高分子材料的环境行为与老化机理研究进展.
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨高分子材料是一类具有很广泛应用的材料,它们在制造和使用过程中可能会遇到老化问题。
高分子材料老化是指在长时间环境作用下,材料的性能和功能逐渐降低的过程。
本文将探讨高分子材料老化的机理以及防治方法。
高分子材料老化机理可以分为物理老化和化学老化两个方面。
物理老化主要是由于高分子材料在长时间环境作用下,受到温度、湿度、紫外线、辐射等外部因素的影响,从而导致材料的物理结构发生变化。
热老化是高分子材料最常见的物理老化形式之一,其机理是由于长时间高温作用下,聚合物链的运动加剧,导致材料发生硬化和变脆。
湿热老化是指高温高湿环境下,材料分子链与水分子发生反应,导致材料性能下降。
紫外线老化是指材料长时间暴露在紫外线下,导致材料色泽变化、表面发黄、裂纹、降解等问题。
辐射老化是指高分子材料长时间暴露在电子、离子等辐射源下,导致材料分解、断裂。
化学老化是指高分子材料在环境中发生化学反应,导致材料性能降低。
化学老化主要包括氧化老化、光氧老化等。
氧化老化是指高分子材料和环境中氧气发生反应,导致材料颜色变深、硬度下降、强度降低等现象。
光氧老化是指高分子材料在光照射下发生氧化反应,导致材料的色泽变化、力学性能发生变化等问题。
为了防止高分子材料老化,我们可以采取一些措施。
控制环境条件是防治高分子材料老化的重要手段。
要避免材料暴露在长时间高温、高湿、紫外线辐射等有害条件下,保持材料处于适宜的环境中。
添加抗老化剂是一种常用的方法。
抗老化剂可以防止材料的氧化和光氧老化,延缓材料的老化过程。
不同材料根据其老化机理的不同,可以选择不同类型的抗老化剂。
适当的表面处理也可以延缓高分子材料的老化。
常用的表面处理方法包括物理处理和化学处理两种。
物理处理包括喷涂、覆膜等,可以增加材料的抗老化性能。
化学处理包括表面改性、接枝等,可以提高材料的耐老化性能。
高分子材料老化是一个复杂的问题,需要针对不同材料的特点采取相应的防治方法。
高分子材料的老化及防老化研究

高分子材料的老化及防老化研究高分子材料是由相对分子质量较高的化合物构成的材料,包括高分子、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子材料自身的性能较好,被广泛的应用在各行各业中,但是由于高分子材料在生产或储存的过程中,容易产生一些物理或化学变化,导致材料老化,性能降低,造成无法使用。
本文主要通过分析高分子材料产生的老化问题,并探讨防治高分子材料老化的一些措施。
标签:高分子材料;老化问题;预防对策由于高分子材料具有其独特的优势,已被广泛地运用于国民经济和日常生活的许多领域。
它是高科技和国家经济支柱产业中不可或缺的材料,也是重要的战略储备物资。
高分子材料在生产和使用的过程中,其无法避免地会在不同程度上发生老化现象。
随着高分子材料的种类、用量的增加和极端使用条件的扩大,其老化问题日益突出,因而对其老化规律、老化机理和防老化的研究也变得日益重要。
本文主要针对其发生老化的原因进行讨论,找出预防老化的相应对策。
一、高分子材料的老化(一)高分子材料老化的表现1、由于高分子材料品种不同,使用条件各异,因而有不同的老化现象和特征。
对于高分子制品来说,生胶经久贮存时会变硬、变脆或者发粘;高分子薄膜制品(如雨衣、雨布等)经过日晒雨淋后会变色,变脆以至破裂;在户外架设的电线、电缆,由于受大气作用会变硬、破裂,以至影响绝缘性;汽车轮胎和飞机轮胎使用日久后会发生龟裂;在实验室中的胶管会变硬或发粘;有些高分子制品还会受到霉菌作用而导致破坏等等。
农用塑料薄膜经过日晒雨淋后发生变色、变脆、透明度下降;航空有机玻璃用久后出现银纹、透明度下降;2、高分子材料老化发生的变化:首先是外观的改变,出现斑点、裂缝、污渍、喷霜、银纹、发粘、粉化、起皱、翘曲、焦烧、收缩、光学颜色的变化以及光学畸变。
其次是使用方面的改变,使用方面的改变又包括物理性能改变,流变性能、溶胀性、溶解性、耐寒性以及耐热、透气透水等性能的变化。
还有力学性能发生改变,相对伸长率、弯曲强度、拉伸强度、冲击强度、应力松驰、剪切强度等性能的变化。
高分子材料本科毕业论文选题

