最新中职数学平面向量测试题

合集下载

中职数学基础模块下册第七章平面向量单元测试(一)含参考答案

中职数学基础模块下册第七章平面向量单元测试(一)含参考答案

中职数学基础模块下册第七章平面向量单元测试(一)含参考答案一、单项选择题1.下列关于零向量的说法正确的是( )A .零向量的方向是确定的B .零向量的模等于0C .零向量与任意向量不平行,D .零向量表示为02.已知向量→a =(4,1),则其负向量是( )A .(-4,1)B .(4,-1)C .(-4,-1)D .(-1,-4)3.已知点A(0,4)和点B(3,5),则→AB =( )A. (0,4)B. (3,5)C. (4,0)D. (3,1)4.若向量→a =(2,-4),则→a 21=( ) A .(1,-2) B .(-2,1) C .(4,-8) D.(-8,4)5.化简=+-+-→→→→)2(2b a b a )(( ) A .→a 3 B. →0 C .0 D .2→b6.向量→a =(3,4),则→a =( )A.. 3 B .4 C. 5 D .67.已知→a =2,→b =3,<→a ,→b >=o 60。

,则→a →•b =( ) .A. 2 B . -2 C . 3 D .-38. 已知→a =(2,3),→b =(-1,5),且2→a -3→b =( )A.( 7,9)B.(4,-6)C. (2,5)D.(7,-9)9. 设→a =(-1,3),→b =(n ,2),且→a →⊥b ,则n =( )A. 6B. -6 C .32 D . -3210. 设→a =(2,1),→b =(x ,3),且→→b a //,则x =( )A.32 B. -23 C .-6 D . 611.已知→a =(-2,5),→b =(m ,13),且2→a -→b =(6,-3),则m =( )A. -10 B . 10 C .9 D .-912.下列各对向量中,共线的是( )A. →a =(1,2),→b =(2,1)B. →a =(1,2),→b =(2,4)C . →a =(2,3),→b =(3,-2) D. →a =(2,3),→b =(-3,-2)二、填空题13. →→→+-BD AC AB = 。

平面向量练习题及答案

平面向量练习题及答案

平面向量练习题及答案一、选择题1. 设向量a和向量b是两个不共线的向量,若向量c=2向量a-3向量b,向量d=向量a+4向量b,那么向量c和向量d的夹角的余弦值是()A. 1/2B. -1/2C. 0D. 12. 若向量a和向量b的模长分别为3和4,且它们的夹角为60°,则向量a和向量b的点积是()A. 6B. 12C. 15D. 183. 已知向量a=(1,2),向量b=(3,4),则向量a和向量b的向量积的大小是()A. 5B. 6C. 7D. 8二、填空题4. 若向量a=(x,y),向量b=(2,-1),且向量a与向量b共线,则x=______,y=______。

5. 向量a=(3,4),向量b=(-1,2),则向量a和向量b的夹角的正弦值是______。

三、计算题6. 已知向量a=(2,3),向量b=(4,-1),求向量a和向量b的点积。

7. 已知向量a=(-1,3),向量b=(2,-4),求向量a和向量b的向量积。

8. 已知向量a=(1,0),向量b=(2,3),求向量a在向量b上的投影。

四、解答题9. 设向量a=(1,-1),向量b=(2,3),求证向量a和向量b不共线。

10. 已知向量a=(x,y),向量b=(1,1),若向量a和向量b的点积为6,求x和y的值。

答案:1. B2. C3. B4. 2,-15. 根号下((3+4)的平方-(3*(-1)+4*2)的平方)除以(5*根号下2)6. 向量a和向量b的点积为:2*4+3*(-1)=57. 向量a和向量b的向量积为:(3*(-4)-4*2)i-(2*3-1*4)j=-20i+2j8. 向量a在向量b上的投影为:(向量a·向量b)/向量b的模长^2 * 向量b = (1*2+0*3)/(2^2+3^2) * 向量b = (2/13) * (2,3)9. 证:假设向量a和向量b共线,则存在实数k使得向量a=k向量b。

中专校平面向量测试题

中专校平面向量测试题

第七章 平面向量 试卷班级 姓名 得分一.选择题(4分×10=40分):1.以下说法错误的是 ( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C. 平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是 ( )A .;)++(BC CD AB B .);+)+(+(CM BC M B ADC .;-+BM AD M B D .;+-CD OA OC3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为 ( )A .6563 B .65 C .513 D .13 4.已知,a b 均为单位向量,它们的夹角为060,那么3a b += ( ) A .7 B .10 C .13 D .45.下面给出的关系式中正确的个数是( ) ① 00 =⋅a ② a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤b a b a ⋅≤⋅A .0B . 1C . 2D . 36.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( )A .−→−AD =−→−BCB .−→−AD =2−→−BC C .−→−AD =-−→−BC D .−→−AD =-2−→−BC7.已知向量a ,b 满足1,4,a b ==且2a b ⋅=,则a 与b 的夹角为 ( )A .6πB .4πC .3πD .2π 8.若平面向量b 与向量)1,2(=a 平行,且52||=b ,则=b ( )A .)2,4(B .)2,4(--C .)3,6(-D .)2,4(或)2,4(--9.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是 ( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形10.若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=( )A. 2-或0;B.C. 2或D. 2或10.二. 填空题(5分×4=20分):11.已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________.12.若),4,3(=AB A 点的坐标为(-2,-1),则B 点的坐标为 .13.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b . 14.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________.15.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________.三、解答题(共90分)16.(12分)若(1,2),(2,3),(2,5)A B C -,试判断则△ABC 的形状.17.(12分)已知3a =,4b =,a 与b 的夹角为43π, (3)(2)a b a b -⋅+.18.(12分) 已知(1,2)a =,)2,3(-=b ,当k 为何值时,ka b +与3a b -垂直?19.(13分) 若(2,2)a =-,求与a 垂直的单位向量的坐标。

平面向量测试题及答案

平面向量测试题及答案

平面向量测试题一、选择题:1。

已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( B )(A ) →b +→a 21(B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 21 2.已知B 是线段AC 的中点,则下列各式正确的是( D )(A ) −→−AB =-−→−BC (B ) −→−AC =−→−BC 21(C ) −→−BA =−→−BC (D ) −→−BC =−→−AC 213.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( D )(A ))(21→→-b a (B ))(21→→-a b (C ) →a +→b 21 (D ))(21→→+b a4.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD =-5→a -3→b ,则下列关系式中正确的是 ( B )(A )−→−AD =−→−BC (B )−→−AD =2−→−BC(C )−→−AD =-−→−BC(D )−→−AD =-2−→−BC5.将图形F 按→a =(h,k )(其中h>0,k>0)平移,就是将图形F (A ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。

