映射基础知识

合集下载

函数映射知识点归纳总结

函数映射知识点归纳总结

函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。

在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。

1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。

当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。

1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。

函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。

1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。

这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。

二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。

了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。

2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。

2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。

二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。

2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

高一数学映射知识点

高一数学映射知识点

高一数学映射知识点数学是一门综合性科学,映射是其中的重要概念之一。

在高一数学学习中,映射是一个需要深入理解和掌握的知识点。

本文将从映射的定义、映射的性质以及映射的应用等方面进行详细介绍。

一、映射的定义映射是一种对应关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

映射常常用符号“f”表示,表示一个元素或者一组元素通过某种规则对应到另一个集合中。

对于集合A和集合B,如果存在一个映射f,使得对于A中的任意元素a,都有唯一的对应元素b在集合B中,即f(a)=b,那么我们可以说A中的元素通过映射f对应到B中的元素。

二、映射的性质1. 单射:如果映射f中不同的元素在B中有不同的对应元素,即对于任意的a1和a2,如果f(a1)=f(a2),则a1=a2。

这种映射被称为单射或一一映射。

单射保证了映射的唯一性。

2. 满射:如果映射f中的所有元素都有对应的元素存在于B中,即对于任意的b∈B,都存在a∈A,使得f(a)=b。

这种映射被称为满射。

满射保证了映射的完备性。

3. 双射:既是单射又是满射的映射被称为双射。

双射保证了映射的一一对应关系,即A中的每一个元素都有唯一对应的元素在B中,B中的每一个元素也都有唯一对应的元素在A中。

4. 逆映射:如果映射f是一个双射,那么它存在一个逆映射g,使得g(f(a))=a对于任意的a∈A成立,同时f(g(b))=b对于任意的b∈B也成立。

逆映射可以实现映射的互逆。

三、映射的应用映射在数学中的应用非常广泛,尤其在解决实际问题时起到了重要的作用。

以下是映射在几个常见领域的应用示例:1. 函数关系:函数是一种特殊的映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素上。

函数在数学中有着广泛的应用,例如描述物理规律、经济关系以及建立模型等。

2. 图论:映射在图论中有重要作用。

图是由一系列的顶点和边组成的数学模型,而映射则常常用于描述顶点之间的关系,例如在社交网络中描述用户之间的关注关系。

《映射》 知识清单

《映射》 知识清单

《映射》知识清单一、什么是映射在数学中,映射是一种特殊的关系,它将一个集合中的元素与另一个集合中的元素相对应。

简单来说,如果对于集合A 中的每一个元素,在集合 B 中都有唯一的元素与之对应,那么这种对应关系就称为从集合 A 到集合 B 的映射。

例如,我们考虑集合 A ={1, 2, 3},集合 B ={4, 5, 6}。

如果定义映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,那么这就是一个从集合 A到集合 B 的映射。

需要注意的是,集合 A 中的每一个元素都必须有对应的元素在集合B 中,并且一个元素在集合 A 中只能对应集合 B 中的一个元素。

但集合 B 中的元素不一定都有集合 A 中的元素与之对应。

二、映射的分类1、单射单射是指如果对于集合 A 中的任意两个不同元素 a1 和 a2,它们在集合 B 中的像 f(a1) 和 f(a2) 也不同,那么这个映射就称为单射。

例如,集合 A ={1, 2, 3},集合 B ={4, 5, 6, 7},映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,这是一个单射,因为 1、2、3 对应到 4、5、6 各不相同。

满射是指如果集合 B 中的每一个元素都至少有集合 A 中的一个元素与之对应,那么这个映射就称为满射。

比如,集合 A ={1, 2, 3, 4},集合 B ={5, 6},映射 f 为:f(1) = 5,f(2) = 5,f(3) = 6,f(4) = 6,这就是一个满射,因为集合 B 中的 5 和 6 都能在集合 A 中找到对应的元素。

3、双射双射是指既是单射又是满射的映射。

这意味着集合 A 中的每一个元素在集合 B 中有唯一的对应元素,并且集合 B 中的每一个元素在集合A 中也有唯一的对应元素。

例如,集合 A ={1, 2, 3},集合 B ={4, 5, 6},映射 f 为:f(1) = 4,f(2) = 5,f(3) = 6,这就是一个双射。

大一高数映射知识点总结

大一高数映射知识点总结

大一高数映射知识点总结高等数学是大学阶段理工科学生的一门重要基础课程,其中映射是高等数学中的一个重要概念和知识点。

映射作为数学中的一种关系,研究了一个集合与另一个集合之间的对应关系。

本文将对大一高数中与映射相关的知识点进行总结。

一、映射的基本概念在数学中,映射是指一个集合的元素与另一个集合的元素之间的对应关系。

设A和B是两个非空集合,若对于A中的任意一个元素a,都存在B中唯一的一个元素b与之对应,则称这种对应关系为从集合A到集合B的映射,记作f:A→B。

二、映射的表示方法映射可以用不同的表示方法来表达,常见的表示方法有以下几种:1. 符号表示法:f(a) = b,表示元素a在映射f下的像是b。

2. 图表示法:可以用箭头连接集合A和集合B,箭头表示映射关系,箭头起点对应元素a,箭头终点对应元素b。

3. 列表表示法:可以将映射关系列出来,例如{(a, b), (c, d), (e,f)}。

三、映射的类型根据映射的特点和性质,映射可以分为以下几种类型:1. 一对一映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,映射f下的像f(a1)和f(a2)不相同。

