多元统计分析模拟考题及答案.docx
应用多元统计分析试题及答案(1)
应用多元统计分析试题及答案(1)多元统计分析是现代统计学中不可或缺的一部分,它是用于对不同数据进行相关分析的高级统计方法。
对于需要进行多因素分析的问题,多元统计分析是必须掌握的技能。
以下是一些应用多元统计分析的试题及答案。
试题1:假设你要进行一项研究,以评估学生在学期末考试成绩与他们的就业情况之间是否存在关联。
你将分析什么类型的多元统计分析?答案:此问题需要进行一种二元多元回归分析。
此方法可以用于探索学期末考试成绩和就业情况之间的相关性。
通过回归分析,我们可以计算出两个变量之间的相关系数以及建立一个数学模型来预测就业成功与否的可能性。
试题2:你是一家旅游公司的行销经理,你想了解你们的财务状况、品牌信誉和市场定位之间的关系。
采用哪种多元统计分析来解决这个问题?答案:这个问题需要进行一种因子分析。
因子分析是一种常用的多元统计技术,可用于探索大量变量之间的共性或相似性。
因此,行销经理可以使用因子分析来探究这三个因素之间的关系,以帮助公司更好地了解市场需求、推广策略和产品定位。
试题3:你是一名医学研究员,你需要研究新型药物的效果以及它是否与特定人群的特征相关。
哪种多元统计分析可用于研究?答案:这个问题需要使用一种路径分析方法。
路径分析是一种分层回归分析技术,可用于探索变量间的直接和间接影响关系。
因此,研究人员可以使用路径分析来研究新型药物的效果以及与特定人群特征的相关性,以便更好地理解治疗效果的影响因素。
试题4:你是一名市场分析师,你需要研究不同年龄、性别和教育水平的人群之间的消费习惯。
采用哪种多元统计分析来解决这个问题?答案:这个问题需要使用一种聚类分析方法。
聚类分析是一种将成为节点的相似对象分组的过程。
因此,市场分析师可以使用聚类分析来将相似的人群以及他们的共同消费习惯分成几个类别,以便更好地了解不同年龄、性别和教育水平背景下的人群之间的消费习惯和偏好。
结论:多元统计分析是一种有用的技术,可以用于探索大量不同变量之间的关系,对于需要分析多个变量之间关系的问题,多元统计分析是必须学习的基本技能。
(完整版)多元统计复习题附答案
复习题原文:答案:4.2 试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4 简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为R p,则称R1,R2⋯R p为R p的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间R p构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是μ1和μ2,对于一个新的样品X,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X∈G1,D2(X,G1)≤ D2(X,G2)X ∈G 2 ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0②多个总体的判别问题。
多元统计分析模拟考题及答案
一、判断题( 对 )112(,,,)p X X X X '=的协差阵一定是对称的半正定阵( 对 )2标准化随机向量的协差阵与原变量的相关系数阵相同。
( 对)3典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。
( 对 )4多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。
( 错)5),(~),,,(21∑'=μp p N X X X X ,,X S 分别是样本均值和样本离差阵,则,SX n分别是,μ∑的无偏估计。
( 对)6),(~),,,(21∑'=μp p N X X X X ,X 作为样本均值μ的估计,是无偏的、有效的、一致的。
( 错)7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化( 对)8因子载荷阵()ij A a =中的ij a 表示第i 个变量在第j 个公因子上的相对重要性。
( 对 )9 判别分析中,若两个总体的协差阵相等,则Fisher 判别与距离判别等价。
(对)10距离判别法要求两总体分布的协差阵相等,Fisher 判别法对总体的分布无特定的要求。
二、填空题1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、样本相关系数矩阵.2、设∑是总体1(,,)m X X X =的协方差阵,∑的特征根(1,,)i i m λ=与相应的单位正交化特征向量12(,,,)i i i im a a a α=,则第一主成分的表达式是11111221m my a X a X a X =+++,方差为1λ。