咼分子材料本科毕业论文选题(1) 高分子材料在印花涂料中的应用(2) 体现区域经济特色的高分子材料方向工学硕士的培养(3) 高分子材料与工程:接地气的材料学(4) 新型高分子材料在采空区漏风治理的应用(5) 高分子材料功能助剂的应用现状和发展趋势(6) 天然高分子材料在阻燃技术中的研究进展(7) 高分子材料成型加工技术及应用(8) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践(9) 《药用高分子材料学》创新型实验教学的探索(10) 浅析高分子材料成型加工技术(11) 高分子材料成型及其控制(12) 高分子材料耐候性试验中的紫外辐射测定方法研究(13) 对高分子材料成型加工技术关键点的分析(14) 《药用高分子材料》课程教学中若干问题探讨(15) 农业院校《药用高分子材料》教学探讨(16) 高分子材料与工程专业生产实习问题调查及对策(17) 高分子材料三防技术研究(18) 高分子材料的老化及防老化研究(19) 浅谈高分子材料成型及其控制技术(20) 高分子材料的发展及应用(21) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(22) 高分子材料合成与应用中的绿色战略(23) 新型高分子材料与应用探析(24) 高分子材料,罢工”脏器的好替身(25) 试析高分子材料成型加工技术(26) 热致型形状记忆高分子材料研究(27) 生物可降解高分子材料的研究(28) 改善高分子材料课程教学效果的几点措施(29) 高分子材料的金属化(30) 理实一体化”在高分子材料加工原理课程教学中的应用研究(31) 高分子材料与工程专业人才培养模式的探究(32) 导热高分子材料的研究与应用分析(33) 聚乳酸高分子材料的生物安全性评价(34) 浅谈高分子材料抗静电剂ASA(35) 高分子材料加工技术专业理实一体化”实训室建设的探索(36) 功能高分子材料课程的教学实践与探索(37) 《高分子材料性能测试》课程教学探析(38) 浅析Pro/E软件在高分子材料中的应用(39) 形状记忆高分子材料的研究进展(40) 探讨功能高分子材料的应用(41) 石墨炉原子吸收法快速测定聚醚酮酮特种高分子材料中铝离子残留形状记忆高分子材料在自拆卸构件中的应用进展(42) 浅谈高分子材料与工程专业创新性实验能力的培养(22) 高分子材料合成与应用中的绿色战略(43) CAE技术在咼分子材料齿轮箱设计中的应用(44) 浅论高分子材料的发展前景(45) 高分子材料成型加工技术研究(46) 生物降解高分子材料的研究现状及应用前景(47) 耐高温高分子材料的合成与性能分析(48) 基于核辐射高分子材料在电线电缆中的作用分析(49) 浅析高分子材料成型加工技术及其发展(50) 高分子材料分析测试与研究方法教学改革探索(51) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用高分子材料在采油工程中的应用与展望(52) 高分子材料与工程专业人才培养体系改革研究(53) 加强实践教学提高高分子材料与工程专业认识实习质量(54) 有关高分子材料成型加工技术研究(55) 对高分子材料成型加工技术关键点的分析(56) 浅究影响高分子材料老化的因素及应对措施(57) 探析高分子材料成型及其控制技术(58) 《生物医用高分子材料》课程教学探索(59) 智能高分子材料的分类与研究进展(60) 功能高分子材料课程教学的探索与实践(61) 高分子材料专业大学生就业现状及对策研究(62) 《药用高分子材料学》课堂教学探讨一从被动学习到主动学习阻燃性有机硅高分子材料的研究进展(63) 浅析高分子材料成型加工技术(64) 关于高分子材料成型加工技术的探讨(65) 功能高分子材料在多晶硅生产中的应用(66) 高分子材料抗静电技术研究(67) 壳聚糖作为药用高分子材料的综述(68) POSS基高分子材料的合成及热性能(69) 对高分子材料未来研究方向的思考(70) 药用高分子材料》课程教学整体设计(71) 高分子材料与工程专业基础实验教学改革探析(72) 关于废旧高分子材料在建筑行业中的应用(73) 《高分子材料》教学探索与实践(74) 基于高分子材料与工程专业CDIO培养模式初探(75) 高分子材料成型加工实验面向学生实践和创新能力培养的改革与探索探讨热分析技术在高分子材料中的应用研究(76) 医用高分子材料表面改性研究(77) 高分子材料在日常生活中的应用(78) 高分子材料成型加工技术的进展探析(79) 基于导热高分子材料的研究与应用分析(80) 高分子材料专业毕业设计改革创新研究(81) 应用型本科院校《高分子材料科学基础》课程教学改革探讨高分子材料的表面改性技术研究(82) 高分子材料加工工艺教学方法创新研究(83) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(84) 高分子材料成型加工课程教学改革探索(85) 生物可降解高分子材料的应用(86) 废旧高分子材料在建筑材料中的回收应用(87) 填充复合型导电高分子材料及其应用(88) 高分子材料成型加工技术的相关探究(89) 加强高分子材料成型加工课程实践性教学的探讨(90) 功能高分子材料”的化学教学价值(91) 车用高分子材料耐刮擦性能研究与改善(92) 析高分子材料成型加工技术(93) 中学化学教学中的高分子材料(94) 高分子材料的环境行为与老化机理研究进展探讨(95) 基于食品包装产品的高分子材料成分快速鉴别方法研究(96) 对高分子材料未来研究方向的思考(97) 生活中的高分子材料特有现象(98) 基于实践的应用型本科院校高分子材料成型加工实验”教学模式的探索研究(99) 基于应用型人才培养的建筑高分子材料课程教学改革(100) 《高分子材料进展》课程教学方法探索(101) 高分子材料成型加工实验教学的改革与探索(102) 浅析高分子材料成型加工技术(103) 浅析废旧高分子材料在墙体建筑中的回收与利用(104) 二聚二异氰酸酯LH1410功能高分子材料及其军民两用应用前景(105) 刍议高分子材料应用技术专业教学探索(106) 高分子材料专业英语教学改革初探(107) 高分子材料应用技术专业技术人文耦合”的校企文化建设研究(108) 高分子材料专业实践教学的改革与研究(109) 高分子材料与工程专业毕业设计改革探索①(110) 具有工程意识的高分子材料专业综合实验改革与实践(111) 高分子材料与纺丝技术”多媒体教学效果分析(112) 面向高分子材料专业的化工原理教改思考(113) 高分子材料在酒类包装中的应用(114) 机械工程材料课程中高分子材料的教学改革与实践(115) 脲醛树脂基高分子材料改性研究(116) 基于Abaqus子程序的高分子材料本构关系实现(1仃)合成类生物可降解高分子材料在生物医学中的研究进展(118) 高分子材料在太阳能热水器上的应用(119) 基于废旧高分子材料的回收应用问题探索与研究(120) 高分子材料与工程专业应用型实践教学体系建设(121) 典型高分子材料燃烧性能与火灾危险性研究(122) 增塑剂毒性对于医用高分子材料的风险分析(123) 高分子材料成型加工技术的进展分析(124) 高分子材料与工程专业化工原理教学改革与实践(125) 独立学院高分子材料专业特色培养模式(126) 浅谈生活中的高分子材料(127) 高分子材料与工程专业英语多媒体教学方法探讨(128) 探析高分子材料成型及其控制技术(129) 阻燃高分子材料及其阻燃剂研究进展(130) 高分子材料成型加工技术初探(131) 高分子材料合成与应用中的绿色战略(132) 高分子材料在建筑保温材料中的应用(133) 高分子材料成型加工技术的探索(134) 关于高分子材料成型技术的探讨(135) 高分子材料与工程专业人才培养探索(136) 试论高分子材料的阻燃技术(137) 新型功能高分子材料发展动向及应用研究(138) 浅谈高分子材料成型加工技术(139) 可降解高分子材料循环利用探讨(140) 生物质高分子材料应用及发展探讨(141) 天然高分子材料在微胶囊制备中的应用(142) 高分子材料与工程专业创新型人才培养模式的研究与实践高分子材料与工程专业卓越工程师”培养方案改革与实践高分子材料与现实生活(143) 新型高分子材料与应用(144) 关于高分子材料成型加工技术的探讨(145) 高分子材料的环境行为与老化机理研究进展(146) 智能高分子材料在智能给药系统中的应用(147) 为构建具有航空特色的高分子材料与工程专业人才培养方案高分子材料成型加工技术研究(148) 关于新型功能高分子材料的研究(149) 高分子材料实验室老化试验技术详解(150) 高分子材料性能与结构测试课程项目化教学改革探索(151) 形状记忆高分子材料及其在军事方面的应用前景(152) 高职院校高分子材料应用技术专业生产性校内实训基地建设的探讨基于工学结合”的高分子材料专业人才培养方案(153) 形状记忆功能高分子材料的研究现状和进展(154) 高分子材料与工程专业生产实习困境与对策(155) 光致形变液晶高分子材料研究进展(156) 浅谈高职高专高分子材料加工专业教改探究(157) 利用固相力化学反应制备高分子材料实践分析(158) 键合型稀土荧光高分子材料的研究进展(159) 浅谈高分子材料与工程专业生产实习基地建设(160) 对高分子材料成型技术的思考(161) 生物质高分子材料PHA的加工改性探究(162) 高分子材料流变学双语教材建设的必要性及建设原则(163) 功能高分子材料的应用现状及研究进展(164) 高分子材料学”课程教学模式思考与探索(165) 可降解高分子材料的研究进展(166) 浅谈高分子材料抗静电技术(167) 自助式高分子材料挤出共混实验教学实践(168) 德威新材:线缆用高分子材料行业龙头(169) 智能高分子材料在智能给药系统中的应用探析(仃0)浅谈高分子材料成型加工技术(171) 功能高分子材料的制备及研究进展(172) 论可降解高分子材料的应用研究(仃3)导电高分子材料及其应用(仃4)德威新材领先的线缆用高分子材料供应商(仃5)新型高分子材料的研究(仃6)生物可降解高分子材料的应用(仃7)应用型高分子材料与工程专业人才培养模式探讨(仃8)新型高分子材料杜仲胶的应用研究(仃9)高分子材料老化机理及防治方法(180) 高分子材料与工程专业热分析仪器教学的改革与实践(181) 高分子材料PVT特性在线测试技术及其在注射成形CAE仿真中的应用浅谈高分子材料在汽车领域的应用及发展(182) 浅谈生物可降解高分子材料(183) 导电高分子材料的研究与应用探究(184) 浅谈几种生物医用高分子材料的应用(185) 导电高分子材料的研究与应用探究(186) 有形状记忆功能的高分子材料(187) 高分子材料与工程专业实验室建设与管理(188) ISO管理体系在高分子材料专业实习中的辅助作用(189) 高分子材料专业实验教学研究(190) 生物降解高分子材料的分类及应用(191) 一个学高分子材料”的记者对基层”的独特感悟(192) 《高分子材料流变学》的课程特点与教学体会(193) 《高分子材料分析测试》教学项目设计分析与探讨(194) 《药用高分子材料学》理论教学中的几点体会(195) 高分子材料1111修补剂修补轴颈技术(196) 有关高分子材料老化性能的思考(197) 于高分子材料的分类及燃烧特点与危害的探讨(198) 高分子材料的现状与发展刍议(199) 液晶高分子材料的发展与应用(200) 基于卓越工程师”培养的高分子材料工程专业培养方案改革(201) 染料敏化太阳能电池中的高分子材料(202) 高分子材料专业英语教学方法研究(203) 吹响几种新型有机高分子材料的集结号”(204) 生物可降解高分子材料现阶段的开发及应用情况综述(205) 脲醛树脂基高分子材料改性研究(206) 医用高分子材料的研究现状(207) 高分子材料加工(塑料成型工艺方向)专业教学改革的探讨(208) 论新型高分子材料的开发与应用(209) 不同相组分对高分子材料改性研究的探讨(210) 药用高分子材料学教学的几点思考及其对策探讨(211) 高分子材料与工程专业英语长句翻译探讨(212) 浅析高分子材料成型(213) 高分子材料与工程专业毕业设计存在的问题及对策(214) 浅谈高分子材料在室内设计中的应用(215) 高分子材料与工程专业高分子化学实验教学体系的构建与成效(216) 高分子材料名词(2仃)高分子材料相关研究(218) 高分子材料应用技术专业学习领域与学习情境’开发模式探索高分子材料基础”课程教学模式新探(219) 导电高分子材料的研究与应用现状(220) 高分子材料专业涂料课程教学探讨(221) 高分子材料类校内生产性实训基地建设与运行的探索(222) 基于工作过程构建高职高分子材料应用技术专业课程体系(223) 对人教版选修5功能高分子材料”中科学探究活动的商榷(224) 浅谈高分子材料的特性(225) 材料大类专业《高分子材料研究方法》课程教学的探索与思考(226) 填充高分子材料泡沫铝的研究现状及展望(227) 荧光高分子材料的分类和应用(228) 强者之路一一瑞安高分子材料产业(229) 生物降解高分子材料的研究与应用(230) 高分子材料抗静电技术探析(231) 《高分子材料改性与测试实训》课程的校内工学结合教学改革实践浅谈高分子材料学中的分形(232) 药用高分子材料学教学内容与课程体系改革设想(233) 华南理工大学:产学研合作推动高分子材料新型成型装备产业化(234) 高分子材料工程专业英语教学研究(235) 专题教学在《高分子材料改性》教学中的应用(236) RGD高分子材料用于周围神经修复的生物学评价(237) 浅析高分子材料成型加工技术(238) 浅析高分子材料抗静电技术的研究和应用(239) 高分子材料专业综合性、设计性实验教学探索(240) 高分子材料基础”课程教学改革与实践(241) 高职院高分子材料加工专业项目教学的特征与内容(242) 新宇阳:打造功能性高分子材料新商机(243) 高分子材料难题(244) 纳米技术在高分子材料中的应用(245) 高分子材料的发展历程(246) 生物降解高分子材料研究(247) 高分子材料(248) 对生物可降解高分子材料的研究(249) 新型有机高分子材料学习指要(250) 高分子材料选区激光烧结力学性能的研究(251) 基于水溶性导电高分子材料的高灵敏度生物传感器(252) 湿度与时间因素对高分子材料力学性能影响的研究(253) 可降解高分子材料在心血管领域的研究与展望(254) 高分子材料科学研究动向及发展展望(255) 高职高分子材料加工技术专业《高分子材料化学基础》教学内容的改革探讨导电性高分子材料:用途广泛的高分子材料(256) 刍议国内化学高分子材料应用前景(257) 知识点串讲法在《高分子材料研究方法》授课中的应用(258) 《高分子材料加工助剂》教学方法研究(259) 高分子材料在印花涂料中的应用(260) 体现区域经济特色的高分子材料方向工学硕士的培养(261) 高分子材料与工程:接地气的材料学(262) 新型高分子材料在采空区漏风治理的应用(263) 高分子材料功能助剂的应用现状和发展趋势(264) 天然高分子材料在阻燃技术中的研究进展(265) 高分子材料成型加工技术及应用(266) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践《药用高分子材料学》创新型实验教学的探索(267) 浅析高分子材料成型加工技术(268) 高分子材料成型及其控制(269) 高分子材料耐候性试验中的紫外辐射测定方法研究(270) 对高分子材料成型加工技术关键点的分析(271) 《药用高分子材料》课程教学中若干问题探讨(272) 农业院校《药用高分子材料》教学探讨(273) 高分子材料与工程专业生产实习问题调查及对策(274) 高分子材料三防技术研究(275) 高分子材料的老化及防老化研究(276) 浅谈高分子材料成型及其控制技术(277) 高分子材料的发展及应用(278) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(279) 高分子材料合成与应用中的绿色战略(280) 新型高分子材料与应用探析(281) 高分子材料,罢工”脏器的好替身(282) 试析高分子材料成型加工技术(283) 热致型形状记忆高分子材料研究(284) 生物可降解高分子材料的研究(285) 改善高分子材料课程教学效果的几点措施(286) 高分子材料的金属化(287) 理实一体化”在高分子材料加工原理课程教学中的应用研究(288) 高分子材料与工程专业人才培养模式的探究(289) 导热高分子材料的研究与应用分析。
高分子材料的老化及防老化研究