2. 单射映射:映射中的每一个元素都有唯一的对应元素,即对于A中的不同元素a1和a2,若f(a1) = f(a2),则a1 = a2。

3. 满射映射:映射中的每一个元素都有对应元素,即对于B中的任意元素b,都存在A中的元素a与之对应。

4. 一一对应映射:既是一对一映射又是满射映射的映射称为一一对应映射或双射映射。

四、映射的性质映射作为一种关系有其特有的性质,下面介绍几个常见的映射性质:1. 反函数:对于一一对应的映射f:A→B,如果存在映射g:B→A,使得对于A中的任意元素a,都有g(f(a)) = a,且对于B中的任意元素b,都有f(g(b)) = b,那么g就是f的反函数。

2. 复合函数:对于映射f:A→B和映射g:B→C,可以定义映射h:A→C,使得对于A中的任意元素a,有h(a) = g(f(a)),此时h为f和g的复合映射。

大一高数映射知识点归纳

大一高数映射知识点归纳

大一高数映射知识点归纳在大一高等数学课程中,映射是一个非常重要且常见的概念。

映射可以理解为一种对应关系,它将一个集合中的元素映射到另一个集合中的元素。

接下来,我将对大一高数中与映射相关的知识点进行归纳总结。

一、映射定义与表示法映射是从一个集合到另一个集合的一个对应关系。

如果集合A 中的每个元素a都对应集合B中的唯一一个元素b,那么我们称A 到B的映射为定义在集合A上的一个映射。

在表示映射时,常用的表示法有:- 将映射写成集合形式,例如:{(x, y) | x∈A, y∈B, y=f(x)}- 使用函数的形式表示映射,例如:f: A → B,其中f表示映射的名称,A为起始集合,B为终止集合。

二、映射的分类1. 单射:如果映射中的每个不同元素a对应的都是不同的元素b,那么称该映射为单射。

也可以说是任意两个不同的元素在映射中的像都不相同。

2. 满射:如果映射中的每个元素b都有对应的元素a,那么称该映射为满射。

也可以说是终止集合B中的每个元素都有源自集合A中的元素与之对应。

3. 双射:如果一个映射既是单射又是满射,那么称该映射为双射。

三、映射的运算1. 复合映射:设有两个映射f: A → B,g: B → C,那么可以通过复合运算得到新的映射h: A → C。

复合映射的运算规则为:h(x) = g(f(x)),即先使用f进行映射,再使用g进行映射。

2. 逆映射:如果一个映射f: A → B是一个双射,那么可以定义其逆映射g: B → A。

逆映射的性质为:g(f(x)) = x,f(g(y)) = y。

四、映射的例子与应用1. 一次函数:一次函数可以表示为f(x) = kx + b的形式,其中k 为不为零的常数,称为斜率,b为常数,称为截距。

一次函数是一种常见的线性映射,常用于描述常量比例关系。

2. 复数平面映射:将复数表示为平面上的点,可以将复数映射到平面上。

3. 矩阵映射:在线性代数中,矩阵可以表示一个线性映射,通过矩阵乘法可以实现向量的变换。

映射的知识点总结

映射的知识点总结

映射的知识点总结一、映射的定义在数学中,映射被定义为一种从一个集合到另一个集合的元素之间的关系。

设A和B是两个集合,如果存在一个规则f,使得对A中的每一个元素a,都有一个唯一确定的元素b∈B与之对应,则称f是从A到B的一个映射,记作f:A→B。

在这里,A称为定义域,B称为值域,f(a)称为元素a的像,b称为元素a的原像。

映射的定义也可以用集合的语言来描述。

即映射是一个集合到另一个集合的元素之间的规则,使得集合中的每一个元素有且只有一个唯一确定的对应元素。

这种描述映射的方式更加直观,容易理解。

二、映射的性质1. 单射如果映射f:A→B的不同元素a1、a2∈A,若f(a1)≠f(a2),则称f是单射。

直观地说,单射表示A中的不同元素映射后得到的像也是不同的,即不会出现多个元素映射到一个元素上。

2. 满射如果映射f:A→B的任意元素b∈B,都存在一个元素a∈A,使得f(a)=b,即值域与B相等,则称f是满射。

满射表示在映射中,值域中的每一个元素都有至少一个原像。

3. 双射如果映射f:A→B既是单射又是满射,则称f是双射。

双射表示映射是一种一一对应的关系,每一个元素都有唯一的对应元素。

4. 逆映射设f:A→B是一个双射,那么存在一个映射f^-1:B→A,使得对于任意元素b∈B,f^-1(b)是唯一与b对应的元素,称f^-1是f的逆映射。

5. 复合映射设f:A→B和g:B→C是两个映射,其中f的值域是g的定义域,那么可以定义f和g的复合映射为g∘f:A→C,它的定义规则是(g∘f)(a)=g(f(a))。