(C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。

(D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。

6.已知→a =()1,21,→b =(),2223-,下列各式正确的是( A )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( C ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是(B ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( D )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( A ) (A ) 21±-(B ) 12±(C ) 32±(D ) 23±11.把函数2)sin(3--=πx y 的图象经过按→a 平移得到x y sin =的图象,则→a =( A ) (A ) ()2,3π-(B ) ()2,3π(C ) ()2,3--π(D ) ()2,3-π 12.△ABC 的两边长分别为2、3,其夹角的余弦为31 ,则其外接圆的半径为( C ) (A )229(B )429(C )829(D )922二、填空题:13.已知M 、N 是△ABC 的边BC 、CA 上的点,且−→−BM =31−→−BC ,−→−CN =31−→−CA ,设−→−AB =→a ,−→−AC =→b ,则−→−MN =→→-a b 323114.△ABC 中,C A B cos sin sin =,其中A 、B 、C 是△ABC 的三内角,则△ABC 是三角形。

(完整word版)《平面向量》综合测试题

(完整word版)《平面向量》综合测试题

《平面向量》综合测试题一、选择题1. 若A (2,-1),B (-1,3),则AB 的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对2.与a =(4,5)垂直的向量是 ( ) A.(-5k ,4k ) B. (-10,2) C. (54,k k-) D.(5k , -4k ) 3. △ABC 中,BC =a , AC =b ,则AB 等于 ( ) A.a+b B.-(a+b ) C.a-b D.b-a 4.化简52(a -b )-31(2a +4b )+152(2a +13b )的结果是 ( ) A.51a ±51b B.0 C. 51a +51b D. 51a -51b 5.已知|p |=22,|q |=3, p 与q 的夹角为4π,则以a =5p +2q ,b =p -3q 为邻边的平行四边形的一条对角线长为 ( )A.15B.15C. 16D.146.已知A (2,-2),B (4,3),向量p 的坐标为(2k -1,7)且p ∥AB ,则k 的值为 ( ) A.109-B.109C.1019-D.1019 7. 已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( )A. P 在△ABC 的内部B. P 在△ABC 的外部C. P 是AB 边上的一个三等分点D. P 是AC 边上的一个三等分点 8.在△ABC 中,AB =c , BC = a , CA =b ,则下列推导中错误的是 ( ) A.若a ·b <0,则△ABC 为钝角三角形 B. 若a ·b =0,则△ABC 为直角三角形 C. 若a ·b =b ·c ,则△ABC 为等腰三角形 D. 若c ·( a +b +c )=0,则△ABC 为等腰三角形9.设e 1,e 2是夹角为450的两个单位向量,且a =e 1+2e 2,b =2e 1+e 2,,则|a +b |的值 ( ) A.23 B.9 C.2918+ D.223+10.若|a |=1,|b a -b )⊥a ,则a 与b 的夹角为 ( )A.300B.450C.600D.750二、填空题11.在△ABC,4=且,8=⋅AC AB 则这个三角形的形状是 .12.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .13. 若向量)4,7(),1,2(),2,3(-=-=-=c b a ,现用a 、b 表示c ,则c= . 14.给出下列命题:①若a 2+b 2=0,则a =b =0;②已知A ),,(11y x B ),(22y x ,则);2,2(212121y y x x ++= ③已知a ,b ,c 是三个非零向量,若a +b =0,则|a·c |=|b·c |④已知0,021>>λλ,e 1,e 2是一组基底,a =λ1e 1+λ2e 2则a 与e 1不共线,a 与e 2也不共线; ⑤若a 与b 共线,则a·b =|a |·|b |.其中正确命题的序号是 . 三、解答题15.如图,ABCD 是一个梯形,CD AB ,//=, M 、N 分别是AB DC ,的中点,已知=AB a ,=AD b ,试用a 、b 表示,DC BC 和.MN16设两个非零向量e 1、e 2不共线.如果AB =e 1+e 2,=BC 2e 1+8e 2,CD =3(e 1-e 2) ⑴求证:A 、B 、D 共线;⑵试确定实数k,使k e 1+e 2和e 1+k e 2共线.17.已知△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD .⑴求证:AB ⊥AC ;⑵求点D 与向量AD 的坐标.18.已知二次函数f (x ) 对任意x ∈R,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2), b =(2sin x ,21),ABNMDCc =(cos2x ,1),d =(1,2)。

中职数学平面向量试卷

中职数学平面向量试卷

中职数学平面向量试卷一、选择题(每题3分,共30分)1. 下列物理量:质量;速度;位移;④力;⑤加速度;⑥路程;⑦密度;⑧功。

其中不是向量的有()A. 1个B. 2个C. 3个D. 4个。

2. 已知向量→a=(1,2),→b=(2, - 1),则→a+→b等于()A. (3,1)B. ( - 1,3)C. (1,1)D. ( - 3, - 1)3. 若向量→AB=(3,4),A点坐标为( - 2, - 1),则B点坐标为()A. (1,3)B. (5,5)C. (1,5)D. (5,3)4. 设向量→a=(x,1),→b=(4,x),若→a与→b共线且方向相同,则x = ()A. 2B. - 2C. ±2D. 0.5. 已知向量→a=(3, - 2),→b=( - 1,0),则3→a-2→b等于()A. (11, - 6)B. (7, - 6)C. ( - 7,6)D. ( - 11,6)6. 向量→a=( - 2,3)的模|→a|等于()A. √(13)B. √(5)C. √(11)D. √(10)7. 若→a=(1,2),→b=(m,1),且→a⊥→b,则m=()A. - 2B. -(1)/(2)C. (1)/(2)D. 2.8. 已知ABC中,→AB=→a,→AC=→b,则→BC等于()A. →a-→bB. →b-→aC. →a+→bD. -→a-→b9. 设向量→a与→b的夹角为θ,→a=(2, - 1),→b=(1,λ),若θ = 90^∘,则λ=()A. 2B. - 2C. (1)/(2)D. -(1)/(2)10. 对于向量→a,→b,c和实数λ,下列命题中真命题是()A. 若→a·→b=0,则→a=→0或→b=→0B. 若λ→a=→0,则λ = 0或→a=→0C. 若→a^2=→b^2,则→a=→b或→a=-→bD. 若→a·→b=→a·→c,则→b=→c二、填空题(每题4分,共20分)1. 已知向量→a=(3,m),→b=( - 1,2),若→a∥→b,则m=______。

平面向量单元检测题(高职对口升学考试数学复习专题)

平面向量单元检测题(高职对口升学考试数学复习专题)