高分子材料的老化及防老化研究高分子材料在工业和生活中广泛应用,例如塑料、橡胶、纤维等,它们具有轻、坚、抗腐蚀性好、耐磨、绝缘性能好等优点,已经成为现代工程技术和科学技术领域中不可或缺的材料。
随着时间的推移,高分子材料会发生老化现象,导致材料性能下降,甚至失去使用价值。
研究高分子材料的老化机制和防老化技术对于延长材料寿命、提高材料性能具有重要的意义。
一、高分子材料的老化现象高分子材料在长期使用过程中,会发生多种老化现象,主要包括物理老化和化学老化两种类型。
1. 物理老化物理老化是指高分子材料在外部环境作用下,发生微观结构和宏观形态变化的现象。
主要表现为材料硬度下降、强度降低、脆性增加、断裂伸长率减小等。
这些变化是由于高分子链的结晶度和分子量分布发生改变,从而导致材料性能下降。
2. 化学老化高分子材料的老化会导致材料性能下降,对材料的使用寿命和安全性造成严重影响。
具体表现为以下几个方面:1. 机械性能下降:老化会导致高分子材料的硬度、强度、韧性等机械性能指标下降,使材料容易发生断裂、变形等现象。
2. 耐热性能降低:高分子材料老化后,耐热性能会减弱,容易软化、熔融,导致材料失去原有形状和结构。
3. 耐候性减弱:高分子材料在自然环境中老化,容易变色、龟裂、变质,并且随着老化程度的加剧,耐候性能会逐渐降低。
4. 绝缘性能下降:老化会导致高分子材料的绝缘性能降低,增加了绝缘材料在电气设备中的漏电和击穿风险。
为了延长高分子材料的使用寿命,提高其性能稳定性,科研工作者对高分子材料的老化机制进行了深入研究,并提出了一系列防老化技术。
研究表明,高分子材料的老化是一个复杂的过程,受到多种因素的影响。
环境条件、材料结构、添加剂等因素都会影响高分子材料的老化速度和方式。
利用适当的实验手段,对高分子材料老化的机制进行深入研究,可以为防老化技术的研发提供理论依据。
2. 防老化技术研究针对高分子材料的老化问题,科研人员提出了多种防老化技术,主要包括添加剂、改性处理、表面涂层等方法。
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨高分子材料是一种具有重要应用价值的材料,它具有良好的工程性能和广泛的用途。
随着使用时间的增加,高分子材料可能会发生老化现象,导致材料性能下降甚至失效,从而影响产品的使用寿命和安全性。
本文将重点探讨高分子材料老化的机理及防治方法。
一、高分子材料老化的机理高分子材料老化是由于材料内部结构的改变和分子链的断裂所致。
主要包括热老化、光老化、氧化老化、湿热老化等几种类型。
1. 热老化高温对高分子材料的影响主要表现为分子链振动增加,分子间相互作用减弱,导致材料的强度和韧性下降。
高温还会促进氧化反应的进行,导致材料发生氧化老化。
高分子材料在阳光照射下容易发生光老化,主要表现为材料表面发生变色、发黄、龟裂等现象。
这是因为紫外光和可见光能够引发高分子材料的自由基反应,导致分子链断裂和交联反应,从而使材料性能下降。
氧气是高分子材料的一种主要老化因素,它能够与材料中的双键结构发生氧化反应,导致材料发生老化。
氧气还能够引发自由基反应,响应材料的老化过程。
高分子材料在潮湿环境下容易发生湿热老化,导致材料失去原有的强度和硬度。
湿热老化的主要机理包括水分分解、水解裂解、水解引起的氢键断裂等。
针对高分子材料老化的机理,可以采取一些防治措施,延缓材料老化的发生,提高材料的使用寿命和安全性。
1. 添加抗氧化剂向高分子材料中添加抗氧化剂是一种常见的防治方法,抗氧化剂能够有效地阻止或减缓氧化反应的进行,延缓材料老化的发生。
常用的抗氧化剂有羟基类、磷酸酯类、硫醇类等。
2. 添加紫外吸收剂对于易于发生光老化的高分子材料,可以向材料中添加紫外吸收剂,能够有效地吸收紫外光,阻止或减缓光老化的进行,延缓材料的老化。
3. 添加热稳定剂4. 降低材料暴露于老化环境中的时间和强度在实际使用中,可以通过避免或减少高分子材料暴露于老化环境中的时间和强度,延缓材料的老化。
在室外环境下使用的高分子材料制品,可以通过采取罩棚、遮阳等措施,减少材料的暴露时间和强度。
高分子材料的老化及防老化研究

高分子材料的老化及防老化研究【摘要】高分子材料在应用过程中会发生老化现象,影响其性能和使用寿命。
对高分子材料的老化及防老化研究变得至关重要。
本文首先介绍了老化机理的研究,探讨了高分子材料常见的老化方式,并分析了影响老化的因素。
接着讨论了各种防老化方法,包括添加稳定剂、控制材料制备、采用新型防老化技术等。
还介绍了材料老化测试方法,如人工加速老化试验、实地暴露试验等。
展望了高分子材料的老化及防老化研究的前景,提出了未来研究方向和挑战。
通过本文的研究,可以为高分子材料的设计、生产和应用提供一定的指导,促进材料科学领域的发展。
【关键词】高分子材料、老化、防老化、研究、机理、方式、方法、测试、技术、展望、挑战、未来1. 引言1.1 高分子材料的老化及防老化研究的重要性高分子材料在日常生活和工业生产中被广泛应用,如塑料制品、橡胶制品、涂料等,但随着时间的推移,高分子材料会出现老化现象,导致其性能下降,甚至失效。
研究高分子材料的老化及防老化对于延长材料的使用寿命、提升产品质量至关重要。
高分子材料的老化是一个复杂且持续的过程,涉及化学、物理、力学等多方面因素。
了解老化机理有助于预测材料的寿命,并采取相应的防护措施。
分析常见的老化方式如光热氧老化、臭氧老化等,有助于提高材料的抗老化性能。
通过探讨防老化方法,可以有效延缓高分子材料的老化速度,如添加抗氧化剂、紫外吸收剂等。
对材料老化测试方法的介绍和新型防老化技术的研究也是解决老化问题的关键。
展望未来,高分子材料的老化及防老化研究将持续深入,为材料科学领域的发展提供新的思路和突破口,但也面临着挑战,需要不断改进和创新。
2. 正文2.1 老化机理研究高分子材料的老化是指在长期使用或储存过程中,受到外界环境因素的作用而发生结构和性能的逐渐变化的过程。
老化过程是一个复杂的物理化学过程,通常会导致高分子材料的力学性能、光学性能、热学性能等各方面的性能逐渐下降。
了解高分子材料的老化机理是进行防老化研究的基础。
高分子材料本科毕业论文选题