6. 映射的像和原像对于映射f:A→B,其中元素b∈B,称元素b在映射f下的像为f^-1(b)={a∈A|f(a)=b},即元素b对应的所有原像所构成的集合。

而元素a∈A,称元素a在映射f下的原像为f(a)。

三、映射的分类根据映射的性质,可以将映射分为不同的类型。

1. 根据值域的大小,映射可以分为有限映射和无限映射。

专升本数学集 合与映射基础知识梳理

专升本数学集 合与映射基础知识梳理

专升本数学集合与映射基础知识梳理专升本数学:集合与映射基础知识梳理在专升本数学的学习中,集合与映射是非常基础且重要的概念。

理解和掌握好这部分知识,对于后续数学课程的学习起着至关重要的作用。

接下来,让我们一起系统地梳理一下集合与映射的基础知识。

一、集合的概念集合,简单来说,就是把一些具有特定性质的对象放在一起组成的一个整体。

这些对象称为集合的元素。

比如,我们可以把所有的正整数组成一个集合,把某班所有身高超过 18 米的同学组成一个集合。

集合通常用大写字母表示,如A、B、C 等,元素用小写字母表示,如 a、b、c 等。

如果一个元素 a 属于集合 A,我们记作 a ∈ A;如果一个元素 b 不属于集合 A,我们记作 b ∉ A。

集合的表示方法有多种,常见的有列举法、描述法和区间法。

列举法就是把集合中的元素一一列举出来,用逗号分隔,并用花括号括起来。

例如,集合 A ={1, 2, 3, 4, 5}。

描述法是用元素所具有的特征来描述集合。

例如,集合 B ={x |x 是大于 5 的整数}。

区间法通常用于表示连续的实数集合。

例如,区间(1, 5) 表示大于1 且小于 5 的实数组成的集合。

二、集合的基本关系集合之间存在着包含、相等、真包含等关系。

如果集合 A 中的所有元素都属于集合 B,那么我们说集合 A 包含于集合 B,记作 A ⊆ B;如果集合 A 包含于集合 B,且集合 B 中存在元素不属于集合 A,那么我们说集合 A 真包含于集合 B,记作 A ⊂ B;如果集合 A 和集合 B 中的元素完全相同,那么我们说集合 A 等于集合B,记作 A = B。

三、集合的运算集合的运算包括交集、并集和补集。

交集:集合 A 和集合 B 的交集,记作A ∩ B,是由既属于集合 A又属于集合 B 的所有元素组成的集合。

并集:集合 A 和集合 B 的并集,记作 A ∪ B,是由属于集合 A 或者属于集合 B 的所有元素组成的集合。

映射重要知识点总结

映射重要知识点总结

映射重要知识点总结一、映射的定义1.1 映射的概念映射是一种将一个集合中的元素对应到另一个集合中的元素的规则。

具体来说,如果从集合A到集合B的每个元素a都能找到集合B中的唯一元素b与之对应,那么我们就说存在从集合A到集合B的一个映射。

我们通常用f: A → B来表示这个映射,其中f表示映射的规则,A称为定义域,B称为值域,而对应的元素对(a, b)称为映射对。

1.2 映射的表示方式映射可以用图、公式、表格等形式来表示。

在图中,我们可以用箭头连接集合A和集合B 的元素,表示它们之间的对应关系;在公式中,我们可以用f(x) = y来表示映射的规则,其中x表示集合A中的元素,y表示集合B中的元素;在表格中,我们可以将集合A的元素和对应的集合B的元素按一定顺序排列,表示它们之间的对应关系。

1.3 映射的例子为了更好地理解映射的概念,我们可以举几个具体的例子。

比如说,将一个学生的学号与他的成绩对应起来,就是一个映射;将一个人的身高与体重对应起来,也是一个映射;将一个城市的名称与它的人口数量对应起来,同样也是一个映射。

二、映射的性质2.1 单射、满射和双射在研究映射的性质时,我们通常关注三个重要的性质,即单射、满射和双射。

- 单射:如果一个映射f: A → B满足对任意的x1, x2∈A,只要x1≠x2就有f(x1)≠f(x2),那么我们就说这个映射是单射。

单射也可以表述为:对于集合A中的任意两个不同的元素,它们在集合B中的像也是不同的。

- 满射:如果一个映射f: A → B满足对于集合B中的任意元素y,都能在集合A中找到一个元素x与之对应,那么我们就说这个映射是满射。

- 双射:如果一个映射既是单射又是满射,那么我们就说这个映射是双射。

2.2 映射的复合在实际问题中,有时我们会遇到多个映射的复合。

设有两个映射f: A → B和g: B → C,我们可以定义它们的复合映射g∘f: A → C为:对于A中的任意元素x,它在C中对应的像为(g∘f)(x) = g(f(x))。

8第八讲 映射、函数的定义域及值域讲解

8第八讲 映射、函数的定义域及值域讲解

第八讲映射、函数的定义域及值域一、知识概要1、函数的概念:(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f表示对应法则,b=f(a)。

若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。

既是单射又是满射的映射称为一一映射。

(2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为基本的因素。

逆过来,值域也会限制定义域。

求函数定义域,通过解关于自变量的不等式(组)来实现的。

要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。

复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。

理解函数定义域,应紧密联系对应法则。

函数定义域是研究函数性质的基础和前提。

函数对应法则通常表现为表格,解析式和图象。

其中解析式是最常见的表现形式。

求已知类型函数解析式的..方法是待定系数法,抽象函数的解析式常用换元法及凑合法。

求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。

在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。

(3)求函数解析式的常用方法:注意新元的取值范围)f(x)为奇函数且g(x)为偶函数等)时也要注意变量的实际意义。

(4) 配方法、分离变量法、单调性法、图象法、换元法、不等式法(5)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综(6)力和数学建模能力二、题型展示例1. 设A={1,2,3,4,5},B={6,7,8},从集合A到集合B的集合的映影中,满足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射有()A 27个B 9个C 21个 D. 12个例2.已知集合M={a,b,c},N={-1,0,1}从M到N的映射满足f(a) — f(b) = f(c)那么映射f的个数为()A. 2B. 4C. 5D. 7 ⎧1x⎪()(x≥4)例3给出函数f(x)=⎨2则f(log23)等于()⎪⎩f(x+1)(x<4)A.-23111B.C.D. 1119248例4.设函数f(2x)的定义域是[-1,1],求f(log2x)的定义域34例5.已知函数f(x)的值域是[,],试求的值域 89例6设二次函数f(x)满足f(x-2)=f(-x-2),且函数图像在y轴上的截距为1,被X轴截得的线段长为f(x)的解析式.三、题型训练1.函数f(x))A.1D.2ax-1(a>0且a≠1)的值域是_________ 2.函数y=xa+13.(2000全国理,1)设集合A和B都是自然数集合N,映射f:A→B把集合A 中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.54.(1999全国,2)已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是()A.4B.5C.6D.7x2115.(2002全国理,16)已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()+f(4)+f2231+x(1)=_____. 41,若f(1)=-5,则fx四、真题演练 1.(2006年安徽卷)函数f(x)对于任意实数x 满足条件f(x+2)=f(f(5))=__________。