平面向量单元检测题班级 姓名一、选择题:1、下列命题正确的是 ( )A .若0||=,则0=aB .若||||=,则b a =或b a -=C .若||,则||||=D .若=,则=-2、下列说法不正确的是( ) A )()a b b a R λλ⇔=∈与是平行向量 B )若||||a b a b =⨯,则是相等向量与b aC )若0a b =,则垂直与b aD )3、已知平行四边形ABCD 的三个顶点)1,2(-A 、)3,1(-B 、)4,3(C ,则顶点D 的坐标为( )A .)2,1(B .)2,2(C .)1,2(D .)2,2(--4、已知向量1(3,2),(5,1),2OM ON MN =-=--则等于 ( ) A .)1,8( B .)1,8(- C .)21,4(- D .)21,4(- 5、已知向量(3,1),(1,2),a b =-=-则23--的坐标是 ( )A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-6、已知(1,3),(,1),a b x =-=-且∥,则x 等于 ( )A .3B .3-C .31D .31- 7、设)0(||>=m m a ,与反向的单位向量是0b ,则用0b 表示为 ( )A .0b m a =B .0b m a -=C .01b m a =D .01b ma -= 8、已知点)2,1(--A 平移向量后变为)1,0`(A ,点)1,2(-B 平移向量后对应点`B 的坐标为( )A .)1,3(B .)3,1(C .)2,3(D .)3,2(9、D 、E 、F 分别为ABC ∆的边BC 、CA 、AB 上的中点,且=,=,下列命题中正确命题的个数是 ( ) ①12AD a b =--;②12BE a b =+;③1122CF a b =-+;④0AD BE CF ++=。

A .1个 B .2个 C .3个 D .4个10、已知A 、B 、C 三点共线,且)6,3(-A ,)2,5(-B ,若C 点的横坐标为6,则C 点的纵坐标为 ( )A .-13B .9C .-9D .1311、、是两个非零向量,222)(+=+是⊥的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件12、若),12,5(),4,3(==则与的夹角的余弦值为 ( )A .6563B .6533C .6533-D .6563- 13、若4,6m n ==,与的夹角是 135,则⋅等于 ( )A .12B .212C .212-D .12-14、点)4,3(-关于点)5,6(-B 的对称点是 ( )A .)5,3(-B .)29,0(C .)6,9(-D .)21,3(- 15、下列向量中,与)2,3(垂直的向量是 ( )A .)2,3(-B .)3,2(C .)6,4(-D .)2,3(- 16、在平行四边形ABCD 中,若AB AD AB AD +=-,则必有 ( )A .=B .=或=C .ABCD 是矩形 D .ABCD 是正方形17、已知平面内三点x C B A ⊥满足),7(),3,1(),2,2(,则x 的值为 ( )A .3B .6C .7D .9A .1B .1-C .1±D .019、已知2(2,1),(3,2),3A B AM AB --=,则点M 的坐标是 ( ) A .)21,21(-- B .)1,34(-- C .)0,31( D .)51,0(- 20、将向量x y 2sin =按向量(,1)6a π=-平移后的函数解析式是 ( ) A .1)32sin(++=πx y B .1)32sin(+-=πx y C .1)62sin(++=πx y D .1)62sin(+-=πx y 二、填空题 1、化简:--+=__________。

(完整word版)职高数学第七章平面向量习题及答案(2).docx

(完整word版)职高数学第七章平面向量习题及答案(2).docx

第 7 章平面向量习题练习 7.1.11、填空题(1)只有大小,没有方向的量叫做;既有大小,又有方向的量叫做;(2)向量的大小叫做向量的,模为零的向量叫做,模为 1 的向量叫做;(3)方向相同或相反的两个非零向量互相,平行向量又叫,规定:与任何一个向量平行;(4)当向量 a 与向量 b 的模相等,且方向相同时,称向量 a 与向量 b;(5)与非零向量 a 的模相等,且方向相反的向量叫做向量 a 的;2、选择题(1)下列说法正确的是()A .若 |a|=0,则 a=0B.若 |a|=|b|,则 a=bC.若 |a|=|b|,则 a 与 b是平行向量D.若 a∥b,则 a=b(2)下列命题:①有向线段就是向量,向量就是有向线段;②向量 a 与向量 b 平行,则 a 与 b 的方向相同或uuur uuura∥ b, b∥c. 那么 a 相反;③向量 AB 与向量 CD 共线,则 A、 B、 C、D 四点共线;④如果∥c正确的命题个数为()A.1B.2C.3D.0参考答案:1、( 1)数量;向量( 2)模;零向量;单位向量(3)平行的向量;共线向量;零向量(4)相等( 5)负向量2、( 1) A ( 2) B练习 7.1.21、选择题(1)如右图所示,在平行四边行ABCD 中,下列结论错误的是()uuur uuur uuur uuur uuurA . AB=DCB . AD+AB=ACuuur uuur uuur uuur uuur r C. AB +AD=BD D. AD+CB=0uuur uuur uuur(2)化简: AB+BC CD =()D C A Buuur uuur uuur rA . AC B. AD C. BD D . 02、作图题:如图所示,已知向量 a 与 b,求 a+bba参考答案:1、( 1) C( 2) B2、方法一:三角形法则方法二:平行四边行法则ba+b a+bba a练习 7.1.31、填空题uuur r uuur r uuur uuur(1)在平行四边形 ABCD 中,若 AB=a , BD=b ,则 AB+CBuuur uuur uuur uur(2)化简 : OP QP PS SP;2、作图题:如图所示,已知向量 a 与 b,求 a- bba参考答案:r r uuur1、( 1)b ; a ( 2) OQ2、a- buuur uuur, AD -CD;ba练习 7.1.41、选择题(1)如图所示, D 是△ ABC 的边 AB 的中点,则向量ADB Cuuur CD 等于()uuur 1 uuuruuur 1 uuurA . BC+ BAB . BC+BA22uuur 1 uuuruuur 1 uuurC . BCBAD . BCBA2 2 uuur uuur uuuur(2)化简 PM PN MN 所得结果是( )uuuruuurruuuurA . MPB . NPC . 0D . MN2、化简题:( 1) 3( a - 2 b )-( 2 a + b );( 2) a - 2( a - 4 b )+ 3( 2a - b ).参考答案:1、( 1) B ( 2) C2、( 1) a - 7 b ( 2)5a +5 by练习 7.2.131、填空题:2(1)对任一个平面向量a ,都存在着一对有序实数b(x ,y ),使得 a=xi +yj 。