高分子材料本科毕业论文选题(1) 高分子材料在印花涂料中的应用(2) 体现区域经济特色的高分子材料方向工学硕士的培养(3) 高分子材料与工程:接地气的材料学(4) 新型高分子材料在采空区漏风治理的应用(5) 高分子材料功能助剂的应用现状和发展趋势(6) 天然高分子材料在阻燃技术中的研究进展(7) 高分子材料成型加工技术及应用(8) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践(9) 《药用高分子材料学》创新型实验教学的探索(10) 浅析高分子材料成型加工技术(11) 高分子材料成型及其控制(12) 高分子材料耐候性试验中的紫外辐射测定方法研究(13) 对高分子材料成型加工技术关键点的分析(14) 《药用高分子材料》课程教学中若干问题探讨(15) 农业院校《药用高分子材料》教学探讨(16) 高分子材料与工程专业生产实习问题调查及对策(17) 高分子材料三防技术研究(18) 高分子材料的老化及防老化研究(19) 浅谈高分子材料成型及其控制技术(20) 高分子材料的发展及应用(21) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(22) 高分子材料合成与应用中的绿色战略(23) 新型高分子材料与应用探析(24) 高分子材料,“罢工”脏器的好替身(25) 试析高分子材料成型加工技术(26) 热致型形状记忆高分子材料研究(27) 生物可降解高分子材料的研究(28) 改善高分子材料课程教学效果的几点措施(29) 高分子材料的金属化(30) “理实一体化”在高分子材料加工原理课程教学中的应用研究(31) 高分子材料与工程专业人才培养模式的探究(32) 导热高分子材料的研究与应用分析(33) 聚乳酸高分子材料的生物安全性评价(34) 浅谈高分子材料抗静电剂ASA(35) 高分子材料加工技术专业“理实一体化”实训室建设的探索(36) 功能高分子材料课程的教学实践与探索(37) 《高分子材料性能测试》课程教学探析(38) 浅析Pro/E软件在高分子材料中的应用(39) 形状记忆高分子材料的研究进展(40) 探讨功能高分子材料的应用(41) 石墨炉原子吸收法快速测定聚醚酮酮特种高分子材料中铝离子残留形状记忆高分子材料在自拆卸构件中的应用进展(42) 浅谈高分子材料与工程专业创新性实验能力的培养(43) CAE技术在高分子材料齿轮箱设计中的应用(44) 浅论高分子材料的发展前景(45) 高分子材料成型加工技术研究(46) 生物降解高分子材料的研究现状及应用前景(47) 耐高温高分子材料的合成与性能分析(48) 基于核辐射高分子材料在电线电缆中的作用分析(49) 浅析高分子材料成型加工技术及其发展(50) 高分子材料分析测试与研究方法教学改革探索(51) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用高分子材料在采油工程中的应用与展望(52) 高分子材料与工程专业人才培养体系改革研究(53) 加强实践教学提高高分子材料与工程专业认识实习质量(54) 有关高分子材料成型加工技术研究(55) 对高分子材料成型加工技术关键点的分析(56) 浅究影响高分子材料老化的因素及应对措施(57) 探析高分子材料成型及其控制技术(58) 《生物医用高分子材料》课程教学探索(59) 智能高分子材料的分类与研究进展(60) 功能高分子材料课程教学的探索与实践(61) 高分子材料专业大学生就业现状及对策研究(62) 《药用高分子材料学》课堂教学探讨—从被动学习到主动学习阻燃性有机硅高分子材料的研究进展(63) 浅析高分子材料成型加工技术(64) 关于高分子材料成型加工技术的探讨(65) 功能高分子材料在多晶硅生产中的应用(66) 高分子材料抗静电技术研究(67) 壳聚糖作为药用高分子材料的综述(68) POSS基高分子材料的合成及热性能(69) 对高分子材料未来研究方向的思考(70) 药用高分子材料》课程教学整体设计(71) 高分子材料与工程专业基础实验教学改革探析(72) 关于废旧高分子材料在建筑行业中的应用(73) 《高分子材料》教学探索与实践(74) 基于高分子材料与工程专业CDIO培养模式初探(75) 高分子材料成型加工实验面向学生实践和创新能力培养的改革与探索探讨热分析技术在高分子材料中的应用研究(76) 医用高分子材料表面改性研究(77) 高分子材料在日常生活中的应用(78) 高分子材料成型加工技术的进展探析(79) 基于导热高分子材料的研究与应用分析(80) 高分子材料专业毕业设计改革创新研究(81) 应用型本科院校《高分子材料科学基础》课程教学改革探讨高分子材料的表面改性技术研究(82) 高分子材料加工工艺教学方法创新研究(83) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(84) 高分子材料成型加工课程教学改革探索(85) 生物可降解高分子材料的应用(86) 废旧高分子材料在建筑材料中的回收应用(87) 填充复合型导电高分子材料及其应用(88) 高分子材料成型加工技术的相关探究(89) 加强高分子材料成型加工课程实践性教学的探讨(90) “功能高分子材料”的化学教学价值(91) 车用高分子材料耐刮擦性能研究与改善(92) 析高分子材料成型加工技术(93) 中学化学教学中的高分子材料(94) 高分子材料的环境行为与老化机理研究进展探讨(95) 基于食品包装产品的高分子材料成分快速鉴别方法研究(96) 对高分子材料未来研究方向的思考(97) 生活中的高分子材料特有现象(98) 基于实践的应用型本科院校“高分子材料成型加工实验”教学模式的探索研究(99) 基于应用型人才培养的建筑高分子材料课程教学改革(100) 《高分子材料进展》课程教学方法探索(101) 高分子材料成型加工实验教学的改革与探索(102) 浅析高分子材料成型加工技术(103) 浅析废旧高分子材料在墙体建筑中的回收与利用(104) 二聚二异氰酸酯LH1410功能高分子材料及其军民两用应用前景(105) 刍议高分子材料应用技术专业教学探索(106) 高分子材料专业英语教学改革初探(107) 高分子材料应用技术专业“技术人文耦合”的校企文化建设研究(108) 高分子材料专业实践教学的改革与研究(109) 高分子材料与工程专业毕业设计改革探索①(110) 具有工程意识的高分子材料专业综合实验改革与实践(111) “高分子材料与纺丝技术”多媒体教学效果分析(112) 面向高分子材料专业的化工原理教改思考(113) 高分子材料在酒类包装中的应用(114) 机械工程材料课程中高分子材料的教学改革与实践(115) 脲醛树脂基高分子材料改性研究(116) 基于Abaqus子程序的高分子材料本构关系实现(117) 合成类生物可降解高分子材料在生物医学中的研究进展(118) 高分子材料在太阳能热水器上的应用(119) 基于废旧高分子材料的回收应用问题探索与研究(120) 高分子材料与工程专业应用型实践教学体系建设(121) 典型高分子材料燃烧性能与火灾危险性研究(122) 增塑剂毒性对于医用高分子材料的风险分析(123) 高分子材料成型加工技术的进展分析(124) 高分子材料与工程专业化工原理教学改革与实践(125) 独立学院高分子材料专业特色培养模式(126) 浅谈生活中的高分子材料(127) 高分子材料与工程专业英语多媒体教学方法探讨(128) 探析高分子材料成型及其控制技术(129) 阻燃高分子材料及其阻燃剂研究进展(130) 高分子材料成型加工技术初探(131) 高分子材料合成与应用中的绿色战略(132) 高分子材料在建筑保温材料中的应用(133) 高分子材料成型加工技术的探索(134) 关于高分子材料成型技术的探讨(135) 高分子材料与工程专业人才培养探索(136) 试论高分子材料的阻燃技术(137) 新型功能高分子材料发展动向及应用研究(138) 浅谈高分子材料成型加工技术(139) 可降解高分子材料循环利用探讨(140) 生物质高分子材料应用及发展探讨(141) 天然高分子材料在微胶囊制备中的应用(142) 高分子材料与工程专业创新型人才培养模式的研究与实践高分子材料与工程专业“卓越工程师”培养方案改革与实践高分子材料与现实生活(143) 新型高分子材料与应用(144) 关于高分子材料成型加工技术的探讨(145) 高分子材料的环境行为与老化机理研究进展(146) 智能高分子材料在智能给药系统中的应用(147) 为构建具有航空特色的高分子材料与工程专业人才培养方案高分子材料成型加工技术研究(148) 关于新型功能高分子材料的研究(149) 高分子材料实验室老化试验技术详解(150) 高分子材料性能与结构测试课程项目化教学改革探索(151) 形状记忆高分子材料及其在军事方面的应用前景(152) 高职院校高分子材料应用技术专业生产性校内实训基地建设的探讨基于“工学结合”的高分子材料专业人才培养方案(153) 形状记忆功能高分子材料的研究现状和进展(154) 高分子材料与工程专业生产实习困境与对策(155) 光致形变液晶高分子材料研究进展(156) 浅谈高职高专高分子材料加工专业教改探究(157) 利用固相力化学反应制备高分子材料实践分析(158) 键合型稀土荧光高分子材料的研究进展(159) 浅谈高分子材料与工程专业生产实习基地建设(160) 对高分子材料成型技术的思考(161) 生物质高分子材料PHA的加工改性探究(162) 高分子材料流变学双语教材建设的必要性及建设原则(163) 功能高分子材料的应用现状及研究进展(164) “高分子材料学”课程教学模式思考与探索(165) 可降解高分子材料的研究进展(166) 浅谈高分子材料抗静电技术(167) 自助式高分子材料挤出共混实验教学实践(168) 德威新材:线缆用高分子材料行业龙头(169) 智能高分子材料在智能给药系统中的应用探析(170) 浅谈高分子材料成型加工技术(171) 功能高分子材料的制备及研究进展(172) 论可降解高分子材料的应用研究(173) 导电高分子材料及其应用(174) 德威新材领先的线缆用高分子材料供应商(175) 新型高分子材料的研究(176) 生物可降解高分子材料的应用(177) 应用型高分子材料与工程专业人才培养模式探讨(178) 新型高分子材料杜仲胶的应用研究(179) 高分子材料老化机理及防治方法(180) 高分子材料与工程专业热分析仪器教学的改革与实践(181) 高分子材料PVT特性在线测试技术及其在注射成形CAE仿真中的应用浅谈高分子材料在汽车领域的应用及发展(182) 浅谈生物可降解高分子材料(183) 导电高分子材料的研究与应用探究(184) 浅谈几种生物医用高分子材料的应用(185) 导电高分子材料的研究与应用探究(186) 有形状记忆功能的高分子材料(187) 高分子材料与工程专业实验室建设与管理(188) ISO管理体系在高分子材料专业实习中的辅助作用(189) 高分子材料专业实验教学研究(190) 生物降解高分子材料的分类及应用(191) 一个学“高分子材料”的记者对“基层”的独特感悟(192) 《高分子材料流变学》的课程特点与教学体会(193) 《高分子材料分析测试》教学项目设计分析与探讨(194) 《药用高分子材料学》理论教学中的几点体会(195) 高分子材料1111修补剂修补轴颈技术(196) 有关高分子材料老化性能的思考(197) 于高分子材料的分类及燃烧特点与危害的探讨(198) 高分子材料的现状与发展刍议(199) 液晶高分子材料的发展与应用(200) 基于“卓越工程师”培养的高分子材料工程专业培养方案改革(201) 染料敏化太阳能电池中的高分子材料(202) 高分子材料专业英语教学方法研究(203) 吹响几种新型有机高分子材料的“集结号”(204) 生物可降解高分子材料现阶段的开发及应用情况综述(205) 脲醛树脂基高分子材料改性研究(206) 医用高分子材料的研究现状(207) 高分子材料加工(塑料成型工艺方向)专业教学改革的探讨(209) 不同相组分对高分子材料改性研究的探讨(210) 药用高分子材料学教学的几点思考及其对策探讨(211) 高分子材料与工程专业英语长句翻译探讨(212) 浅析高分子材料成型(213) 高分子材料与工程专业毕业设计存在的问题及对策(214) 浅谈高分子材料在室内设计中的应用(215) 高分子材料与工程专业高分子化学实验教学体系的构建与成效(216) 高分子材料名词(217) 高分子材料相关研究(218) 高分子材料应用技术专业“学习领域与学习情境”开发模式探索“高分子材料基础”课程教学模式新探(219) 导电高分子材料的研究与应用现状(220) 高分子材料专业涂料课程教学探讨(221) 高分子材料类校内生产性实训基地建设与运行的探索(222) 基于工作过程构建高职高分子材料应用技术专业课程体系(223) 对人教版选修5“功能高分子材料”中科学探究活动的商榷(224) 浅谈高分子材料的特性(225) 材料大类专业《高分子材料研究方法》课程教学的探索与思考(226) 填充高分子材料泡沫铝的研究现状及展望(227) 荧光高分子材料的分类和应用(228) 强者之路——瑞安高分子材料产业(230) 高分子材料抗静电技术探析(231) 《高分子材料改性与测试实训》课程的校内工学结合教学改革实践浅谈高分子材料学中的分形(232) 药用高分子材料学教学内容与课程体系改革设想(233) 华南理工大学:产学研合作推动高分子材料新型成型装备产业化(234) 高分子材料工程专业英语教学研究(235) 专题教学在《高分子材料改性》教学中的应用(236) RGD高分子材料用于周围神经修复的生物学评价(237) 浅析高分子材料成型加工技术(238) 浅析高分子材料抗静电技术的研究和应用(239) 高分子材料专业综合性、设计性实验教学探索(240) “高分子材料基础”课程教学改革与实践(241) 高职院高分子材料加工专业项目教学的特征与内容(242) 新宇阳:打造功能性高分子材料新商机(243) 高分子材料难题(244) 纳米技术在高分子材料中的应用(245) 高分子材料的发展历程(246) 生物降解高分子材料研究(247) 高分子材料(248) 对生物可降解高分子材料的研究(249) 新型有机高分子材料学习指要(250) 高分子材料选区激光烧结力学性能的研究(251) 基于水溶性导电高分子材料的高灵敏度生物传感器(252) 湿度与时间因素对高分子材料力学性能影响的研究(253) 可降解高分子材料在心血管领域的研究与展望(254) 高分子材料科学研究动向及发展展望(255) 高职高分子材料加工技术专业《高分子材料化学基础》教学内容的改革探讨导电性高分子材料:用途广泛的高分子材料(256) 刍议国内化学高分子材料应用前景(257) 知识点串讲法在《高分子材料研究方法》授课中的应用(258) 《高分子材料加工助剂》教学方法研究(259) 高分子材料在印花涂料中的应用(260) 体现区域经济特色的高分子材料方向工学硕士的培养(261) 高分子材料与工程:接地气的材料学(262) 新型高分子材料在采空区漏风治理的应用(263) 高分子材料功能助剂的应用现状和发展趋势(264) 天然高分子材料在阻燃技术中的研究进展(265) 高分子材料成型加工技术及应用(266) 地方应用型本科院校高分子材料与工程专业认证体系的构建与实践《药用高分子材料学》创新型实验教学的探索(267) 浅析高分子材料成型加工技术(268) 高分子材料成型及其控制(269) 高分子材料耐候性试验中的紫外辐射测定方法研究(270) 对高分子材料成型加工技术关键点的分析(271) 《药用高分子材料》课程教学中若干问题探讨(272) 农业院校《药用高分子材料》教学探讨(273) 高分子材料与工程专业生产实习问题调查及对策(274) 高分子材料三防技术研究(275) 高分子材料的老化及防老化研究(276) 浅谈高分子材料成型及其控制技术(277) 高分子材料的发展及应用(278) 混凝土节水保湿高分子材料养护膜在渠道衬砌工程中的应用(279) 高分子材料合成与应用中的绿色战略(280) 新型高分子材料与应用探析(281) 高分子材料,“罢工”脏器的好替身(282) 试析高分子材料成型加工技术(283) 热致型形状记忆高分子材料研究(284) 生物可降解高分子材料的研究(285) 改善高分子材料课程教学效果的几点措施(286) 高分子材料的金属化(287) “理实一体化”在高分子材料加工原理课程教学中的应用研究(288) 高分子材料与工程专业人才培养模式的探究(289) 导热高分子材料的研究与应用分析。
高分子材料的研究进展