《映射》 知识清单

《映射》 知识清单

《映射》知识清单在数学和计算机科学等领域中,“映射”是一个非常重要的概念。

它就像是一座桥梁,将两个不同的集合或者对象联系在一起。

为了更好地理解映射,让我们逐步深入探索它的奥秘。

一、映射的定义简单来说,映射是一种规则,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。

比如说,我们有集合 A ={1, 2, 3} 和集合B ={4, 5, 6},如果我们定义一个映射 f ,使得 f(1) = 4 ,f(2) = 5 ,f(3) = 6 ,那么这个 f 就是从集合 A 到集合 B 的一个映射。

需要注意的是,对于集合 A 中的每个元素,都必须有唯一的对应元素在集合 B 中,但集合 B 中的元素不一定都有集合 A 中的元素与之对应。

二、映射的类型1、单射(Injective Mapping)也称为一对一映射。

这意味着集合 A 中的不同元素在集合 B 中对应不同的元素。

例如,集合 A ={a, b, c} ,集合 B ={1, 2, 3} ,映射 f 为 f(a) = 1 ,f(b) = 2 ,f(c) = 3 ,这就是一个单射。

2、满射(Surjective Mapping)如果集合B 中的每个元素都至少有集合A 中的一个元素与之对应,那么这个映射就是满射。

比如集合 A ={1, 2, 3} ,集合 B ={4, 5} ,映射 f 为 f(1) = 4 ,f(2) = 5 ,f(3) = 5 ,这就是一个满射。

3、双射(Bijective Mapping)当一个映射既是单射又是满射时,就称为双射。

这意味着集合 A 和集合 B 之间的元素存在一一对应的关系。

例如集合 A ={1, 2, 3} ,集合 B ={a, b, c} ,映射 f 为 f(1) = a ,f(2) = b ,f(3) = c ,这就是一个双射。

三、映射的表示方法1、列表法将集合 A 中的元素和它们在集合 B 中对应的元素列成一个表格。

高一必修一数学映射知识点

高一必修一数学映射知识点

高一必修一数学映射知识点数学作为一门重要的学科,拥有丰富而精彩的内容。

在高中数学学习中,映射是一个非常重要的知识点。

映射是一种将一个集合中的元素对应到另一个集合中的方法。

本文将从映射的定义、映射的性质和应用等方面进行探讨。

首先,我们来看映射的定义。

映射可以简单理解为一个输入与输出之间的对应关系。

设A和B是两个非空集合,如果对于集合A中的每一个元素a,都有唯一确定的集合B中的元素b与之对应,那么我们就称这样的对应关系为映射。

通常用符号f表示映射,表示为:f:A→B,其中A为定义域,B为值域。

在学习映射的过程中,我们需要了解映射的一些重要性质。

映射的重要性质有两个,分别是单射性和满射性。

单射性指的是映射中每个元素在值域中都有唯一对应的元素。

换句话说,映射中不会存在两个不同的元素映射到值域中的同一个元素。

满射性则是指映射中的每个元素都至少有一个对应的元素在值域中。

也就是说,值域中的每个元素都有被映射到的元素。

而如果一个映射既满足单射性又满足满射性,我们就称之为双射。

双射是映射中最为理想的情况。

映射作为一个重要的数学工具,在生活中也有着广泛的应用。

一个常见的应用是数学模型中的映射。

数学模型是用来描述真实世界的数学方法。

映射在数学模型中经常被用来描述不同变量之间的关系。

例如,在人口增长模型中,我们可以定义一个映射,将时间作为输入,将人口数量作为输出。

通过这个映射,我们可以研究人口随时间变化的规律。

另一个应用是密码学中的映射。

密码学是保护信息安全的学科,映射在密码学中被广泛使用来进行加密和解密操作,保障信息的安全性。

除了上述应用之外,映射还有着其他一些特殊的类型。

比如说,我们可以将一个集合映射到它自身,这种映射称为恒等映射。

恒等映射保持集合中元素的原有顺序和对应关系。

又比如,有些映射满足交换律,即改变映射中元素的顺序不会改变映射的结果,这种映射称为交换映射。

交换映射在很多数学理论中都有着重要的地位。

综上所述,映射是高一数学必修一课程中的重要知识点。

映射知识点总结

映射知识点总结

映射知识点总结一、概念及基本原理映射是数学中一个非常重要的概念,它指的是将某个集合中的元素通过一个函数对应到另一个集合中的元素的过程。

在数学中,映射通常被称为函数,而两个集合之间的映射关系则被称为函数的定义域和值域。

映射的基本原理是一一对应,即一个元素只能对应到另一个元素,不能对应到多个元素,也不能没有对应的元素。

二、映射的符号表示在数学中,映射一般用函数的符号表示,即f: A → B,其中f表示函数的名称,A表示函数的定义域,B表示函数的值域。

当我们说“f是从集合A到集合B的映射”时,就是指函数f将集合A中的元素映射到集合B中的元素。

三、映射的分类根据映射的函数特性和性质,可以将映射分为多种不同的类型。

常见的映射类型包括:1. 单射:如果函数f:A → B满足对任意的x1、x2∈A,当x1≠x2时,有f(x1)≠f(x2),则称函数f是单射。

2. 满射:如果函数f:A → B满足对任意的y∈B,存在x∈A使得f(x)=y,即每一个B中的元素都有对应的A中的元素与之对应,则称函数f是满射。

3. 双射:如果函数f:A → B既是单射又是满射,则称函数f是双射。

四、映射的应用映射在实际生活和科学研究中有着广泛的应用。

例如,在工程技术领域,映射常用于描述物理量和控制系统之间的关系;在经济学和管理学领域,映射常用于描述市场供求关系和企业决策模型;在生物学和医学领域,映射常用于描述遗传规律和生理现象等。