3设∑是总体1234(,,,)X X X X X =的协方差阵,∑的特征根和标准正交特征向量分别为:'112.920(0.1485,0.5735,0.5577,0.5814)U λ==--- '221.024(0.9544,0.0984,0.2695,0.0824)U λ==-'330.049(0.2516,0.7733,0.5589,0.1624)U λ==--'440.007(0.0612,0.2519,0.5513,0.7930)U λ==--,则其第二个主成分的表达式是212340.95440.09840.26950.0824y X X X X =-++,方差为1.0244. 若),(~)(∑μαp N X ,(n ,,2,1 =α)且相互独立,则样本均值向量X 服从的分布是(,)p N nμ∑.5.设(,),1,2,,16i p X N i μ∑=,X 和A 分别是正态总体的样本均值和样本离差阵,则2115[4()][4()]T X A X μμ-'=--服从 215(15,)(,)16p T p F p n p p--或6设3(,),1,2,,10i X N i μ∑=,则101()()i i i W X X μμ='=--∑服从3(10,)W ∑7.设随机向量123(,,)X X X X '=,且协差阵4434923216-⎛⎫ ⎪∑=-- ⎪ ⎪-⎝⎭,则其相关矩阵R =231382113631186⎛⎫-⎪ ⎪ ⎪-- ⎪ ⎪ ⎪- ⎪⎝⎭8. 设122(,)(,),X X X N μ=∑,其中212(,),ρμμμσρ⎛⎫=∑=⎪⎝⎭11,则1212,)X X X X +-=Cov(09设X,Y 是来自均值向量为μ,协差阵为∑的总体G 的两个样品,则X ,Y 间的马氏平方距离2(,)d X Y =1()()X Y X Y -'-∑-10设X,Y 是来自均值向量为μ,协差阵为∑的总体G 的两个样品,则X 与总体G 的马氏平方距离2(,)d X G =1()()X X μμ-'-∑-11设随机向量123(,,)X X X X '=的相关系数矩阵通过因子分析分解为121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭则1X 的共性方差21h = 0.9342 =0.872 ,其统计意义是:描述了全部公因子对变量X1的总方差所作的贡献,称为变量X1的共同度,反映了公共因子对变量X1的影响程度。
多元统计学多元统计分析试题(A卷)(答案)
《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
(完整word版)多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析试题(A卷)(答案)
多元统计分析试题(A卷)(答案)《多元统计分析》试卷一、填空题(每空2分,共40分)1、若且相互独立,则样本均值向量X服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品的一种统计方法,常用的判别方法有___、、、。
4、Q型聚类是指对_进行聚类,R型聚类是指对进行聚类。
'5、设样品,总体X~Np(,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离6、因子分析中因子载荷系数aij的统计意义是_第i个变量与第j个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将和结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
二、计算题(每小题10分,共40分)1、设三维随机向量,其中130,问X1与X2是否独立?和X3是否独立?为什么?解:因为,所以X1与X2不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和X3是不相关的,而正态分布不相关与相互独立是等价的,所以和X3是独立的。
2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图。
x1013.55702.54601.53.502x2x3解:样品与样品之间的明氏距离为:D(0)样品最短距离是1,故把X1与X2合并为一类,计算类与类之间距离(最长距离法){x1,x2}03.55701.53.502x3x4得距离阵 D(1)类与类的最短距离是1.5,故把X3与X4合并为一类,计算类与类之间距离(最长距离法)得距离阵D(2){x1,x2}057{x3,x4}x5类与类的最短距离是3.5,故把{X3,X4}与X5合并为一类,计算类与类之间距离(最{x1,x2}07长距离法)得距离阵D(3)分类与聚类图(略)(请你们自己做)3、设变量X1,X2,X3的相关阵为0.631.000.350.35,R的特征值和单位化特征向量分别为TTT(1)取公共因子个数为2,求因子载荷阵A。
多元统计分析试题及答案
多元统计分析试题及答案华南农业⼤学期末试卷(A 卷)2006学年第2学期考试科⽬:多元统计分析考试类型:(闭卷)考试时间:120 分钟⼀、填空题(5×6=30)22121212121~(,),(,),(,),,1X N X x x x x x x ρµµµµσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________iiii XN i W XXµµµ='∑=--∑ 、设则=服从。