高分子材料的研究进展高分子材料是当今材料科学领域中的热门研究方向。
作为一种具有多种优良性质的材料,它的应用领域十分广泛,例如建筑、医学、电子、机械等领域。
在过去的几十年中,众多科学家和工程师们对高分子材料进行了大量的研究工作,在技术创新和应用推广等方面取得了丰硕成果。
目前,高分子材料的研究重点主要集中在以下几个方面:一、生物可降解高分子材料人们对社会和环境的关注程度日益提高,对于高分子材料的可持续性和环保性提出了更高的要求。
因此,生物可降解高分子材料已成为材料领域的研究热点。
生物可降解高分子材料能够在一定时间内被自然环境分解,不会对环境造成污染,具有很大的优势。
目前,生物可降解高分子材料的研究主要集中在增加降解速率和提高材料性能方面。
许多研究人员通过改变材料的化学结构来促进降解,同时保证其物理性能和机械性能。
二、智能高分子材料与传统的高分子材料相比,智能高分子材料具有更高的适应性和反应性。
智能高分子材料与外界环境发生交互作用后,可以调整自身的结构和性质,实现预期的物理或化学变化。
智能高分子材料可根据外界的温度、湿度、光线等条件进行响应性反应,因此被广泛应用于传感器、记忆材料、微机器人等领域。
同时,智能高分子材料也有着很好的潜力,未来的应用前景很广阔。
三、高性能高分子材料高性能高分子材料具有优异的力学、热学和电学性能,并且具有极强的耐化学腐蚀性和稳定的化学性质。
在工业和航空航天等领域中,高性能高分子材料的应用十分广泛。
高性能高分子材料的研究需要追求更高的材料性能和机械性能,如强度、硬度、耐磨性、耐热性等,同时还需要考虑材料的稳定性和重复性。
总的来说,高分子材料的研究尚有很大发展空间。
从实现高分子生物可降解化到开发新颖高性能高分子材料,这个领域的研究人员仍然在为寻找更好的材料和性质而进行努力。
随着科学技术的发展和人们对材料性能的不断追求,相信高分子材料必将在未来的科技发展中起到更大的作用。
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨高分子材料是一类具有高分子量、由重复单元构成的聚合物物质,广泛应用于塑料、橡胶、纤维和涂料等领域。
由于长期的使用和环境因素的影响,高分子材料会发生老化现象,导致其性能下降甚至失效。
本文将探讨高分子材料的老化机理及防治方法,以期为相关领域的研究提供一定的参考和帮助。
一、高分子材料的老化机理1. 光照老化高分子材料在长期的光照作用下易发生老化。
光照老化主要是由于紫外光的作用,使高分子材料中的化学键发生断裂,导致材料表面发生龟裂、变黄、脆化等现象。
3. 微生物和化学品的侵蚀高分子材料在潮湿环境和受到微生物的侵蚀时,容易发生老化。
微生物和化学品会破坏高分子材料的结构,导致材料的性能下降。
1. 添加抗氧化剂和紫外吸收剂在高分子材料的生产过程中,可以向材料中添加抗氧化剂和紫外吸收剂,以延缓光照和热氧老化的发生。
抗氧化剂可以减少氧气与高分子材料的反应,紫外吸收剂可以吸收紫外光的能量,防止其对材料的破坏。
2. 采用表面处理技术通过表面处理技术,如喷涂表面保护剂、镀膜等,可以增加高分子材料的表面硬度和抗老化性能,延长材料的使用寿命。
3. 选择适当的填充剂和增强剂可以选择适当的填充剂和增强剂,如玻璃纤维、碳纤维等,在高分子材料中加入,以增强材料的抗老化性能和耐磨性能。
4. 控制生产工艺在高分子材料的生产过程中,控制生产工艺,避免材料出现氧化和拉伸等现象,以延缓材料的老化。
5. 加强材料的维护和管理在高分子材料的使用过程中,加强对材料的维护和管理,定期清洁、保养和检查,及时发现并处理老化现象,延长材料的使用寿命。
通过以上探讨,可以看出高分子材料的老化是一个复杂的过程,受到多种因素的影响。
为了延缓高分子材料的老化,我们可以通过添加抗氧化剂和紫外吸收剂、采用表面处理技术、选择适当的填充剂和增强剂、控制生产工艺以及加强材料的维护和管理等手段来防治。
希望本文的探讨对相关领域的研究和应用提供一定的参考和帮助。
高分子材料的环境行为与老化机理研究进展探讨

三 、缓解老 化的具体 措施
现 阶段 ,研 究高 分子 材料 老化 和抗 老化 问题 是 一个 实际 关键 性 问 题 ,由于高 分 子材料 内部 结 构 比较复 杂 ,反应 条件 成熟 ,反 应机 理无 法避免 ,所 以对 高分 子研 究领 域 内还无 法 真正 杜绝 其老 化现 象 ,只能 对 老化做 辅助性 的延绥 作用 ,从 而增加 高分子材 料的使 用寿命 。 1 . 物理 防护 措施
老化 ,延 长高分 子材料 的使 用寿命备 受科 学界 的关注和 重视 。本探讨主要 围绕影响 高分子材料的环境行为 ,高分子材料 老化的表现 ,如何 降低 高分子材 料 的老化机理及现 阶段 高分子研 究发展动 态上 ,使人们对 高分子材料有进一步的 了解。
关键 词:高分子材料 高分子的环境因素 老化 变现 老化机理 高分子材料的研究进展
人 们广泛 利用 。
现 象还 有很 多 ,并且 为无 法 避免 不 可逆 的 ,然而 高分 子材 料 和我 们息 息 相关 ,在 日常 的加 工 、运输 、使用 过 程 中都不 可避 免 的接 触氧 ,所
以氧也是 导致 高分子 材料 老化 的主要 因素 。
2 . 改 变高分 子本 身易老化 的特 点 引起高 分子材 料老化 的最 主要 原 因是其本 身 的弱键 或不饱 和双键 , 由于分 子 内部存 在弱 键 、不饱 和键 使 得高 分子 材料特 别 不稳 定 ,易于 和 空气 中的氢 键 氧键 发生 反 应生 成新 的物 质 ,如 改变 其 不稳 定键使 之 成 为饱和 键 ,那它 抗老 化性 就 大大增 加 。例 如橡胶 中的碳 一碳键 极易
今一 ~ 高科 技 时代 ,高 分子 材料 在 人们 日常 生活 中更是 比比 皆是 ,如 橡 胶 、塑料 、涂料 、纤 维等 。然而 影响高 分子材 料 的环境 因素有 很多 ,
高分子材料在环保领域的应用和研究现状

高分子材料在环保领域的应用和研究现状随着环保意识的不断增强,人们对于环境保护的要求也越来越高。
而高分子材料作为一种重要的应用材料,其在环保领域的应用也得到了越来越多的关注和研究。
本文将探讨高分子材料在环保领域的应用和研究现状。
一、高分子材料在环保领域的应用1. 生态包装材料传统的塑料包装常常会对环境造成污染,而高分子材料的广泛应用则推动了生态包装的发展。
高分子材料的生态包装有许多优点,如材料抗氧化、抗气体渗透、光波、微生物侵袭、保持含水量稳定等,被广泛应用于食品包装、酒类包装、化妆品包装等领域。
2. 废弃塑料的回收利用高分子材料的发展也为废弃塑料的回收利用提供了更多的选择。
废弃塑料按照种类和用途的不同,可以进行分类回收,进行物理、化学和生物分解利用,不仅有效地减少了废弃物的数量和占地面积,同时也为环保事业做出了积极的贡献。
3. 污染治理材料高分子材料在污染治理中的应用也逐渐增多。
高分子材料具有水解稳定,易于吸附等特点,被广泛应用于水污染治理、空气污染治理等领域。
此外,高分子材料还可以通过紫外线、臭氧等方式对有机物进行降解,引发了高分子材料在环境治理中的新研究方向。
二、高分子材料在环保领域的研究现状1. 新型生物降解高分子材料的研发生物降解材料已经成为环保领域的热点,而高分子材料作为实现生物降解的基础也受到了广泛关注。
目前,研究人员正在开发一系列可降解、高性能的新型生物高分子材料,旨在更好地符合人们对环境友好、可持续发展的要求。
2. 高分子材料与环境的相互作用研究高分子材料与环境的相互作用研究是高分子材料在环保领域一个新的研究方向。
尽管高分子材料在环保领域的应用非常广泛,但是其长期存在于环境中的性质和影响并不清楚。
研究人员通过对高分子材料与环境的相互作用进行研究,能够更好地了解高分子材料在环境中的行为和影响,为高分子材料的环保应用提供更好的支持。
三、总结高分子材料在环保领域的应用和研究已经成为当前科技领域的重要研究方向。
高分子材料的抗老化措施分析