中职平面向量测试卷

中职平面向量测试卷

平面向量测试试卷姓名: 班级:选择题(每题3分)1、关于零向量,下列说法错误的是 ( )A.零向量的模为零B.零向量的方向不存在C .零向量与任意向量共线 D.数乘零向量等于零向量2、化简 (AC⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )−(AD ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−(AB ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ )的结果为 ( ) A.AB⃗⃗⃗⃗⃗ B. BC ⃗⃗⃗⃗⃗ C. CD ⃗⃗⃗⃗⃗ D. BA ⃗⃗⃗⃗⃗ 3、下列等式中,正确的个数是 ( )○1 a +b ⃗ =b ⃗ +a ;○2a -b ⃗ =b ⃗ -a ; ○30⃗ -a =a ○4a +(-a ) =0⃗ ; ○5-(-a )= aA.5B.4C.3D.24、在矩形ABCD 中,O 是对角线的交点,若OC e DC e BC 则213,5=== ( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e -D .)35(2112e e - 5.化简)]24()82(21[31b a b a --+的结果是( ) A .b a -2 B .a b -2 C .a b - D .b a -6、已知a =(3,1),b ⃗ =(-2,5),则3a -2b⃗ = ( ) A.(2, 7) B.(13, -7) C.(2, -7) D.(13, 13)7、已知向量OA ⃗⃗⃗⃗⃗ =(1,2), OB⃗⃗⃗⃗⃗ =(4,6),则AB ⃗⃗⃗⃗⃗ = ( ) A. (-3, -4) B.(3, 4) C.(-4, -3) D.(5, 8)8、已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)9、已知向量a =(-3, 3),下列向量中与a 不平行的是 ( )A.(2, 6)B.(1, -3)C.(-2, 6)D.(2, 6)10、若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为 ( ) A .103 B .-103 C .102D .10 填空题(每题3分)1、化简(1)AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ = ; (2) AB ⃗⃗⃗⃗⃗ -CD ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ = ; 2、若 a 表示“向西走3米”,则 -a 表示 ,|a | = ;3、已知a =(2, -1),b ⃗ =(x , 2),c =(3, y ),若a //b ⃗ //c ,则x= ,y= ;4、若a ∙b ⃗ =-4, |a |=√2, |b ⃗ |=2√2, 则<a , b⃗ >= ; 5、已知A (-3,6),B (3,-6),则AB⃗⃗⃗⃗⃗ = ,|BA ⃗⃗⃗⃗⃗ |= ; 6.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .7.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是8.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= .解答题9、如图,已知向量a ,作出a +b ⃗ , a -b ⃗ ,3a (保留作图痕迹)(6分)10、已知A (7,2),B (2,2),C (3,4),求AB⃗⃗⃗⃗⃗ ∙AC ⃗⃗⃗⃗⃗ (5分)11、已知平行四边形ABCD 的三个顶点A (-3,0),B (1,-2),C (5,2),求顶点D 的坐标(5分)12、已知三角形ABC 中,点A (4,-2),B (0, 2),C (-2,0),试判断三角形ABC 的形状 (10分)13.已知2||=a 3||=b ,b a 与的夹角为60o ,b a c 35+=,b k a d +=3,当实数k 为何值时,⑴c ∥d ⑵d c ⊥(20分)。

(完整版)平面向量试卷(中职)

(完整版)平面向量试卷(中职)

《平面向量》试卷班级 姓名 学号 一、选择题(每小题3分)1、以下四个量中为向量的是 ( ) ⑴速度 ⑵温度 ⑶位移 ⑷力 A .⑴⑵⑶ B .⑴⑶⑷ C .⑴⑵⑷ D .⑵⑶⑷2、若四边形ABCD 是平行四边形,则下列各对向量为相等向量的是 ( ) A .AB 与AD B .AB 与BC C .BC 与AD D .AB 与CD3、平行四边形ABCD 中,===AC b AD a AB 则,, ( ) A .b a + B .b a - C .b a +- D .b a --4、如图,设===AB b OB a OA 则,, ( )A .b a +B .b a -C .b a +-D .b a -- 5、D 是=∆AD BC ABC 边的中点,则中 ( )A .AC AB 2121+ B .AC AB 2121- C .AC AB 2121+-D .AC AB 2121--6、已知A (-1,3),AB (6,-2),则点B 的坐标为 ( ) A .(5,1) B .(-5,-1) C .(-7,5) D .(7,-5)7、已知向量)3,2(-a 与)1,1(-b ,则b a -2的坐标为 ( )A .)5,3(-B .)7,5(-C . )7,3(-D .)5,5(- 8、已知向量)2,3(-a 与向量),6(λb 共线,则λ的值为 ( ) A .1 B .-1 C .4 D .-49、设A (2,-1),B (1,3),则向量AB 的坐标为 ( ) A .(-1,4) B .( 1,-4) C .(3,2) D .(-3,-2) 10、平面上两点A (5,6),B (-3,4),若AC =CB ,则点C 的坐标为 ( )A .(-1,-5)B .( 1,5)C .(5,1)D . (-5,1)二、填空题(每小格2分)1、=+ED AE =-AD AB =++CA BC AB 。

2、若向量a 表示“向东走8米”、b 表示“向南走8米”,则a +b 表示“ ”。

中职数学基础模块下册第七章《平面向量》单元检测试题及参考答案

中职数学基础模块下册第七章《平面向量》单元检测试题及参考答案

中职数学第七章《平面向量》单元检测试题(满分100分,时间:90分钟).选择题(3分*10=30分)A. -12B.12C. -3D. 35、下列各不等式中成立的是( )A 、a+b〉b B、a+b”b C、a+b>a — b D、a+b 兰冋+|b6、若A(-1 ,2),B(3, 4),P(x ,y),且2AP=PB,则P点坐标为()A. (4,8)B. (〔,4)C. (4,4)D.(-,-)3 3 3 3 3 3 37、设向量a, b的长度分别为4和3,夹角为120度,则a& =()A. -6B. 6C. -12 .3D. 12 .38、已知向量AB =13,4,点A的坐标为-2,3 ,则点B的坐标是()A、-7,-1 B 、7,1 C 、1,7 D 、-1,-79、已知向量a h[2,4,b=]1, x ,若 a —b,则x 二()1 1A B 、一C 、2 D 、- 22 210、已知向量 a = (1,m) , b = (m,2),若 a // b,贝卩m=()A. 一、、2B. 、2C. - ,2 或,2D. 0二.填空题(4分*8=32分)11. 若< = ( — 1,3) ______________________________________ , 6 = (1,—1),贝y F—b 为12. 已知也ABC中,A B爲,B C=6当a^>0时,AABC为_____ 三角形.13. AB —AC BC = _____14. 已知< = (2,1), b = (1,3) , c = (8,9) 且 c = ma + nb 贝卩m= __,n= ____5 515. 设a= (1, 2), b= (-2 , 1),则2a+3b 等于_________________16. 设向量a=(1, m),向量 b = (2, m-3),若 a 丄b,贝S m= __________ .17. 已知向量;=(1,2), b = (-1,1),则3<—2b= _______ .218. 已知向量a=( 1,2), b=(2, -1),贝,2a+b丨的值为______________ .三.解答题(共计38分)19. (6 分)若 a • b=5,丨 a 丨=,10 ,| b 丨=.5,求<a , b >20. ( 6 分)已知 a b = 3, a = 3 .. 2, b = 2,求V a , b >21. ( 8分)已知a,b是平面上两个不共线的非零向量,且a=(4,-3) , 1且a b =0,求向量b的坐标。