其实,映射在数学上的应用是最为丰富和广泛的,几乎贯穿于整个数学领域。

五、映射的相关定理映射作为数学中的一个重要概念,有着许多重要的定理和性质。

其中,最为著名的定理之一就是庞加莱-齐帕多定理。

该定理是解析函数论领域中的一个重要结果,它表明了圆盘上的解析映射具有特殊的性质,可以通过保角映射将圆盘上的问题转化为单位圆上的问题。

六、映射的发展与研究自底加莱-齐帕多定理被提出以来,映射的研究领域得到了很大的发展。

在此基础上,许多数学家提出了各种不同类型的映射和函数,并研究了它们的性质与应用。

大一高数映射知识点汇总

大一高数映射知识点汇总

大一高数映射知识点汇总在大一的高等数学课程中,映射是一个重要的概念。

它在数学中有着广泛的应用,并且在不同的领域中都有着重要的作用。

本文将汇总大一高数中与映射相关的各个知识点,以帮助读者全面了解和掌握映射的概念和应用。

定义和基本概念在开始探讨映射的不同方面之前,我们需要了解一些基本的定义和概念。

在数学中,映射可以被定义为一个将一个集合中的元素映射到另一个集合中的元素的规则。

其中,我们称映射的起始集合为定义域,映射的终止集合为值域。

映射通常用符号表示,如f: A → B,表示从集合 A 到集合 B 的映射 f。

映射的分类根据映射的性质和特点,可以将映射分为不同的类型。

以下是几种常见的映射分类:1. 单射:如果映射中的每一个元素都对应不同的元素,则称其为单射,也叫一一映射。

2. 满射:如果映射中的每一个元素都有至少一个元素与之对应,则称其为满射,也叫到上映射。

3. 双射:如果一个映射既是单射又是满射,则称其为双射,也叫一一对应。

4. 非单射:如果一个映射中存在不同的元素对应到相同的元素,则称其为非单射。

5. 非满射:如果一个映射中存在无元素与之对应的元素,则称其为非满射。

映射的性质映射具有一些重要的性质,其对于研究映射的特性和应用至关重要。

以下是映射的一些常见性质:1. 传递性:对于映射f: A → B 和g: B → C,如果 f 和 g 都是映射,那么 f ∘ g 也是映射。

2. 反函数:对于映射f: A → B,如果对于任意的 y ∈ B,存在唯一的 x ∈ A,使得 f(x) = y,则称g: B → A 为 f 的反函数。

3. 复合函数:对于映射f: A → B 和g: B → C,定义 f ∘ g(x) =f(g(x)),其中 x ∈ A,称 f ∘ g 为映射 f 和 g 的复合函数。

4. 逆映射:对于映射f: A → B,如果存在映射g: B → A 使得 f ∘ g = I_B 和 g ∘ f = I_A,其中 I_A 和 I_B 分别是集合 A 和集合 B 上的恒等映射,则称 g 为 f 的逆映射。