高分子材料的抗老化措施分析摘要:高分子材料具有性能优异的特点,市场占有率也逐步提高,应用范围也很广,很多领域都有使用。
然而,由于光照、湿度和温度等外部因素的影响,高分子材料的物理特性和结构容易产生变化,导致老化。
为了进一步提升高分子材料的抗老化效果,必须充分了解影响老化的因素,分析老化机理和老化过程,从而提升高分子材料的高性能,推广高分子材料的应用,提升行业水平。
关键字:高分子材料;老化;预防措施1高分子材料1.1.高分子材料的概念高分子材料也称为聚合物材料,是以高分子化合物为基础,再加入其他添加剂而最终形成的一种材料。
高分子材料有着非常广泛的应用范围,无论是生产日常用品还是生产高科技产品,高分子材料都发挥了作用。
因此,材料领域的发展过程中,高分子材料是最快的。
使用高分子材料过程中,会因为外界环境和化学介质的综合作用,而改变了高分子材料的化学结构,最终产生了物理结构的变化,如材料变硬、变脆、发粘、变色等等。
这些都是高分子材料的老化,而老化的实质就是物理化学性质发生了变化。
1.1.高分子材料的优势按照材料的来源分类,高分子材料可以分为天然高分子材料和合成高分子材料。
天然高分子材料,如天然纤维和天然橡胶等,是可以直接从自然界获得并使用的高分子材料。
合成高分子材料是一种合成聚合物,种类更为广泛,可分为合成橡胶、合成纤维和塑料。
天然高分子材料或合成高分子材料两者都具有其他材料所不具备的稳定分子量的优点。
高分子材料具有许多其他材料无法代替的优点,比如:材料质量轻,实用且方便运输;强度高,高强度高分子材料的强度比钢的强度更高,是一种强度高、重量轻的材料;导热系数低,绝缘效果理想;化学稳定性和耐腐蚀性高,一般的酸、碱、盐或油脂都无法腐蚀材料;韧性、拉伸性好;具有良好的电气绝缘性;耐磨性极佳,一些高分子材料在摩擦时具有很强的耐磨性。
2引起高分子材料老化的因素在实际生产生活中,引起高分子材料老化的因素有很多。
2.1从物理的角度来讲辐射、光照、电、温度过高、外力等因素都会使高分子材料出现老化,光照和辐射会引起高分子材料的分子结构发生改变,温度和热度的升高都容易加重高分子材料散热的难度,促使高分子材料出现老化现象。
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨高分子材料老化是指在自然环境下或人工条件下,高分子材料在一段时间的使用或储存过程中发生的物理、化学或结构性变化。
高分子材料老化会导致材料性能下降,使其失去原有的功能和稳定性,从而影响其应用领域和使用寿命。
高分子材料老化的机理主要包括氧化老化、光老化、热老化、湿热老化等。
氧化老化是最常见的一种老化机理,主要是由于高分子材料与氧气接触产生的氧化反应。
氧化反应会导致高分子材料产生氧化物,如羟基,酮基等,使材料失去原有的强度、韧性和柔软性。
光老化是指高分子材料暴露在紫外线辐射下引起的老化过程,光老化主要影响材料的色泽、光泽和力学性能。
热老化是指材料在高温环境下发生的老化过程,高温环境会使材料分子加速运动,导致分子间结构的改变。
湿热老化是指高分子材料在湿热环境下,与水和高温环境接触发生的化学反应,导致材料的退化和老化。
为了延长高分子材料的使用寿命,我们可以采取多种防治方法。
一种常见的方法是添加抗老化剂。
抗老化剂主要用于抑制高分子材料的氧化反应,抗老化剂可以与氧气反应生成稳定的氧化物,从而减缓材料的氧化速度。
还可以使用紫外线吸收剂来减缓高分子材料的光老化速度。
紫外线吸收剂可以吸收紫外线辐射,减少其对高分子材料的破坏。
对于热老化和湿热老化,我们可以通过选择合适的材料和加工工艺来减少材料的老化速度。
选择高熔点的高分子材料可以提高材料的耐热性,选择不易吸水的材料可以减少湿热老化的发生。
正确的储存和使用方法也是延长高分子材料使用寿命的重要因素。
在储存过程中,应避免高分子材料暴露在阳光直射下,避免受潮,避免与有害物质接触等。
在使用过程中,应避免高分子材料长时间暴露在极端环境条件下,如高温、高湿度等。
高分子材料老化是一个复杂的过程,受到多种因素的影响。
为了延长高分子材料的使用寿命,需要深入了解不同老化机理,并采取相应的防治方法。
除了添加抗老化剂和紫外线吸收剂等化学手段外,正确的储存和使用方法也是延长高分子材料寿命的重要因素。
高分子合成材料的研究现状和发展趋势

高分子合成材料的研究现状和发展趋势高分子合成材料是应用范围广泛的一类材料,主要由高分子化合物制成,具有机械强度高、耐腐蚀、绝缘性能好等优点。
目前,随着科技的不断发展,高分子合成材料的研究和应用也在不断推进。
本文旨在探讨高分子合成材料的研究现状和发展趋势。
一、高分子合成材料的研究现状1. 材料种类目前,高分子合成材料主要包括塑料、橡胶、树脂等多种类型。
其中,塑料是高分子材料中最为常见的一种,广泛应用于工业、农业、医疗等领域。
橡胶也是一种重要的高分子材料,主要应用于轮胎、密封件、管道等领域。
树脂则是一类高分子材料,主要用于制作涂料、胶粘剂、复合材料等。
2. 研究方向近年来,高分子合成材料的研究方向主要集中在以下几个方面:(1)性能改善:如提高材料的机械、物理、化学性能等,增强材料的稳定性和耐用性。
(2)功能增强:如开发新型的高分子材料,赋予其具有特殊的物理、化学、生物学等性能,如难燃、自修复、自清洁等。
(3)结构优化:如通过改变高分子材料的分子结构,提高其处理性、加工性能,同时保持其优异性能。
3. 应用领域高分子合成材料的应用领域十分广泛。
目前,在汽车工业、医药行业、建筑工程、电子行业、石油化工等众多领域都有着不可替代的作用。
例如,汽车工业中的塑料零部件、轮胎中的橡胶材料、医药行业中的药物膜包装等都离不开高分子合成材料。
二、高分子合成材料的发展趋势1. 生物可降解材料的发展近年来,由于传统的高分子合成材料难以降解,对环境造成长期污染,因此生物可降解材料备受关注。
生物可降解材料是指能够在自然环境下被微生物降解的材料。
这种材料不仅可以减少环境污染,也有助于解决资源短缺和能源问题。
2. 高性能功能材料的开发高性能功能材料是指在原有的高分子材料的基础上,通过添加一些特定成分,使其具有特殊的性能。
例如,阻燃材料、自修复材料、自清洁材料等。
这些材料不仅可以满足人们日益增长的需求,也可以提高材料的附加值和市场竞争力。
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨随着高分子材料在广泛应用的过程中,高分子材料老化问题越来越引起人们的关注。
高分子材料老化是由于其受到自然因素和人类因素的影响而发生的物理和化学变化的过程。
高分子材料的老化机理包括氧化老化、热老化和光老化等。
氧化老化是指高分子材料在氧气的存在下发生的化学反应。
氧化反应会引起材料发生脆化和变色等现象。
氧化老化是高分子材料老化中最常见的一种方式。
热老化是指高分子材料受到热量作用而引起的老化现象,这种老化现象多出现在高分子材料长时间受热和高温环境下的情况下。
光老化是指材料受到光照射后,发生的物理和化学变化,它会使高分子材料的耐候性降低,表面变质。
高分子材料老化主要是由于其本身结构中的键能的大小和稳定性有差异,使其易受外界因素影响,所以材料性能会随着时间的增长而发生改变和变差。
如何防止高分子材料的老化,减缓老化的过程,保证材料的性能长期稳定性并延长材料使用寿命,是一项十分重要的研究课题。
防止高分子材料老化的方法有以下几种:1. 添加抗氧化剂。
氧化反应是引起高分子材料老化的主要因素之一,添加合适的抗氧化剂可有效防止高分子材料老化。
2. 使用抗紫外线材料。
光老化也是高分子材料老化过程中的主要原因之一,抗紫外线材料的使用,可有效阻止紫外线对高分子材料的破坏。
3. 控制材料加工温度和时间。
高分子材料在加工加热过程中,过高的温度和加工时间会加速材料老化的过程,因此,在加工过程中要注意控制好加工温度和加工时间。
4. 减少材料的接触时间。
高分子材料长期接触其他物体,长时间处于潮湿或酸碱性环境下,都会加速材料老化的过程。
因此,尽量减少材料与环境的接触时间,可有效减缓材料老化的过程。
高分子材料的老化问题是一个复杂而普遍存在的问题,如何有效的应对和解决该问题,是一个需要不断研究和探索的课题。
目前,通过控制材料的制备工艺和添加抗老化剂等方法,已可有效延长材料的使用寿命,减缓材料老化的过程,从而更好地保证材料的性能和可靠性。
高分子材料的老化及防老化研究