(完整版)平面向量综合检测、解析及答案

(完整版)平面向量综合检测、解析及答案

平面向量综合检测、分析及答案一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 平面向量a与b的夹角为 60°,a=(2,0),|b| =1,则 | a+2b| = ()A. 3B.2 3C.4D.12分析: | a+2b| =( a+2b) 2=4+4+4=2 3.答案: B2. 已知 |a| =1,|b| =6,a·(b -a) =2,则向量 a 与 b 的夹角是 ()ππA. 6B. 4ππC. 3D. 2分析:由 a·(b-a)=2得 a·b=2+1=3=6×cos<a,b>,∴cos<a,1b>=2,又<a,b>∈[0,π],π∴<a,b>=3.答案: C3.一质点遇到平面上的三个力 F1、F2、F3( 单位:牛顿 ) 的作用而处于均衡状态.已知 F1、F2 成 60°角,且 F1、F2 的大小分别为 2 和 4,则 F3 的大小为()A.2 7B.2 5C.2D.6分析:由题意得 F1+F2+F3=0.答案: A4.(2009 ·福建福州模拟 ) 把一颗骰子扔掷两次,并记第一次出现的点数为 a,第二次出现的点数为b,向量 m= (a ,b) ,n=(1,2) ,则向量 m与向量 n 不共线的概率为 ()15A. 12B. 12711C.12D. 12分析: m 与 n 共线的情况共有三种: m =(1,2) ,m =(2,4) ,m =(3,6) ,3 11故 m 与 n 不共线的概率 P =1-36=12.答案: D5. 已知向量 a =(λ2+6和 j =(0,1) ,若 a ·j =- 3,3 ,λ) ,i =(1,0)且向量 a 与 i 的夹角为 θ,则 cos θ 的值为 ()3 3A .- 2 B. 2 1 1 C .-2 D. 2答案: Buuur uuur uuur uuur)6.四边形 ABCD 中,AB · BC =0,且 AB = DC,则四边形 ABCD 是( A .平行四边形 B .矩形 C .菱形 D .正方形 uuuruuuruuur分析:由AB =可知为平行四边形,由 AB ·BC =0 知∠=DCABCDABC90°,故 ABCD 为矩形.答案: B7.设 a 与 b 是两个不共线向量,且向量a +λb 与- (b -2a) 共线,则λ= ( )1A .0B .- 21C .- 2D.2分析:由题意得 a +λb =- k ( b -2a ) ∴2k =1,,=- k1∴λ=- 2. 答案: B8. 设向量 a ,b 知足: |a| =3,|b| =4,a ·b =0,以 a ,b ,a -b 的模为第2页共 8页分析:三角形的内切圆半径为 1,将圆平移,最多有 4 个公共点. 答案: B9.设 a ,b ,c 是非零向量,以下命题中正确的选项是 ( )A .( a ·b ) ·c =a ·(b ·c )B .| a -b | 2=| a | 2-2| a || b | +| b | 2C .若 | a | =| b | =| a +b | ,则 a 与 b 的夹角为 60°D .若 | a | =| b | =| a -b | ,则 a 与 b 的夹角为 60°分析:A 、B 明显不正确. 由平行四边形法例可知, 若| a | =| b | =| a +b | ,可知 <a ,b >=120°,故 C 不正确.答案为 D.答案: D10. 设 a 、b 、c 是单位向量,且 a ·b =0,则 (a -c) ·(b -c) 的最小值为()A .- 2B. 2-2C .- 1D .1- 2分析:( a -c ) ·(b -c ) =a ·b -b ·c +c 2-a ·c =1-( a +b ) · c ,又 a ·b=0,| a | =| b | =1,∴|a +b | = 2.设 a +b 与 c 的夹角为 θ,则上式= 1-2cos θ当 cos θ=1 时( a -c ) ·(b -c ) 获得最小值 1- 2. 答案: Duuur uuuruuur11.点 O 在△ABC 内部且知足 OA +2 OB +2 OC=0,则 △ABC 的面积与△OBC 的面积之比为 ( )5A.4 B .3 C .4 D .5uuuruuuruuur1 uuuruuur1 uuur分析:由 OA +2 OB +2OC =0,∴2( OB + OC ) =4AO ,∴△ABC△OBC底边 BC 的高之比为 5 1,∴ S △ABC S △OBC =5 1.答案: D12.在直角 △ABC 中,CD 是斜边 AB 上的高,则以下等式不建立的是( )uuur2uuuruuurA .| AC | =AC· AB uuur2uuuruuurB .|BC | =BA · BCuuur 2uuuruuurC .| AB | =AC · CDuuurD .| CD |uuur uuuruuur uuur2 (ACgAB )(BA gBC ) =uuur 2ABuuur uuur uuur分析:∵AB ·AC =| ACuuur uuur uuur uuur(AC gAB )(BA gBC )同理:uuur 2AB| 2 uuuruuur 2,故 B 建立.故 A 建立,又 BA ·BC ] =| BC |uuur uuurACBA=uuur 2ABuuuruuur uuuruuur又| AC |·|BC | =| AB || CD |uuuruuuruuuruuur uuuruuur 2ACACuuur 2∴|CD |2 =uuur2,故 D 也正确.,又AC ·CD =| CD≠|| ,故AB AB选 C.答案: Cm13.设两个向量 a =( λ+2,λ2-cos2α) 和 b =(m ,2+sin α) ,此中λλ, m ,α 为实数,若 a =2b ,则 m 的取值范围是 ()A .[ -6,1]B .[4,8]C .[ -1,1]D .[ -1,6]+ =①,分析:由 a =2b 知2 2m,2-2= + ②)cos m 2sin , =2m -2,∴2-m = cos 2 +2sin又 cos 2α+2sin α=- (sin α-1) 2+2∴- 2≤cos 2 α+2sin α≤2,即- 2≤ λ2-m ≤2,由 λ=2m -22 1 -2≤(2 m -2) -m ≤2,得 4≤m ≤2λ 2m -22∴==2- ∈[ -6,1] . mm m答案: A二、填空题:本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上.uuur uuur uuur uuuruuuur14.在? ABCD 中, AB =a ,AD =b ,AN=3 NC ,M 为 BC 的中点,则 MNuuur uuur分析:由 AN =3 NC 得 4 AN =3 AC =3( a +b ) .uuuur1AM =a +2b ,uuuur 3111∴ MN =4( a +b ) -( a +2b ) =- 4a +4b .1 1答案:- 4a +4b711715.