第二讲 映射及映射法

第二讲 映射及映射法

第二讲 映射及映射法知识、方法、技能1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作.:B A f →(1)映射是特殊的对应,映射中的集合A ,B 可以是数集,也可以是点集或其他集合,这两个集合有先后次序,从A 到B 的映射与从B 到A 的映射是截然不同的.(2)原象和象是不能互换的,互换后就不是原来的映射了.(3)映射包括集合A 和集合B ,以及集合A 到B 的对应法则f ,三者缺一不可.(4)对于一个从集合A 到集合B 的映射来说,A 中的每一个元素必有惟一的,但B 中的每一个元素都不一定都有原象.如有,也不一定只有一个.2.一一映射一般地,设A 、B 是两个集合,.:B A f →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么个这个映射叫做A 到B 上的一一映射.3.逆映射如果f 是A 与B 之间的一一对应,那么可得B 到A 的一个映射g :任给B b ∈,规定 a b g =)(,其中a 是b 在f 下的原象,称这个映射g 是f 的逆映射,并将g 记为f —1.显然有(f —1)—1= f ,即如果f 是A 与B 之间的一一对应,则f —1是B 与A 之间的一一对应,并且f —1的逆映射是f .事实上,f —1是B 到A 的映射,对于B 中的不同元素b 1和b 2,由于它们在f 下的原象不同,所以b 1和b 2在f —1下的像不同,所以f —1是1-1的. 任给b a f A a =∈)(,设,则a b f=-)(1.这说明A 中每个元素a 在f —1都有原象.因此,f —1是映射上的.这样即得f —1是B 到A 上的1-1映射,即f —1是B 与A 之间一一对应.从而f —1有逆映射.:B A h →由于任给b a h A a =∈)(,设,其中b 是a 在f —1下的原象,即f —1(b)=a ,所以,f(a)=b ,从而f h a f b a h ===得),()(,这即是f —1的逆映射是f .赛题精讲Ⅰ映射关映射的高中数学竞赛题是常见题型之一,请看下述试题.例1:设集合},,,,|),,,{(},,110|{M d c b a d c b a F x x x M ∈=∈≤≤=集合Z 映射f :F →Z.使得v u y x v x y u y x v u cd ab d c b a ff f ,,,,66),,,(,39),,,(.),,,(求已知→→-→的值.【思路分析】应从cd ab d c b a f -→),,,(入手,列方程组来解之.【略解】由f 的定义和已知数据,得 ⎩⎨⎧∈=-=-).,,,(66,39M y x v u xv uy xy uv 将两式相加,相减并分别分解因式,得.27))((,105))((=+-=-+x u v y x u v y显然,},110|{,,,,0,0Z ∈≤≤∈≥-≥-x x x v u y x v y x u 在的条件下,,110≤-≤v u ,21)(,15)(,105|)(,2210,221]11105[21=+=++≤+≤≤+≤+v y v y v y v y v y 可见但即 对应可知.5)(,7)(21=-=-x u x u 同理,由.9)(,3)(223,221]1127[,11021=+=+≤+≤≤+≤+≤-≤x u x u x u x u v y 又有知 对应地,.3)(,9)(21=-=-v y v y 于是有以下两种可能: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+;3,9,7,15v y x u x u x y (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y 由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围.因此,(Ⅱ)无解.【评述】在解此类问题时,估计x u v y x u v y +--+,,,的可能值是关键,其中,对它们的取值范围的讨论十分重要.例2:已知集合}.0|),{(}333|),{(><<=x y y x x y y x A 和集合求一个A 与B 的一一对应f ,并写出其逆映射.图Ⅰ-1-2-1【略解】从已知集合A ,B 看出,它们分别是坐标平面上两直线所夹角形区域内的点的集合(如图Ⅰ-1-2-1).集合A 为直线x y x y 333==和所夹角内点的集合,集合B 则是第一、三象限内点的集合.所要求的对应实际上可使A 区域拓展成B 区域,并要没有“折叠”与“漏洞”.先用极坐标表示集合A 和B :},36,,0|)sin ,cos {(πθπρρθρθρ<<∈≠=R A }.20,,0|)sin ,cos {(πϕρρϕρϕρ<<∈≠=R B令).6(3),sin ,cos ()sin ,cos (πθϕϕρϕρθρθρ-=→f 在这个映射下,极径ρ没有改变,辐角之间是一次函数23πθϕ-=,因而ϕθ和之间是一一对应,其中),3,6(ππθ∈ ).2,0(πϕ∈所以,映射f 是A 与B 的一一对应. 逆映射极易写,从略.【评述】本题中将下角坐标问题化为极坐标问题,颇具特色.应注意理解掌握.Ⅱ映射法应用映射知识往往能巧妙地解决有关集合的一些问题.例3:设X={1,2,…,100},对X 的任一非空子集M ,M 中的最大数与最小数的和称为M 的特征,记为).(M m 求X 的所有非空子集的特征的平均数.【略解】设.}|101{,:,X A a a A A A f X A ≠≠⊂∈-=''→⊂令 于是A A f '→:是X 的非空子集的全体(子集组成的集),Y 到X 自身的满射,记X 的非空子集为A 1,A 2,…,A n (其中n=2100-1),则特征的平均数为.))()((21)(111∑∑=='+=ni i i n i i A m A m n A m n 由于A 中的最大数与A ′中的最小数的和为101,A 中最小数与A ′中的最大数的和也为101,故,202)()(='i i A m A m 从而特征平均数为 .10120221=⋅⋅n n如果A ,B 都是有限集合,它们的元素个数分别记为).(),(B card A card 对于映射B A f →:来说,如果f 是单射,则有)()(B card A card ≤;如果f 是满射,则有)()(B card A card ≥;如果f 是双射,则有)()(B card A card =.这在计算集合A 的元素的个数时,有着重要的应用.即当)(A card 比较难求时,我们就找另一个集合B ,建立一一对应B A f →:,把B 的个数数清,就有)()(B card A card =.这是我们解某些题时常用的方法.请看下述两例.例4:把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平等四边形的个数.【略解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形.把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接 B ′C ′.将A ′B ′的n 条平行线分别延长,与B ′C ′相交,连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},}.21|),,,{(+≤<<<≤=n l k j i l k j i B把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射:B A f →:. 下面我们证明f 是A 与B 的一一对应,事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同.所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组21),,,,(+≤<<<≤n l k j i l k j i ,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有.)()(42+==n C B card A card加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C 例5:在一个6×6的棋盘上,已经摆好了一些1×2的骨牌,每一个骨牌都恰好覆盖两上相邻的格子,证明:如果还有14个格子没有被覆盖,则至少能再放进一个骨牌.【思路分析】还有14个空格,说明已经摆好了11块骨牌,如果已经摆好的骨牌是12块,图Ⅰ-1-2-3所示的摆法就说明不能再放入骨牌.所以,有14个空格这一条件是完全必要的.我们要证明当还有14个空格时,能再放入一个骨牌,只要能证明必有两个相邻的空格就够了.如果这种 情况不发生,则每个空格的四周都有骨牌,由于正方形是对称的,当我们选定一个方向时,空格和骨牌就有了某种对应关系,即可建立空格到骨牌的一种映射,通过对空格集合与骨牌集合之间的数量关系,可以得到空格分布的一个很有趣的结论,从而也就证明了我们的命题.【略解】我们考虑下面5×6个方格中的空.如果棋盘第一行(即最上方的一行)中的空格数多于3个时,则必有两空格相邻,这时问题就得到解决.现设第一行中的空格数最多是3个,则有11314)(=-≥X card ,另一方面全部的骨牌数为11,即.11)(=Y card 所以必有),()(Y card X card =事实上这是一个一一映射,这时,将发生一个很有趣的现象:最下面一行全是空格,当然可以放入一个骨牌.【评述】这个题目的证明是颇具有特色的,从内容上讲,这个题目具有一定的综合性,既有覆盖与结构,又有计数与映射,尤其是利用映射来计数,在数学竞赛中还较少见.当然这个题目也可以用其他的方法来解决.例如,用抽屉原则以及用分组的方法来讨论其中两行的结构,也能比较容易地解决这个问题,请读者作为练习.例6:设N={1,2,3,…},论证是否存一个函数N N f →:使得2)1(=f ,n n f n f f +=)())((对一切N ∈n 成立,)1()(+<n f n f 格,即除去第一行后的方格中的空格.对每一个这样的空格,考察它上方的与之相邻的方格中的情况.(1)如果上方的这个方格是空格,则问题得到解决.(2)如果上方的这个方格被骨牌所占,这又有三种情况.(i )骨牌是横放的,且与之相邻的下方的另一个方格也是空格,则这时有两空格相邻,即问题得到解决;(ii )骨牌是横放的,与之相邻的下方的另一个方格不是空格,即被骨牌所覆盖;(iii )骨牌是竖放的.现在假设仅发生(2)中的(ii )和(iii )时,我们记X 为下面5×6个方格中的空格集合,Y 为上面5×6个方格中的骨牌集合,作映射Y X →:ϕ,由于每个空格(X 中的)上方都有骨牌(Y 中的),且不同的空格对应于不同的骨牌.所以,这个映射是单射,于是有 )()(Y card X card ≤,对一切N ∈n 成立.【解法1】存在,首先有一条链.1→2→3→5→8→13→21→… ①链上每一个数n 的后继是)(n f ,f 满足n n f n f f +=)())(( ②即每个数是它产面两个数的和,这种链称为f 链.对于①中的数m>n ,由①递增易知有n m n f m f -≥-)()( ③我们证明自然数集N 可以分析为若干条f 链,并且对任意自然数m>n ,③成立(从而)()1(n f n f >+),并且每两条链无公共元素).方法是用归纳法构造链(参见单壿著《数学竞赛研究教程》江苏教育出版社)设已有若干条f 链,满足③,而k+1是第一个不在已有链中出现的数,定义1)()1(+=+k f k f ④这链中其余的数由②逐一确定.对于m>n ,如果m 、n 同属于新链,③显然成立,设m 、n 中恰有一个属于新链.若m 属于新链,在m=k+1时,,1)(1)()()(n m n k n f k f n f m f -=+-≥-+=-设对于m ,③成立,则n m f m n m n f m m f n f m f f -≥+-≥-+=-)()()()())(([由②易知)(2m f m ≥]. 即对新链上一切m ,③成立.若n 属于新链,在n=k+1时,.11)()()()(n m k m k f m f n f m f -=--≥--=-设对于n ,③成立,在m>n 时,m 不为原有链的链首。