()1234433,492,3216___________________X x x x R -?? ?'==-- ? ?-?=∑、设随机向量且协⽅差矩阵则它的相关矩阵________________。
(),123设X=xx x 的相关系数矩阵通过因⼦分析分解为211X h =的共性⽅差111X σ=的⽅差21X g =1公因⼦f 对的贡献121330.9340.1280.9340.4170.8351100.4170.8940.027 0.8940.44730.8350.4470.1032013R ?-?-=-=-+5,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N TX A X µµµµ-=∑∑'=-- 、设是来⾃多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
⼆、计算题(5×11=50)12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x µµ-??'=∑=-∑=-- --??+、设其中试判断与是否独⽴?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.62103.17237.14.5X S µ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的⾝⾼、胸围、上半臂围进⾏测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
应用多元统计分析试题及答案.doc
一、填空题:1、多元统计剖析是运用数理统计方法来研究解决多指标问题的理论和方法 .2、回归参数明显性查验是查验解说变量对被解说变量的影响能否著.3、聚类剖析就是剖析怎样对样品(或变量)进行量化分类的问题。
往常聚类分析分为Q型聚类和R型聚类。
4、相应剖析的主要目的是追求列联表行要素A和列要素B的基本剖析特点和它们的最优联立表示。
5、因子剖析把每个原始变量分解为两部分要素:一部分为公共因子,另一部分为特别因子。
6、若x( ): N P( ,),=1,2,3 .n且互相独立,则样本均值向量x 听从的散布为 _ x ~N(μ,Σ /n)_。
二、简答1、简述典型变量与典型有关系数的观点,并说明典型有关剖析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间拥有最大的有关系数。
选用和最先精选的这对线性组合不有关的线性组合,使其配对,并选用有关系数最大的一对,这样下去直到两组之间的有关性被提取完成为止。
被选出的线性组合配对称为典型变量,它们的有关系数称为典型有关系数。
2、简述相应剖析的基本思想。
相应剖析,是指对两个定性变量的多种水平进行剖析。
设有两组要素A和B,此中要素 A 包括 r 个水平,要素 B 包括 c 个水平。
对这两组要素作随机抽样检查,获得一个 rc 的二维列联表,记为。
要追求列联表列要素 A 和行要素 B 的基本剖析特点和最优列联表示。
相应剖析即是经过列联表的变换,使得要素 A和要素 B 拥有平等性,进而用同样的因子轴同时描绘两个要素各个水平的情况。
把两个要素的各个水平的情况同时反应到拥有同样坐标轴的因子平面上,进而获得要素 A 、 B 的联系。
3、简述费希尔鉴别法的基本思想。
从 k 个整体中抽取拥有 p 个指标的样品观察数据,借助方差剖析的思想结构一个线性鉴别函数系数:确立的原则是使得整体之间差别最大,而使每个整体内部的离差最小。
将新样 品的 p 个指标值代入线性鉴别函数式中求出 值,而后依据鉴别必定的规则,就能够鉴别新的样品属于哪个整体。
(完整)多元统计分析期末试题及答案,推荐文档.docx
1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计复习题答案
多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。
A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。
A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。
(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。
(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。
(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。
答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。
2. 描述多元统计分析中判别分析的应用场景。
答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。
五、计算题1. 给定一组数据,计算其主成分得分。
答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。
2. 利用判别分析对一组数据进行分类,并给出分类结果。
答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。