向量 c 与 a =( 2,2) ,b =( 2,- 2) 的夹角相等,且 |c| =1,则 c =________.x2+ 2=分析:设 c =( x ,y ) ,由题意得:y 1,得 =bgcagcx= 4 , x=-455 ,y= 3 y=- 355434 3答案: ( 5,- 5) 或( -5,5)16.已知点 G 为△ABC 的重心,过 G 作直线与 AB 、AC 两边分别交于 M 、Nuuuur uuur uuur uuur 1 1两点,且 AM =xAB , AN = y AC ,则 + =________.xyuuur1 uuuruuur1 1 uuuur1 uuur1分析: AG =3( AB + AC ) =3( x AM +y AC ) ,∵M 、N 、G 三点共线, ∴3x11 1+3y =1,即 x +y =3.答案: 317. 如图,在平面斜坐标系 xOy 中, ∠xOy =60°,平面上任一点 P 在斜uuur OPuuur轴方向同样的单位向量 ) ,则点 P 的斜坐标为 (x ,y) .若点 P 知足 |OP| =1,则点 P 在斜坐标系 xOy 中的轨迹方程是 ________.uuuruuur22122又| OP | =1,∴ x +y +2xy ×2=1,即 x +y +xy =1. 答案: x2+y2+xy =1三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.uuur uuur uuur uuur uuur18.(10 分) 在△ ABC 中, AB · AC = | AB - AC | =2,求|AB|2 +| AC|2. 解:由题意可知uuur uuuruuurABgAC 2uuur 2 uuur2=8.2 uuur uuur uuur 得| AB | +| AC| AB2 ABgAC AC 4uuuruuuruuuruuur uuur19.(12 分) 如图 |OA| =|OB|=1,| OC|=3,∠AOB =60°,OB ⊥ OC.uuuruuuruuur设 OC =x OA +y OB,求 x 、y 的值.uuur uuur uuur解: ∵ OC =x OA +y OB uuur 2uuur uuur uuur uuur①∴ OB · OC =x OA · OB+y OBuuur 2uuur uuur uuuruuurOC =x OA· OC +y OB · OC ②将①②联立得12x +y =0332×( - 2 ) x =3 得 x =-2,y =1π20.(12 分 ) 已知 a ,b 知足 |a| =3,|b| = 1,a 与 b 的夹角为 3 ,求 2a+3b 与 a -b 的夹角的余弦值.1 3解: ∵a ·b =| a || b |cos< a ,b >=3×1× 2=2又(2 a +3b ) 2=4a 2+9b 2+12a ·b =36+9+18=63, ∴|2 a +3b | =3 7.同理可得 | a -b | = 7 ∵ (2 a +3b ) ·(a -b ) =2a 2+a ·b -3b 23 33 =18+2-3= 2+ · -333b )211(2 a( a b ) =∴cos 〈 (2 a +3b ) ,( a -b ) 〉=a -b | = .|2 a +3b ||37·7 1421.(12 分) (2009 ·上海 ) 已知 △ABC 的角 A 、B 、C 所对的边分别为 a ,b ,c ,设 m =(a ,b) ,n =(sinB ,sinA) ,p =(b -2,a -2)(1) 若 m ∥n ,求证 △ABC 为等腰三角形;π(2) 若 m ⊥p ,边长 c =2,∠C = 3 ,求 △ABC 的面积. 解: (1) 证明:∵ m ∥n ,∴ a sin A =b sin B .由正弦定理得 a 2=b 2,a =b ,∴△ ABC 为等腰三角形. (2) ∵m ⊥p ,∴ m ·p =0. 即 a ( b -2) +b ( a -2) =0 ∴a +b =ab由余弦定理得 4=a 2+b 2-ab =( a +b ) 2-3ab 即( ab )2-3ab -4=0,∴ ab =4 或 ab =- 1( 舍)11 π∴S △ABC =2ab sin C =2×4×sin 3 = 3.uuur uuuruuur22.(12 分) 已知 OA =(3 ,- 4) , OB = (6 ,- 3) , OC=(5 -m ,- 3-m).(1) 若点 A 、B 、C 不可以组成三角形,务实数 m 知足的条件;(2) 若△ABC 为直角三角形,务实数 m 的值.解: (1) uuur uuur∵ OA =(3 ,- 4) , OB =(6 ,- 3)uuurOC =(5 -m ,-3-m ) .若 A 、B 、C 三点不可以组成三角形, 则这三点共线,uuur∵ AB =(3,1)uuur1AC =(2 -m,1-m ) ,∴ 3(1 - m ) =2-m ,得 m =2(2) ∵△ ABC 为直角三角形.uuuruuur7若∠ A =90°,则 AB · AC =0,∴ 3(2 - m ) +(1 -m ) =0,得 m =4.uuuruuuruuur若∠ B =90°,则 AB · BC =0,又 BC =( -1-m ,- m )3∴ 3( -1-m ) +( -m ) =0 得 m =- 4.uuur uuur若∠ C =90°,则 BC ⊥ AC .1± 5∴(2 -m ) ·( - 1-m ) +(1 -m ) ·( -m ) =0,得 m =2731±5综上得 m=4或 m=-4或 m=223.(12 分) 已知 a=(1,2) ,b=( -2,1) ,k、t 为正实数, x=a+(t2 +1 11)b ,y=-k a+t b(1)若 x⊥y,求 k 的最大值;(2)能否存在 k、t ,使 x∥y?若存在,求出 k 的取值范围,若不存在,说明原因.解: x=a+( t 2+1) b=(1,2)+( t 2+1)(-2,1)=(-2t2-1,t2+3)1111y=-k a+t b=-k(1,2)+t(-2,1)1 2 2 1=( -k-t,-k+t )2 1 22 2 1(1) 若x⊥y,则x·y= 0,即:( -2t-1) ·( -k-t ) +( t+3)( -k+t )=0t111整理得:k=t2+1=1≤2(当且仅当t=t即t=1时“=”建立)故k maxt+t1=2.(2)假定存在正实数 k、t ,使 x∥y,则221212( -2t-1)(-k+t ) -( t+3)( -k-t ) =0t 2+113整理得k+t=0,即t+t +k=0∵k、t 为正实数,故知足上式的k、t 不存在.即不存在这样的正实数k、t 使 x∥y.。