高分子材料的老化及防老化研究高分子材料是一类具有广泛应用前景的材料,包括塑料、橡胶、纤维等,它们具有质轻、耐腐蚀、可塑性强等特点,因此在工程、医疗、日常生活等领域都得到了大量应用。
随着时间的推移,高分子材料会逐渐经历老化过程,使得其性能、外观等发生变化,甚至失去原有的功能和价值。
研究高分子材料的老化及防老化是一个具有重要意义的课题。
一、高分子材料老化的原因1. 光照老化光照老化是高分子材料老化的主要原因之一。
太阳光中的紫外线能够引发高分子材料中的化学反应,导致其分子链断裂、氧化降解等现象,使得材料的性能遭到破坏。
2. 氧化老化高分子材料在长期暴露在空气中,也会发生氧化老化。
氧气能与高分子材料发生反应,导致其分子链断裂、氧化降解,使得材料变脆、变色、失去弹性等。
3. 热老化高分子材料在高温环境下会发生热老化,由于高温会加速分子间的运动,使得分子链断裂、交联破坏等现象加剧,导致材料性能下降。
4. 组分迁移部分高分子材料中存在着添加剂、填料等,当这些物质与基体材料发生组分迁移时,也会引发材料的老化。
5. 微生物侵蚀高分子材料在潮湿、温暖的环境中容易遭受微生物的侵蚀,导致其发生微生物降解,使得材料发生劣化。
二、高分子材料老化的表现1. 力学性能下降老化的高分子材料在力学性能上会出现下降,如强度、韧性、硬度等会减弱,导致材料易断裂、易变形等。
2. 外观变化老化的高分子材料在外观上会出现变化,如变色、开裂、表面粗糙、失光等,使得材料的美观度受损,不再适用于美观要求较高的场景。
3. 功能丧失一些高分子材料在老化后会丧失原有的功能,比如防腐蚀性能、耐磨性能、绝缘性能等都会受到损害,导致材料无法满足使用要求。
4. 性能不稳定老化的高分子材料在使用过程中会出现性能不稳定的现象,如温度敏感性增加、弹性模量变化、形变率增加等,使得材料难以长期稳定使用。
三、高分子材料的防老化研究为了延长高分子材料的使用寿命,科研人员们进行了大量的防老化研究,主要包括以下几个方面:1. 添加抗氧化剂抗氧化剂的加入能够有效地抑制高分子材料的氧化老化过程,延缓材料的老化速度,提高其使用寿命。
高分子材料老化机理及防治方法探讨

高分子材料老化机理及防治方法探讨高分子材料在工程领域有着广泛的应用,比如塑料制品、橡胶制品、合成纤维、涂料和粘合剂等。
随着使用时间的增加,这些高分子材料会发生老化现象,导致其性能下降,甚至失去使用价值。
探讨高分子材料的老化机理以及防治方法对于提高材料的使用寿命和性能具有重要意义。
一、高分子材料的老化机理1. 光照老化光照是导致高分子材料老化的主要因素之一,特别是在户外使用的材料。
紫外线和可见光会引起高分子材料中的化学反应,导致链断裂、交联、氧化等现象。
这些变化会导致材料的物理性能和外观发生变化,比如强度下降、变色、龟裂等。
2. 热氧老化高分子材料在高温和氧气环境下会发生氧化反应,导致材料的老化。
氧气和热量会导致高分子链的断裂,同时还会引起分子内部的交联反应,使得材料变得脆化和劣化。
3. 湿热老化在潮湿和高温的环境中,高分子材料容易发生水解、水解、分解等反应,导致材料老化。
湿热老化是导致高分子材料在环境中失效的重要因素,特别是对于一些塑料制品来说。
4. 机械应力老化高分子材料在受到外力作用时,会导致分子链的屈服和断裂,从而降低材料的强度和韧性。
这种老化方式通常在材料受到拉伸、压缩或弯曲等应力时发生。
以上几种老化机理常常会同时作用于高分子材料,相互影响,加速材料的老化过程。
了解高分子材料的老化机理对于制定有效的防治措施具有重要意义。
二、高分子材料的防治方法1. 添加抗氧化剂抗氧化剂是一种在高分子材料中加入的化学物质,它能够吸收和中和氧气、光照或热氧等因素产生的自由基,防止高分子链的氧化断裂和分子链的交联反应。
常见的抗氧化剂有苯酚类、偶酮类、磷酸酯类等。
通过添加适量的抗氧化剂可以延缓高分子材料的老化速度,提高其使用寿命。
2. 加入紫外线吸收剂紫外线吸收剂是一种能够吸收和转换紫外线能量的化学物质,它能够减少光照引起的高分子材料的老化。
当紫外线吸收剂吸收紫外线能量后,会发生光化学反应,使得紫外线能量被转换为次级能量,从而减少对高分子材料的损害。
高分子材料的实验室加速老化和户外自然老化

汽车非金属材料的实验室加速老化和户外自然老化摘要本文对汽车非金属材料的两种耐候性试验方法-实验室加速老化和户外自然老化的相关情况进行了介绍,分析比较了二者各自的优缺点和相关性,并根据实际工作实践,提出了一些实际工作中应注意的问题,纠正了一些常见的错误观念。
关键词汽车非金属材料实验室加速老化户外自然老化世界汽车工业的快速发展带动大量的现代老化研究。
今天的汽车是几十种不同材料的复杂组合,包括涂层、塑料、纺织品、皮革、颜料等,它们都有特定的耐候性,即在户外的耐老化性。
全球主要的汽车制造商已经在各种气候条件下进行了几十年的户外自然老化和实验室加速老化试验。
老化试验趋于系统化并积累了大量的试验数据。
汽车非金属材料的耐候性试验方法主要有两大类:实验室加速老化和户外自然老化。
户外自然老化是在典型的自然环境条件下进行的,虽然试验耗时比较长,一般要1~2年时间,但因其结果最能够说明材料的耐候性好坏和汽车整体的环境适应性,因此这一试验方法仍是各大汽车公司常用的方法,尤其是进行质量仲裁和开发新产品时。
目前国际上最知名的规模最大的自然曝露试验全球服务网络属于美国A TLAS气候服务集团,表1给出了这一机构的自然曝露试验场及其全球服务网络成员。
每年仅在美国凤凰城就有来自世界各地的20多部整车进行自然曝露(老化)试验。
我国也有一个的由广州电器科学研究院牵头的提供各种典型气候条件下的自然老化服务机构-机械工业环境技术研究中心(METRC),表2列出了METRC所属的自然曝露试验场。
表1 美国ATLAS公司的典型户外自然曝露试验场及其全球服务网络成员长久以来,汽车制造商都面对一个两难的境地,即其产品“由概念到市场”的生产周期是很快的,但材料的选择和户外自然老化试验的时间却是相对漫长的。
特别是一些汽车材料或部件供应商,其关心的也许只是拿到产品的耐候性证明,因此他们更乐意采用实验室加速老化试验,以在短期内了解材料或部件耐候性好坏。
高分子材料的老化及防老化研究

高分子材料的老化及防老化研究1. 引言1.1 高分子材料的老化问题高分子材料的老化问题是指高分子材料在长时间使用过程中所面临的性能衰减、物理结构变化和化学组成变化现象。
高分子材料在实际应用中往往会受到光、热、氧、湿等环境因素的影响,导致其老化加剧。
聚乙烯材料在阳光照射下会发生裂解和氧化反应,导致材料表面变得粗糙、发黄甚至开裂;聚氯乙烯材料在长时间加热作用下会发生塑化剥离、变脆等现象。
高分子材料的老化问题不仅会降低材料的性能和寿命,还会影响产品的安全性和稳定性。
针对高分子材料的老化问题,科研人员们开展了大量的研究工作,希望找到有效的方法延缓材料的老化进程,提高材料的稳定性和耐用性。
对高分子材料的老化机理进行深入研究,并寻找有效的防老化技术成为了当下研究的热点之一。
随着科学技术的不断发展,高分子材料的老化问题必将得到更好的解决,为各行各业提供更加稳定、可靠的材料。
1.2 研究背景高分子材料的研究背景十分重要,随着高分子材料在各行各业的广泛应用,其老化问题也日益凸显出来。
高分子材料的老化是指材料在长期使用过程中受到外界环境和内部因素影响,导致结构和性能发生不可逆转的变化。
这种变化可能表现为颜色变浅、机械性能降低、表面开裂或龟裂等现象,严重影响材料的使用寿命和性能。
研究高分子材料的老化问题具有十分重要的意义。
随着科技的不断进步和人们对材料性能要求的提高,高分子材料的老化问题已成为当前研究的重点之一。
在实际生产和应用中,高分子材料的老化问题给企业带来了经济损失,也给消费者带来了安全隐患,因此探讨高分子材料老化机理,并寻找有效的防老化技术具有重要的现实意义。
研究高分子材料老化问题的背景是十分重要的,只有深入了解老化机理、分析老化影响因素并探讨防老化技术,才能为延长材料寿命、提高材料性能提供科学依据。
1.3 研究意义高分子材料的老化问题一直是材料科学领域的重要研究方向。
随着高分子材料在各个领域的广泛应用,其老化问题日益凸显。
有机高分子材料的老化行为及其调控的研究