(完整版)多元统计分析试题及答案
(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
(完整word版)多元统计分析习题
1.已知n=4,p=3的一个样本数据阵143X =626,X S 833534ρ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算,,v,2.已知23514241130010322X ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,用最短、最长、中间距离法聚类,并画出聚类树形图3.已知52=22⎡⎤∑⎢⎥⎣⎦,要求: ①求特征根12λλ, ②求特征向量12μμ,③构造主成分12,F F④计算1F 的方差Var(F 1)和2F 的方差Var(F 2)⑤计算()()()()11122122,,,,;;;F X F X F X F X ρρρρ4.设有12,G G 两个总体,从中分别抽取容量为3的样品如下:要求:(1)样本的均值向量()()12,XX 及离差阵12,S S(2)假定()()12==∑∑∑,用12,S S 联合估计∑(3)已知待判样品(27)X T=,分别用距离判别法、Fisher 判别法、Bayes 判别法判定X 的归属。
5.设111=n 个和122=n 个的观测值分别取自两个随机变量1X 和2X 。
假定这两个变量服从二元正态分布,且有相同的协方差阵。
样本均值向量和联合协方差阵为:⎥⎦⎤⎢⎣⎡--=111X ,⎥⎦⎤⎢⎣⎡=122X ,⎥⎦⎤⎢⎣⎡--=∑8.41.11.13.7。
新样品⎥⎦⎤⎢⎣⎡=21X ,要求用Bayes 法和Fisher 进行判别分析。
6.已知2变量协方差阵⎥⎦⎤⎢⎣⎡=∑3224,要求:(1)求∑的特征根及其对应的单位特征向量;(2)组建主成分1F 、2F ;(3)验证j j F Var λ=)(;(4)计算11x F ρ、21x F ρ。
7、试分析某海运学院100名新生的性别与来自的区域有无相关关系。
(20.05(1) 3.84χ=)8、已知4个样品3个数据的数据如下:44068644363X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,试求均值向量X 、协方差阵∑、相关阵R 。
9、已知随机向量X=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ,具有均值向量826X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦和协方差阵,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411161113。
多元统计分析试卷答案
课程名称: 多元统计分析 试卷类型: 答案 考试形式:开 授课专业: 数学与应用数学题号 一二三总分得分 阅卷人一、 填空题:(每空2分,共30分)1、设(1)(2)(,)p N ⎡⎤=⎢⎥⎣⎦:X X μX ∑(2)p ≥,(1)(2)⎡⎤=⎢⎥⎣⎦μμμ,11122122⎡⎤=⎢⎥⎣⎦∑∑∑∑∑,其中(1)X ,(1)μ为1r ⨯,11∑为r r ⨯,则(1):X (1)11(,)r N μ∑,(2):X (2)22(,)p r N -μ∑2、系统聚类分析的方法很多,其中的五种分别为最短距离法、最长距离法、重心法、类平均法、离差平方和法。
3、若p 维随机向量~(,)p X N μ∑,~(,)p W W n ∑,且X 与W 相互独立,则1()()~n X W X μμ-'--2(,)T p n ,21(,)~n p T p n pn-+(,1)F p n p -+。
4、i X 与前个主成分的全相关系数的平方和21(,)mk i k Y X ρ=∑称为12,,,m Y Y Y L 对原始变量i X 的方差贡献率,在因子分析中也称之为共同度。
5、Q 型因子分析研究样品之间的相关关系,R 型因子分析研究变量之间的相关关系。
6、Fisher 判别法的基本思想是投影,并利用方差分析的思想来导出判别函数。
二、 判断题(每题2分,共10分)1、( √ )随机向量12(,,,)p X X X 'L 的协方差阵()D X =∑是对称非负定阵。
2、( × )因子载荷矩阵A 是对称阵。
3、( × )聚类分析中快速聚类法指的就是模糊聚类法。
4、( √ )设(,)p N :X μ∑,(,)p W n :W ∑,且X 与W 相互独立,则12()()(,)n T p n -':X μW X μ--。
5、( × )主成分分析中,从相关矩阵出发求解的主成分一定会比从协方差矩阵出发求解的主成分更可信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题( 对) 1 X( X 1 , X 2 ,L , X p )的协差阵一定是对称的半正定阵( 对() 2 标准化随机向量的协差阵与原变量的相关系数阵相同。
对) 3 典型相关分析是识别并量化两组变量间的关系,将两组变量的相关关系的研究转化为一组变量的线性组合与另一组变量的线性组合间的相关关系的研究。