平面向量单元测试题(含答案)

平面向量单元测试题(含答案)

平面向量单元测试题(含答案) 平面向量单元检测题学校:______ 姓名:______ 学号:______ 成绩:______一、选择题(每小题5分,共60分)1.若ABCD是正方形,E是CD的中点,且AB=a,AD=b,则BE的长度为()A。

b-1/2a。

B。

a-1/2b。

C。

b+1/2a。

D。

a+1/2b2.下列命题中,假命题是()A。

若a-b=0,则a=bB。

若ab=0,则a=0或b=0C。

若k∈R,ka=0,则k=0或a=0D。

若a,b都是单位向量,则XXX成立3.设i,j是互相垂直的单位向量,向量a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则实数m为()A。

-2.B。

2.C。

-1/2.D。

不存在4.已知非零向量a⊥b,则下列各式正确的是()A。

a+b=a-b。

B。

a+b=a+b。

C。

a-b=a-b。

D。

a+b=a-b5.在边长为1的等边三角形ABC中,设BC=a,CA=b,AB=c,则a·b+b·c+c·a的值为()A。

3/2.B。

-3/2.C。

1/2.D。

06.在△OAB中,OA=(2cosα,2sinα),O B=(5cosβ,5sinβ),若OA·OB=-5,则△OAB的面积为()A。

3.B。

3/2.C。

53.D。

53/27.在四边形ABCD中,AB=a+2b,BC=-4a-b,CD=-5a-3b,则四边形ABCD的形状是()A。

长方形。

B。

平行四边形。

C。

菱形。

D。

梯形8.把函数y=cos2x+3的图象沿向量a平移后得到函数y=sin(2x-π/6),则向量a的坐标是()A。

(π/3,-3)。

B。

(π/6,3)。

C。

(π/12,-3)。

D。

(-π/12,3)9.若点F1、F2为椭圆x^2/4+y^2/9=1的两个焦点,P为椭圆上的点,当△F1PF2的面积为1时,PF·PF的值为()A。

4.B。

1.C。

3.D。

(完整版)平面向量单元测试题及答案

(完整版)平面向量单元测试题及答案

平面向量单元测试题2一,选择题:1,以下说法中错误的选项是()A .零向量没有方向B.零向量与任何向量平行C.零向量的长度为零D.零向量的方向是随意的2 ,以下命题正确的选项是()A. 若a、b都是单位向量,则 a = bB.若 AB = DC ,则A、B、C、D四点组成平行四边形C.若两向量 a 、b相等,则它们是始点、终点都同样的向量D.AB 与 BA 是两平行向量3,以下命题正确的选项是()A 、若a∥b,且b∥c,则a∥c。

B、两个有共同起点且相等的向量,其终点可能不一样。

C、向量AB的长度与向量BA 的长度相等,D 、若非零向量AB 与 CD 是共线向量,则 A 、 B、 C、 D 四点共线。

4,已知向量a m,1,若, a =2,则m()A .1 B.3 C. 1 D.35,若a =(x1,y1), b=( x2, y2), a ∥ b,则有(),且A ,x1y2+x2y1=0,B ,x1y2― x2 y1=0,C,x1x2+y1y2=0,D,x1x2―y1y2=0,6,若a =(x1,y1),b =(x2,y2),,且 a ⊥ b ,则有()A ,x1y2+x2y1=0,B ,x1y2― x2 y1=0,C,x1x2+y1y2=0,D,x1x2―y1y2=0,7,在ABC 中,若BA BC AC ,则ABC 必定是()1A .钝角三角形B.锐角三角形C.直角三角形 D .不可以确立r r r uur r r r r r r r r8,已知向量a, b, c知足| a |1,| b |2, c a b, c a ,则 a与b 的夹角等于()A .1200B600C300D90o二,填空题:( 5 分× 4=20 分)r rb =1, 3a2b =3,则3a b9。

已知向量a、b知足a ==r r r r10,已知向量a=( 4, 2),向量b=( x ,3),且a//b ,则x=11, . 已知三点 A(1,0),B(0,1),C(2,5),求 cos ∠ BAC =12, .把函数y x24x7 的图像按向量 a 经过一次平移此后获得y x2的图像,则平移向量 a 是(用坐标表示)三,解答题:( 10 分×6 = 60分)13,设P1(4,3), P2 (2,6), 且P在 P1 P2的延伸线上,使P1P 2 PP 2 ,,则求点P 的坐标14,已知两向量a (1r3,,1 3), ,b ( 1, 1), 求a与 b 所成角的大小,15,已知向量 a =(6,2),b=(-3,k),当k为什么值时,有1),a ∥b?2),a ⊥b?3a与 b 所成角θ是钝角?(((),216,设点 A ( 2, 2), B( 5, 4),O 为原点,点P知足OP = OA + t AB,( t 为实数);( 1),当点 P 在 x 轴上时,务实数t 的值;( 2),四边形 OABP 可否是平行四边形?假如,务实数t 的值;若否,说明原因,17,已知向量OA =(3,-4), OB =(6,-3), OC =(5-m,-3-m),( 1)若点 A 、 B 、C 能组成三角形,务实数 m 应知足的条件;( 2)若△ ABC 为直角三角形,且∠ A 为直角,务实数 m 的值.318,已知向量m(1,1), 向量 n 与向量m 的夹角为3, 且 m n1 . 4( 1)求向量n;(2)设向量a(1,0),向量 b(cos x,, sin x) ,此中x R ,若 n a0 ,试求| n b |的取值范围.平面向量单元测试题2答案:一,选择题:ADCD BCCA二,填空题:9 , 23;10,6;11,21312 ,(2, 3) 13三,解答题:13,解法一:设分点P(x,y),∵P1P =―2 PP2,=―2∴(x ―4,y+3)= ―2( ―2― x,6 ― y),x― 4=2x+4, y+3=2y ―12, ∴ x=―8,y=15, ∴ P(―8,15 )4解法二:设分点 P (x,y ), ∵ P 1P =―2 PP 2 , =―2∴ x=4 2( 2)=―8, 1 2y=3 2 6 =15,∴ P(―8,15 )1 2解法三:设分点 P (x,y ), ∵ P 1 P2 PP 2 ,∴ ―2=4x , x= ― 8,26= 3y , y=15,∴ P(―8,15 )214,解:a=2 2 ,b= 2<a ,b >=― 1, ∴< a , b > = 1200,, cos215 ,解:( 1), k= - 1;(2), k=9;(3),k < 9, k ≠ -116 ,解:( 1),设点 P ( x , 0),AB =(3,2),∵ OP = OA + t AB , ∴ (x,0)=(2,2)+t(3,2),则由 , x 2 3t∴ 即x10 2 2t, t1,(2),设点 P ( x,y ),假定四边形 OABP 是平行四边形,则有 OA ∥BP ,OP ∥ABy=x2y=3x―1,∴ 即x2 ①,y3又由 OP =OA + t AB ,(x,y)=(2,2)+ t(3,2),得 ∴ 即x3 2t ②,y2 2tt 43, 矛盾,∴假定是错误的,由①代入②得:t52∴四边形 OABP 不是平行四边形。

