(0,
,0,n1 ,n2 , )
1 n1
x
所以
A An
1 0 n1
(n )
所 以A是 全 连 续 的.
7. 试求题5中A的共轭线性算子A* .
因 为l 2的 共 轭 空 间 是l 2,x (i ),y (i ) l 2

i 1
j1 aij j i
aij j i
由 x Ax x Ax 可 知 :(I A)(M )是E中 有 界 集.
设yn (I A)(M ) (n 1,2, ),yn y *, 取xn M, 使yn (I A)xn Axn,
因 为A全 连 续 ,{ xn }为 有 界 点 列 , 故{ Axn }有 收 敛 子 列{ Axnk }, 设Axnk z,
f ( x) L2 ( , )
( An f )(x) Kn ( x, y) f ( y)dy
In K n ( x, y) f ( y)dy In K n ( x, y) xn ( y) f ( y)dy
则 由 xnk ynk Aznk y * z知 :xnk 收 敛 , 记y * z x *,
因 为xnk M,M为 闭 集 , 故x* M, 现 在I A是 连 续 的 ,

(I
A)x* lim(I k
A) xnk
lim
k
ynk
y *,
所 以y* (I A)(M ), 故(I A)(M )是 闭 集.
i1 j1
i1 j1
in1 j1
n
aij 2
n aij 2 x 2
i1 j1
i1 j1
所以 A An
i 1
aij 2
j 1
n i 1
n j 1
aij
2
1/
2
0
故A是 全 连 续 的.
(n )
6.
A:
l2
l 2由 下 式 定 义 :x
( i
)
l 2,Ax
(1 ,
4. 设E为自反Banach 空间,A : E E为有界线性算子,且A把E中弱收敛 序列映成强收敛序列,则A是全连续的.
因为E是自反空间,E是局部弱列紧的,即对E中任一有界点列{ xn } 都有弱收敛子列{ xnk },依条件{ Axnk }在E中收敛,这说明对E中任一 有界点列{ xn },{ Axn }都有收敛子列,故A是全连续的.
因为E是无限维的,故E中单位球B不是列紧集,又I(B) B, 故I不是全连续的.
3.设E为Banach 空间,A : E E为全连续算子,试证: I A把E中有界闭集映成有界闭集.
设M为E中 有 界 闭 集 ,A全 连 续 , 故A(M )为E中 列 紧 集 , 从 而 是E中 有 界 集 ,
1 2
2
,
,
1 n
n ,
)
试 证 :A是 全 连 续 的.
令An : l 2 l 2:(1 ,2 , )
(1 ,
1 2
2
,
,
1 n
n
,0,
),
则An : l 2 l 2是 有 限 维 的 , 故 是 全 连续 的 ,
又x (i ) l 2
Ax An x
(0,
,0,
n
1
1
n1
,
n
1
2
n2
相关文档
最新文档