( 对)4 多维标度法是以空间分布的形式在低维空间中再现研究对象间关系的数据分析方法。
( 错)5 X(X 1 , X 2 , , X p ) ~ N p ( , ) , X , S 分别是样本均值和样本离差阵,则 X , S分别是 ,的无偏估计。
n( 对) 6 X( X 1 , X 2 , , X p ) ~ N p ( , ) , X 作为样本均值的估计,是无偏的、有效的、一致的。
( 错) 7 因子载荷经正交旋转后,各变量的共性方差和各因子的贡献都发生了变化(对) 8 因子载荷阵 A( ij ) ij表示第 i 个变量在第 j 个公因子上a 中的 a 的相对重要性。
( 对)9 判别分析中, 若两个总体的协差阵相等, 则 Fisher 判别与距离判别等价。
(对) 10 距离判别法要求两总体分布的协差阵相等, Fisher 判别法对总体的分布无特定的要求。
二、填空题1、多元统计中常用的统计量有:样本均值向量、样本协差阵、样本离差阵、 样本相关系数矩阵.2、 设 是总体的协方差阵, 的特征根(1, , ) 与相应的单 X ( X 1,L , X m )i i L m位 正 交 化 特 征 向 量i ( a i1, a i 2 ,L ,a im ) , 则 第 一 主 成 分 的 表 达 式 是y 1 a 11 X 1 a 12 X 2 La 1m X m ,方差为1 。
3 设是总体 X( X 1, X 2 , X 3, X 4 ) 的协方差阵,的特征根和标准正交特征向量分别为: 1 2.920 U 1'(0.1485, 0.5735, 0.5577, 0.5814)21.024 U 2' (0.9544,0.0984,0.2695,0.0824)30.049 U 3' (0.2516,0.7733, 0.5589, 0.1624)40.007 U 4'(0.0612,0.2519,0.5513,0.7930) ,则其第二个主成分的表达式是y20.9544 X10.0984 X 20.2695 X 30.0824 X 4,方差为 1.0244.若 X () ~ N p( ,) ,(1,2, , n )且相互独立,则样本均值向量X 服从的分布是 N p (,) .n5.设X i: N p(,), i1,2,L,16 , X 和A分别是正态总体的样本均值和样本离差阵,则 T 215[4( X)] A 1[4( X)] 服从 T2 (15, p)或15 p: F ( p, n p) 16p106 设X i: N3(,), i1,2,L,10 ,则 W( X i)( X i) 服从 W3 (10, )i 14437.设随机向量X( X1 , X 2 , X3 ),且协差阵492,则其相关矩阵3216123 38R =12136311868.设 X(X1, X 2 ) : N 2 ( , ), ,其中( 1 , 2 ),21,则1Cov( X1X 2 , X1X 2 )09 设 X,Y 是来自均值向量为,协差阵为的总体 G 的两个样品,则X,Y 间的马氏平方距离 d2 ( X ,Y )(X Y)1 ( X Y )10 设 X,Y 是来自均值向量为,协差阵为的总体 G的两个样品,则X 与总体 G的马氏平方距离 d 2 ( X , G) = ( X)1 ( X)11 设随机向量X( X1, X 2 , X 3 ) 的相关系数矩阵通过因子分析分解为112330.93400.1280.9340.4170.8351R100.4170.8940.027 300.8940.4470.8350.4470.1032013则 X1的共性方差 h120.9342 =0.872 ,其统计意义是:描述了全部公因子对变量X1的总方差所作的贡献,称为变量 X1的共同度,反映了公共因子对变量X1 的影响程度。
标准化变量 X1的方差为1,公因子f1 对 X 的贡献g120.9342+0.4172+0.8352=1.74312.对应分析是将Q 型因子分析和 R 型因子分析结合起来进行的统计分析方法13 典型相关分析是研究两组变量间相关关系的一种多元统计方法14.聚类分析中, Q 型聚类是指对样本进行聚类, R 型聚类是指对指标进行聚类。
15Spss for windows中主成分分析由 Data Reduction->Factor Analysis 过程实现。
16 设U k,V k是第k对典型变量则 D (U k )1, D (V k )1(k 1,2,L ,r )Cov (U i ,U j )0,Cov (V i ,V j ) 0(i j )i0(i j , iL, r ) 1,2,Cov(U i ,V j )0(i j )0( j r )17. 在多维标度分析中,当 D 是欧几里得距离阵时, X 是 D 的一个构图三、简答题(答案见平时习题)1 简述多元统计的主要内容与方法(10 分)可对比一元统计列出多元统计的主要内容与方法(从随机变量及其分布、数字特征、四大分布(正态分布密度(1 分)、2 (n)与威沙特分布Wp(n, )(1 分)、t 分布与 Hoteling T 2分布( 1分)、F 分布与威尔克斯分布( p,n1 , n2 )(1分))、抽样分布定理、参数估计和假设检验、统计方法( 2 分)2. 