有机高分子材料的老化行为及其调控的研究
有机高分子材料的老化行为是指材料在长期使用过程中,由于外界环境的影响或内部结构的变化而引起的性能衰退。
主要包括降解、劣化、裂解、失效等过程。
有机高分子材料的老化行为受多种因素影响,包括化学因素、物理因素和环境因素等。
化学因素主要包括氧化、加热、光照、湿热等,物理因素主要是机械应力、摩擦、振动等,环境因素包括湿度、温度、紫外线等。
这些因素会导致材料的结构发生改变、化学键断裂、分子链断裂等,最终导致材料性能的衰退。
为了延缓有机高分子材料的老化过程,可以采取一些调控方法。
其中一种方法是添加抗氧化剂,抗氧化剂可以有效阻止物质的氧化反应,延缓老化过程。
另一种方法是改变材料的结构,通过改变分子链的长度或交联程度来提高材料的耐老化性能。
此外,还可以通过控制材料的制备条件、改变添加剂的种类和含量等方式来延缓材料的老化。
有机高分子材料的老化行为及其调控的研究在材料科学领域具有重要意义。
通过深入了解材料老化的机理,可以开发出更耐老化的材料,提高材料的使用寿命和性能稳定性。
这对于提高材料的可靠性、降低维护成本具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子材料的环境行为与老化机理研究进展刘景军,李效玉(北京化工大学材料科学与工程学院,北京100029摘要:总结了有关高分子材料在环境因素作用下老化研究的历史与现状,阐述了环境场(如光、热和化学介质对高分子老化的影响,提出了材料老化的一些主要机理。
在探讨了一些新研究手段的发展和取得的成果的基础上,进而展望了高分子材料老化及防护措施的研究动向和发展趋势。
关键词:高分子;老化;环境因素;机理;进展高分子学科自上世纪20年代提出高分子结构的大分子观念以来,在短短几十年间已取得惊人的进展,产量如此之大,发展如此之快,其速度也是其它学科难以比拟的。
无论是在超高温的工程技术,还是超低温的冷冻技术,也不管是太空的宇航,还是大海的深潜,都离不开高分子材料。
假如19世纪是蒸汽机和电的时代,那么20世纪则是原子能和高分子时代。
高分子材料的优点在于是可利用的再生资源,而且可实现分子设计,不但可以用于结构材料,而且在功能性材料方面有着广泛的发展前景。
然而,高分子材料的老化与防止问题,已成为一个非常重要的问题,其实际老化造成的危害要比人们想象中的严重得多,尤其是在苛刻环境条件下,常导致设备过早失效,材料大量流失,不但使经济上受到很大损失,导致资源的浪费,甚至因材料的失效分解对环境的污染,高分子的老化失效问题已成为限制高分子材料进一步发展和应用的关键问题之一。
学者们认为,国际上目前还有许多老化的基本问题需进一步研究:如:在老化试验中,人工加速的寻求;各种防老剂间的协同效应研究;超分子结构和老化的关系;光引发机理和光稳定机理仍需进一步研究;自毁性高分子研究和应用以及废高分子材料的回收利用等[1~15]。
国内外有众多的学者从事这方面的工作,取得了一些进展[15~25]。
综合相关的文献报道看,目前老化研究主要集中在探讨这些材料老化的规律、机理,以及环境因素对材料老化的影响等方面,取得了一些有价值的结果。
这些工作对于发展新的实验技术和测试方法,改善材料的生产技术、研制特种材料、逐步达到按指定性能设计新材料等具有重大的指导作用。
1高分子老化研究的历史回顾各国在很早就对高分子材料的失效(老化进行了研究。
1870年,Bogge首先用B萘胺和对苯胺作为橡胶制品的抗降解剂(Antidegrader,而大大改进了橡胶的使用寿命[1]。
显然,上述二个化合物是属于今天的芳胺抗氧剂。
Moureon首先提出抗氧剂(Antioxidant一词;而作为工业规模生产的抗氧剂则是从1921年开始的。
Dickens认为人们是在1935年首次开始对聚苯乙烯的降解进行了研究[2],这属于对合成材料老化最早的研究。
直至40年代末,人们才开始较系统地研究聚合物的降解等问题[3~5],这些研究着重于探索提高聚合物稳定化的可行性。
曾以弹性体为例,证明了可以提高聚合物材料的稳定性[3]。
之后,50年代,这些研究着重于橡胶的降解、聚烯烃的老化、均聚物的热氧老化[6~8]、聚丙烯腈的化学降解[3,9],以及硅橡胶的热老化机理等方面[10~12],并进一步提出了主要研究聚烯烃老化过程的定量动力学方法。
随后有很多学者也开始了这方面的工作[5],60年初期,由于材料实际应用的需要,人们将研究范围进一步拓宽,开始重点研究无规聚丙烯、聚硅氧烷等高分子材料的热氧老化问题,这大大促进了塑料的广泛使用[13,14]。
上世纪70年代起,聚碳酸酯的光氧老化的研究开始引起人们的注意,并对高分子材料老化试验研究的状况及手段进行改进和分析[15]。
到了80年代,高分子在作者简介:刘景年,讲师,博士生,主要研究方向为材料的环境行为与失效机理。
E_mail:********************自然及人工环境下的光老化和光氧老化问题及稳定化逐渐成为人们关注的重点之一[16]。
近年来,许多学者开始转入高分子老化的研究[17~20],目前研究的热点主要集中在:高分子材料的热、光老化、热氧老化、光氧老化、化学介质中的老化机理及稳定化进行深入研究,这也是高分子老化科学的首要研究内容。
2 国内外研究热点2.1 热氧老化由于高分子热氧老化现象极其普遍,目前是许多学者以及工作的重点内容之一[20,21]。
热氧老化过程受到诸如氧、热和杂质等许多因素的影响,使老化的行为和机理极为复杂。
Gijsman [22]采用热老化箱方法研究了尼龙46和66的高温分解,并将结果进行比较时发现,在长时间内145e 尼龙46比66的耐热氧老化性能要好,这主要由于外界氧难以通过尼龙46表面向内部扩散所致,分解过程主要受的热氧老化的第一阶段(形成自由基所控制。
Scott [23]也认为乙烯基聚合物在大气中的热氧老化往往是由于产生自由基的扩散引起的,但自由基的引发过程至今尚不清楚。
Day [24]在研究了含有氧化铜、铁和杂质的PP 、AB S 、PU 和PVC 材料热氧老化反应常数和动力学参数时发现,一定浓度的金属杂质会影响反应常数和活化能,对热氧老化过程起催化作用。
Andricic [25]则采用TGA 法研究了PVC 的热氧老化,试图通过研究PVC老化动力学参数(反应活化能来进一步解释热氧老化机理,但也承认PVC 的热氧老化比高温降解更复杂,且各个学者得出的反应常数、反应活化能也不尽相同,难以得出一致的结论[26]。
为此,不少学者提出了另外一些研究方法。
有学者[27]运用聚合物的溶胀理论和化学动力学,研究了硝酸酯基聚醚聚氨酯的老化降解过程,表明这类聚氨酯的降解遵从一级反应动力学规律。
Mc Neill [17]则从分子反应动力学方面出发,进一步研究材料热氧降解对分子链化学键的影响,这也是目前研究的热点和难点之一。
近年来,由于兴起塑料等高分子废旧制品的重新回收利用,材料的高温降解方面研究,或开发具有更高热稳定性的特种材料开始逐渐为人们重视[24]。
2.2 光氧老化受光照射(自然光、紫外光等所引起的老化降解反应称为光氧老化。
这也是高分子材料老化研究的热点之一[28~33]。
Factor [34]在利用各种紫外光源研究双酚-A 聚碳酸酯的老化时,对降解产物、吸氧量进行了测定,发现同时存在光氧反应(Photo -Oxidation、光化反应(Photo -Fries两种反应过程[15],但光氧反应(Photo -Oxidation占主要作用。
Allen [16]的研究工作表明:聚烯烃光降解和光氧老化过程中发现,在有氧气存在时往往会使过程更加复杂,氧是引发光氧老化的重要因素,且降解速度受氧的影响很大。
为此,有学者[16]对不同光氧老化的引发物催化作用进行比较后认为,除了羰基、氢过氧化物等主要光降解引发剂外,氧也可以产生类似的作用。
有研究表明,温度对光降解没有直接的影响,但对降解过程中生成的自由基所进行的一系列反应(暗反应,影响却很大[35]。
Torikai [36]通过研究PE 和LLDPE 的密度及结晶尺寸、组织形态时,也得出了类似的结论。
另外,湿度对某些高分子的光氧老化影响较大,常起催化光氧老化的作用,影响材料光氧老化的因素较多[37]。
为了确定材料自身结构对光氧老化的影响,Bajsic [38]在研究聚氨酯弹性体中软段分子量对其光老化降解稳定性的影响时发现,在290~400nm 之间,吸收一定波长的光后,聚合物中分子键断裂或链交联,放出CO 2。
有人采用了薄层层析法和非水滴定法来定量检测降解产物中的胺,较为系统地研究了硝酸酯基聚醚聚氨酯的老化降解,并推断其降解机理为氨基甲酸酯中C N 键的断裂[39,40]。
当聚氨酯材料吸收330~340nm 波长的光后,发生photofries 重排,生成伯芳胺,进一步降解,产生变黄产物:R C OO NH C H 2NH C O R hv R C O O NHCH 2NH 2COR 在相关的文献报道中,高分子光稳定剂的研究近年来大量出现[39,41~47]。
例如,Turton [44]研究了稳定剂对聚氨酯光降解行为的影响,随紫外线吸收剂或受阻胺类或受阻酚类稳定剂用量的增加,聚氨酯拉伸强度的保持率也相应较好[40]。
目前聚合物光稳定化的主要进展似乎已从发现新产品逐渐转向建立更有效的光稳定配方、改良光稳定剂的结构以及光稳定剂高分子量化方面[46,47]。
2.3化学降解目前,由于大量的高分子结构材料进入建筑、化工等领域,材料在腐蚀性介质中的稳定性,即在化学介质作用下高分子材料的老化,日益受到学者们的关注,开展了化学介质对材料的老化过程的研究,也是目前的一个热点[48,49]。
近十几年来,有许多学者对材料化学降解的影响因素及老化机理进行了工作[48~52]。
Khatua[53]利用FTIR技术研究了聚醚聚氨酯在氯气中的化学降解过程,指出聚醚聚氨酯的拉伸性能随氯浓度和作用时间延长而下降。
Hollande[52]研究了聚醚聚氨酯在水存在下的样品重量的变化,在无水气氛下,失重量有限,当样品持续与水或水蒸汽接触下,失重率是恒定的并依赖于老化条件。
这表明介质水是影响化学降解另外一个重要因素[51]。
Severini[48]在研究苯乙烯-丙烯腈共聚物在碱性溶液中的化学降解时发现,溶液碱浓度和温度条件对苯乙烯-丙烯腈共聚物化学降解影响强烈,但降解速度要比聚丙烯腈慢得多。
为了进一步深入解释降解动力学过程,Troev[49]研究了弹性聚酯聚氨酯泡沫在磷酸二烷基酯中的化学降解行为,采用NMR技术对降解产物进行分析,提出了可能的降解机理。
从分子动力学的角度看,硝酸对PVC的作用仅是NO2对链内双键加成,沿主链上含氮氧基团的支链,局部的原子团转变不会严重影响大分子链的稳定性,在一定的温度范围内,聚氯乙烯对硝酸有优良的稳定性[50]。
McCartney等[3]研究了聚丙烯氰在极性溶剂与KOH的化学降解,发现其降解过程导致了聚丙烯氰高分子链的结构变化,同时存在着无规断链和相互环化过程。
除此之外,化学降解机理的研究有助于实现高分子废弃物的回收和再利用。
Troev[54]研究了多孔聚氨酯弹性体在磷酸酯中的降解过程和机理。
Kisc[55]则从材料改性的角度,研究了碱溶液对聚氯乙烯的影响,通过利用季胺卤化物的相转移催化作用,成功地缩短了聚氯乙烯薄膜在与氢氧化钠水溶液接触过程发生的化学变化的实验周期,并找到对聚氯乙烯薄膜改性来制造极化薄膜的实用技术。
这两个方面研究目前逐渐引起了人们广泛的兴趣。
2.4物理老化近十多年来,高分子物理老化的研究非常活跃[56~58]。
就聚合物而言,化学介质与材料之间的相互作用可以归纳为共价键与次价键作用两类。
物理老化[57](Physical a ging仅指由于物理作用而发生的可逆性的次价键变化,不涉及分子结构的改变,如环境应力龟裂、增塑、低分子添加剂迁移等等。
从动力学过程来看,高分子材料的化学老化主要发生主键的断裂[50],有时次价键的破坏也属化学老化,如溶胀与溶解、环境应力开裂、渗透破坏等。