中职数学平面向量测试题

中职数学平面向量测试题

职业中专第二学年上期月考试题姓名:___________ 成绩:___________一、选择题(15*4=60分)1、已知数列{n a }的通项公式是25n a n =-,那么2n a =( )。

A 、25n -B 、45n -C 、210n -D 、410n -2、等差数列75,3,,2,22----…的第1n +项为( )。

A 、1(7)2n - B 、1(4)2n - C 、42n - D 、72n-3、在等比数列{n a }中,已知252,6a a ==,则8a =( )。

A 、10 B 、12 C 、18 D 、244、矩形ABCD 中,3,1,AB BC AB BC BD ==++=则( )。

A 、2B 、0C 、4D 、5、,,ABC AB AC BC AB AC ∆中,取为平面的一个基,则向量在基下的坐标为( )A 、(1,-1)B 、(-1,1)C 、(1,1)D 、(-1,-1) 6、设13(1,1),(1,1),,22a b c a b c -=-则的坐标为( )。

A 、(1,-2) B 、(-1,2) C 、(1,2) D 、(-1,-2) 7、已知(,3)(2,1)a x b x -=与共线,则( )。

A 、32 B 、-32C 、6D 、-6 8、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为( ) A 、(1,-1) B 、(-1,1) C 、(11,-3) D 、(-11,3) 9、已知线段AB 的中点M 的坐标是(-1,1),点A 坐标(-3,1),则点B 的坐标为( ) A 、(1,-3) B 、(-2,0) C 、(4,-4) D 、(-5,3) 10、设向量'(2,1),a a -点P(-1,3)在决定的平移下的象P 的坐标为( )。

A 、(-1,-2) B 、(1,2) C 、(-3,4) D 、(3,-4)11、函数2(1,3)y x a =-的图像在决定的平移下的象的函数解析式为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

职业中专第二学年上期
月考试题
姓名:___________ 成绩:___________
一、选择题(15*4=60分)
1、已知数列{n a }的通项公式是25n a n =-,那么2n a =( )。

A 、25n -
B 、45n -
C 、210n -
D 、410n -
2、等差数列7
5
,3,,2,22----…的第1n +项为( )。

A 、1
(7)2n - B 、1
(4)2n - C 、42n
- D 、72n
-
3、在等比数列{n a }中,已知252,6a a ==,则8a =( )。

A 、10
B 、12
C 、18
D 、24
4、矩形ABCD 中,3,1,AB BC AB BC BD ==++=则( )。

A 、2
B 、0
C 、4
D 、5、,,ABC AB AC BC AB AC ∆中,取为平面的一个基,则向量在基下的坐标为(
) A 、(1,-1) B 、(-1,1) C 、(1,1) D 、(-1,-1)
6、设13
(1,1),(1,1),,22a b c a b c -=-则的坐标为( )。

A 、(1,-2)
B 、(-1,2)
C 、(1,2)
D 、(-1,-2)
7、已知(,3)(2,1)a x b x -=与共线,则( )。

A 、3
2 B 、-3
2 C 、6 D 、-6
8、已知平行四边形ABCD 中,A (-4,-2),B (2,-4),C (5,-1),则点D 的坐标为(
) A 、(1,-1) B 、(-1,1) C 、(11,-3) D 、(-11,3)
9、已知线段AB 的中点M 的坐标是(-1,1),点A 坐标(-3,1),则点B 的坐标为(

A 、(1,-3)
B 、(-2,0)
C 、(4,-4)
D 、(-5,3)
10、设向量'(2,1),a a -点P(-1,3)在决定的平移下的象P 的坐标为( )。

A 、(-1,-2)
B 、(1,2)
C 、(-3,4)
D 、(3,-4)
11、函数2(1,3)y x a =-的图像在决定的平移下的象的函数解析式为( )。

A 、2(1)3y x =++
B 、2(1)3y x =+-
C 、2(1)3y x =-+
D 、2(1)3y x =--
12、已知3,2,.3,a b a b a b ===-则<,>=( )。

A 、3π
B 、32π
C 、6π
D 、6
5π 13、已知点A (-1,8),B (2,4),则AB =( )。

A 、5
B 、25
C 、13 D
14、已知下列各对向量的直角坐标,相互不垂直的向量对是( )。

A 、3113(,),(,)22a b -
B 、(3,4),(3,4)a b -
C 、(2,0),(0,1)a b -
D 、(2,4),(2,1)a b -
15、下面给出的是向量的直角坐标,其中不是单位向量的是( )。

A 、(cos α,sin α)
B 、1122⎛⎫
⎪⎝⎭, C 、122⎛⎫ ⎪
⎪⎝⎭, D 、3455⎛⎫- ⎪⎝⎭, 二、填空题(5*4=20分)
16、______OA OB CO BO +++=,______CE AC DE AD +--=。

17、三角形ABC 的三个顶点坐标分别为A (3,2),B (-5,-2),C (5,-4),则三角形三条边AB ,AC ,BC 的中点坐标分别为________,________,________。

18、知向量'(1,2),P a a -若点P 在决定的平移下的象P(-2,3),那么点坐标是______。

19、直角坐标系12;,(2,3),(2,5),______O e e OP OQ PQ ⎡⎤-⎣⎦
中,已知则的坐标为。

(2,1),(1,3),.______,______,______,cos ,______,,______a b a b a b a b a b ===<>=<>=20、已知则。

三、解答题(70分)
21、作图:画出和向量,a b a b +-差向量,并写出作图步骤。

22、如图,在正六边形ABCDEF 中,找出:
(1),与OA 相等的向量;
(2),与OA 相反的向量;
(3)与OA 共线的向量。

23、设AD ,BE ,CF 是三角形ABC 的三条中线, (1),,,;A
BA C A DB EC F 用、表示
(2),求.AD BE CF ++
,,0(1),.(2),,a b c a b c a b
a b ++=<>
24、设向量都是单位向量,且,求
25、用向量的方法证明:菱形的两条对角线互相垂直。

26、已知三角形ABC 三个顶点的坐标分别为A (-2,3),B(1,2),C(5,4),求:
(1),,B AB C 向量的坐标;
(2),B ;
(3),AC 边的中线长。

相关文档
最新文档