映射的前置后置知识点

映射的前置后置知识点

映射的前置后置知识点1. 映射的概念呀,前置知识点那肯定得有对应关系啦!比如说,地图就是地点和图形的一种映射呀,你看地图上的每个标志不就对应着实际中的一个地方吗?后置知识点呢,就是不同映射之间的转换啦。

就像你从一幅地图转换到另一幅,中间就涉及到映射的转换呀!2. 对于映射,那前置知识点包括元素的一一对应呢!想想看,一组数字和另一组数字按照某种规则对应,这不是很神奇吗?而它的后置知识点就是复杂映射的组合呀,就好像把多个简单映射叠加起来形成一个更复杂的。

比如说多个函数映射组合在一起处理数据,这不就很有趣嘛!3. 前置知识点还有定义域和值域呀!哎呀呀,这就像一场旅行的起点和终点一样。

比如从班级的同学到他们的成绩,这就是定义域和值域的映射呢!后置知识点就是反函数呀,这不就是对映射的一种“逆反”操作嘛。

就好比你顺着路走过去,再倒着走回来一样,多有意思呀!4. 映射的前置知识点之一是变换呀,这就如同给一个东西来了个大变身!像图形的平移、旋转就是一种映射变换呢。

后置知识点则是函数的性质,这可关系到映射的各种特点哦。

比如一个函数是单调递增还是递减,不就决定了映射的趋势嘛!5. 前置知识点里有图像呀,通过图像你可以直观看到映射的样子。

比如心电图,那就是心脏活动对时间的映射呀!后置知识点是映射的拓展应用呀,像计算机图形学里用映射来创造各种酷炫的效果,多神奇呀!6. 还有映射的类型也是前置知识点哟!比如一对一映射、多对一映射等。

这就像不同种类的美食,各有各的特色呢!后置知识点就是映射在实际生活中的广泛应用。

像是物流中的货物分配,不就是一种映射吗?这多重要呀,没有它好多事情都没法运转啦!我觉得映射真的好神奇呀,有着无穷无尽的奥秘等我们去探索呢!。

高一数学映射人教版知识精讲

高一数学映射人教版知识精讲

高一数学映射人教版【同步教育信息】一. 本周教学内容:映射二. 学习目标:1. 了解映射的概念,了解象、原象的概念。

2. 了解一一映射的概念。

三. 知识讲解:1. 映射的概念:设A 、B 是两个集合,如果按照某种对应的法则,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,则这样的对应叫做集合A 到集合B 的映射,记作:B A f →:。

映射是由集合A 、B 及从A 到B 的对应法则f 确定的,取元的任意性和成象的惟一性刻划了映射的本质属性,即集合A 中的任一元素在集合B 中都有惟一的象。

2. 一一映射:设A 、B 是两个集合,B A f →:是集合A 到B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射B A f →:叫做从A 到B 上的一一映射。