请阐述距离判别法、贝叶斯判别法和费希尔判别法的基本思想和方法,比较其异同3 请阐述系统聚类法、K 均值聚类法、有序样品聚类法的基本思想和方法,比较其异同4请阐述主成分分析和因子分析的基本思想、方法步骤和应用,比较其异同5请阐述相应分析、多维标度法、典型相关分析和多变量的可视化分析的基本思想和应用四、计算题1设三维随机向量X : N 3 ( , 2I 3 ),已知21000.510.510 , I 3010, A, d,求 Y AX d 的分布00010.500.52解:正态分布的线性组合仍为正态,故只需求E(Y )E(AX d)AEX d1121211210.50.51DY D ( AX d )13ADXA010110.51 0.5所以 Y : N 3( E (Y), D (Y ))另解:0.5X1X 20.5X31Y AX d0.5X10.5X32E(0.5X1X 2 0.5X 31)2E( 0.5X10.5X 32)1故 Y : N 3 (E(Y ), D (Y))D(0.5 X1X 2 0.5X31)3D( 0.5X10.5X 32)1COV (0.5X1 X 20.5X 31, 0.5X10.5X 32) 121112. 设三维随机向量X : N3( ,) ,已知 3 , 1 3 2 ,求1122Y 3X1 2 X2 X 3的分布解:正态分布的任意线性组合仍正态,故Y 的分布是一维正态分布,只需求E(Y ) 3E(X1 ) 2E( X 2 )E( X 3 )13D(Y) 32 E( X1 )22 E( X 2 )E( X 3 )2Cov(3X1,2 X2 )2Cov(3 X1, X3 )2Cov( X 3,2 X2 ) 9故Y : N (13,9)3设有两个二元总体和,从中分别抽取样本计算得到,,假设,试用距离判别法建立判别函数和判别规则。
样品 X=( 6, 0)’应属于哪个总体?解:=,=,==即样品 X 属于总体4 设已知有两个正态总体G 1, G 2 , 且 1241 1 ,2 ,121,而其629先验概率分别为q 1 q 2 0.5, 误判的代价 L(2 |1)e 4 , L(1| 2) e ,试用贝叶斯判别法确定样本 X3属于哪个总体?5解:由 Bayes 判别知, W (x)f 1 (x) exp[( x)1 (12 )]f 2 (x)1( 12 )12 4 36 24其中221 91218 1, 121 4q 2C (1| 2)3deq 1C (2 |1)W ( x)x 1 W3 dW5x 2故 X3属于 G2 总体55 表 1 是根据某超市对不同品牌同类产品按畅销(1)、平销( 2)和滞销( 3)的数据,利用 SPSS 得到的 Bayes 判别函数系数表,请据此建立贝叶斯判别函数,并说明如何判断新样品( x1,x2,x3 )属于哪类?Classification Function Coefficientsgroup12 3x1 -11.689 -10.707 -2.194x212.29713.3614.960x316.761 17.086 6.447(Constant-81.843 -94.536 -17.449)Fisher's linear discriminant functions表 1 Bayes 判别函数系数解:根据判别分析的结果建立Bayes 判别函数:Bayes 判别函数的系数见表4.1 。
表中每一列表示样本判入相应类的Bayes 判别函数系数。
由此可建立判别函数如下:Group1: Y1 81.843 11.689 X 1 12.297 X 2 16.761X 3 Group2: Y 294.536 10.707 X 1 13.361X 2 17.086 X 3Group3:Y 3 17.449 2.194 X 1 4.960 X 2 6.447 X 3将新样品的自变量值代入上述三个Bayes 判别函数,得到三个函数值。
比较这三个函数值,哪个函数值比较大就可以判断该样品判入哪一类。
6. 对某数据资料进行因子分析,因子分析是从相关系数阵出发进行的, 前两个特征根 和对 应 的 标 准正交特征向量为 12.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814),12.920 U 1'(0.1485, 0.5735, 0.5577, 0.5814)(1) 取公因子个数为 2,求因子载荷阵(2) 用 F1F2 表示选取的公因子,1,2 为特殊因子, 写出因子模型, 说明因子载荷阵中元素 a ij 的统计意义7 在一项对杨树的形状研究中,测定了 20 株杨树树叶,每个叶片测定了四个变量X 1, X 2 , X 3 , X 4 分别代表叶长,叶子2/3 处宽, 1/3 处宽, 1/2 处宽,这四个变量的相关系数矩阵的特征根和标准正交特征向量分别为:12.920 U 1' (0.1485, 0.5735, 0.5577, 0.5814) 21.024 U 2' (0.9544, 0.0984,0.2695,0.0824) 30.049 U 3' (0.2516,0.7733, 0.5589, 0.1624) 40.007 U 4' ( 0.0612,0.2519,0.5513,0.7930)若按一般性原则选取主成分个数,请写出主成分表达式,并计算每个主成分的方差贡献率解:选取主成分的一般原则是特征值大于 1 或累积贡献率达到80%以上。