一一映射是一种特殊的映射,它要求对A 中的不同元素,在集合B 中有不同的象;并且集合B 中的每一个元素在集合A 中都有原象。

【典型例题】[例1] 已知B A f →:是集合A 到集合B 的一个映射,B b ∈,则以下列命题的个数是( )。

(1)存在A a ∈,B c ∈,且c b ≠,使得b a f =)(,且C a f =)(;(2)存在A a ∈,使B a f ∉)(;(3)有且仅有A a ∈,使b a f =)(;(4)至少有一个A a ∈,使b a f =)(。

A. 1个B. 2个C. 3个D. 4个解:依据映射的定义逐个进行判断,(1)不符合映射概念中象的惟一性;(2)不符合映射概念中取元的任意性,即A 中的任何一个元素在B 中都有象;(3)映射的概念中允许B 中元素没有原象或B 中一个元素同时有多个原象,故(3)也是假命题,(4)B 中元素可以在A 中无原象,故(4)也是假命题,因此本题给出的四个命题都是假命题,应选D 。

[例2] 已知集合A 到集体}1,21,0,1{-=B 的映射112-→x x f :,那么集合A 中的元素最多是几个,并求出此时的集合A 。

函数映射及其类型

函数映射及其类型

函数映射及其类型函数映射是数学中的重要概念,在各个领域中都有广泛的应用。

函数映射是指从一个集合到另一个集合的规则,它将每个元素从第一个集合映射到第二个集合中的唯一对应元素。

本文将介绍函数映射的基本概念、性质以及常见的函数映射类型。

一、函数映射的基本概念函数映射可以形式化地表示为f:A→B,其中A为定义域,B为值域。

对于每个a∈A,都存在唯一的b∈B与之相对应。

例如,考虑一个函数映射f:自然数→整数,对于每个自然数n,它可以映射到整数n的相反数。

这意味着函数映射对于每个输入都有唯一的输出。

二、函数映射的性质1. 单射性:如果每个不同的元素a在函数映射f下都有不同的对应元素b,则该函数映射为单射。

也就是说,对于不同的a和a'∈A,当且仅当f(a)≠f(a')时,a≠a'。

单射函数映射又称为一对一映射。

2. 满射性:如果函数映射f的值域B等于目标集合B,即对于每个b∈B,存在一个元素a∈A,使得f(a)=b,那么该函数映射为满射。

满射函数映射又称为映满函数或上满函数。

3. 双射性:若一个函数映射既是单射又是满射,则称其为双射函数映射。

双射函数映射是一种一一对应的映射关系,它要求函数映射既满足每个不同的元素都有不同的对应元素,也满足每个目标元素都有对应的原始元素。

三、常见的函数映射类型1. 线性函数映射:线性函数映射是指满足线性性质的函数映射。

对于实数域上的线性函数映射f(x)=ax+b,其中a和b为常数,a不等于零。

线性函数映射在经济学、物理学等领域中有广泛的应用,用于描述两个变量之间的线性关系。

2. 复合函数映射:复合函数映射是指将一个函数映射的输出作为另一个函数映射的输入,从而得到一个新的函数映射。

例如,给定两个函数映射f(x)和g(x),我们可以定义一个新的函数映射h(x)=f(g(x))。

复合函数映射在计算机科学、数学建模等领域中有广泛应用。

3. 反函数映射:反函数映射是指满足特定条件的函数映射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

映射基础知识
一、映射
1.映射概念
定义设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素
x,按法则f,在Y中有唯一确定的元素y与之对应,么称f为从X到Y的映射, 记作
f:x→y,
其中y称为元素x(在映射/下)的像,并记作f(x),即
y=f(x),
而元素x称为元素y(在映射f下)的一个原像;集合X称为映射f的定义域,记
作D,即D=X;X中所有元素的像所组成的集合称为映射f的值域,记作R或
f(X),即
R=f(X)=f(x)lx∈X
从上述映射的定义中,需要注意的是:
(1)构成一个映射必须具备以下三个要素:集合X,即定义域D=X;集合
Y,即值域的范围:R,Cy;对应法则f,使对每个x∈X,有唯一确定的y=
f(x)与之对应
(2)对每个x∈X,元素x的像y是唯一的;而对每个y∈R,元素y的原像不
一定是唯一的;映射f的值域R是Y的一个子集,即Rcy,不一定R=y
2.逆映射与复合映射
设f是X到Y的单射,则由定义,对每个y∈R,有唯一的x∈X,适合
f(x)=y.于是,我们可定义一个从R到X的新映射g,即
g:R→X,
对每个y∈R,规定g(y)=x,这x满足f(x)=y个映射g称为f的逆映射,记作f, 其定义域D=R,值域R=X.
按上述定义,只有单射才存在逆映射.所以在例1、例2、例3中,只有例3
中的映射f才存在逆映射f,这个就是反正弦函数的主值
f'(x)=arcsin x, x [-1 1],
其定义域D=[-1,1],值域R=-
设有两个映射
g:X→y1, f:2→z,
其中Y1CY2,则由映射g和f可以定出一个从X到Z的对应法则,它将每个
x∈X映成fg(x)]∈Z.显然,这个对应法则确定了一个从X到Z的映射,这个
映射称为映射g和f构成的复合映射,记作fg,即
fg:→z,(fg)(x)=fg(x)],x∈X.
由复合映射的定义可知,映射g和f构成复合映射的条件是:g的值域R必
须包含在f的定义域内,即RCD否则,不能构成复合映射.由此可以知道,映
射g和f的复合是有顺序的,fg有意义并不表示gf也有意义即使
fg与gf都有意义,复合映射fg与gf也未必相同。

相关文档
最新文档