2019年华二自招数学试卷答案

合集下载

上海市华东师范大学第二附属中学2019-2020学年高二上学期10月月考数学试题(原卷+解析版)

上海市华东师范大学第二附属中学2019-2020学年高二上学期10月月考数学试题(原卷+解析版)
对③,给定单位向量 和正数 ,不一定存在单位向量 和实数 ,使 ,故③错误;
对④,当 , 时,不总存在单位向量 和单位向量 ,使 ,故④错误.
故答案为:①②.
【点睛】本题考查的知识点是平面向量的基本定理和应用,注意运用向量的加减运算性质和单位向量的概念,难度中档.
12.已知 内一点 是其外心, ,且 ,则 的最大值为________.
10.已知边长为1 正八边形的8个顶点依次为 、 、 、 、 、 、 、 ,点 为该八边形边上的动点,则 的取值范围是________.
【答案】
【解析】
【分析】
如图所示,根据向量数量积的几何意义知,当点 在 位置时, 取得最小值,当点 在 位置时, 取得最大值,建立直角坐标,利用向量的坐标运算,即可得答案.
【答案】
【解析】
【分析】
利用向量的数量积大于0,且向量不共线,得到关于 的不等式,解不等式即可得答案.
【详解】∵ 与 的夹角为锐本题考查向量夹角的计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意把向量共线的情况去掉,才不会出现错解.
②存在 为第二象限角,角 为第四象限角;
则下列选项中,正确的是()
A. ①正确②正确B. ①正确②错误C. ①错误②正确D. ①错误②错误
三.解答题
17.在△ 中,三个内角 、 、 所对 边分别为 、 、 .
(1)若 , ,求△ 面积的最大值;
(2)若 ,试判断△ 的形状,并说明理由.
18.已知 ( )
【详解】设 ,则 ,∴ ,
∴ ,
∴ .
故答案为: .
【点睛】本题考查三角形的重心坐标公式、向量模的求解,考查运算求解能力,属于基础题.

华二初中自招培优讲义之自主招生考试数学试题

华二初中自招培优讲义之自主招生考试数学试题

自主招生考试数学试题一、选择题(每小题3分)1、已知81cos sin =⋅αα,且︒<<︒9045α,则ααsin cos -的值为( ) A. 23 B. 23- C. 43 D. 23± 2、若c b a ,,为正数,已知关于x 的一元二次方程02=++c bx ax 有两个相等的实根,则方程()()01212=+++++c x b x a 的根的情况是( )A.没有实根B.有两个相等的实根C.有两个不等的实根D.根的情况不确定3、已知半径为1和2的两个圆外切与点P ,则点P 到两圆外公切线的距离为( )A. 43B. 34C. 23 D. 3 4、下图的长方体是由A ,B ,C ,D 四个选项中所示的四个几何体拼接而成的,而且这四个几何体都是由4个同样大小的小正方体组成的,那么长方体中,第四部分所对应的几何体应是( )二、填空题(每小题4分)5、某次数学测验共有20题,每题答对得5分,不答得0分,答错得-2分,若小丽这次测验得分是质数,则小丽这次最多答对 题6、已知⊙O 的直径AB=20,弦CD 交AB 于G ,AG>BG ,CD=16,AE ⊥CD 于E ,BF ⊥CD 于F ,则 AE -BF=7、如图,两个反比例函数x k y 1=和xk y 2=在第一象限内的图像依次是1C 和2C ,设点P 在1C 上,PC ⊥x 轴于点C ,交2C 于点A ,PD ⊥x 轴于点D ,交2C 于点B ,则四边形PAOB 的面积为8、若二次方程组⎪⎩⎪⎨⎧+-==-1)2(122x k y y x 有唯一解,则k 的所有可能取值为 9、设正△ABC 的边长为2,M 是AB 中点,P 是BC 边上任意一点,PA+PM 的最大值和最小值分别为s 和t ,则22t s -=10、在△ABC 中, AC=2011,BC=2010,AB=20112010+,则C A cos sin ⋅=11、已知c b a ,,为实数,且514131=+=+=+c a ac c b bc b a ab ,,,则=++cabc ab abc 12、已知Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y =上,且斜边AB 平行于x 轴,设斜边上的高为h ,则h 的取值为13、方程xx x 222=-的正根个数为 14、已知,124=+=+ab n b a ,,若221914919b ab a ++的值为2011,则n=15、任意选择一个三位正整数,其中恰好为2的幂的概率为16、勾股定理有着悠久的历史,它曾引起很多人的兴趣。

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019年高校自主招生考试数学真题分类Word版含解析精心整理(打包9套真题)

2019《名校自主招生》——高校自主招生考试数学真题专题试卷分类解析精心整理打包9套下载含详细答案目录2019年《高校自主招生考试》数学真题分类解析之1、不等式2019年《高校自主招生考试》数学真题分类解析之2、复数、平面向量2019年《高校自主招生考试》数学真题分类解析之3、三角函数2019年《高校自主招生考试》数学真题分类解析之4、创新与综合题2019年《高校自主招生考试》数学真题分类解析之5、概率2019年《高校自主招生考试》数学真题分类解析之6、数列与极限2019年《高校自主招生考试》数学真题分类解析之7、解析几何2019年《高校自主招生考试》数学真题分类解析之8、平面几何2019年《高校自主招生考试》数学真题分类解析之9、排列、组合与二项式定理2019年《高校自主招生考试》数学真题分类解析之专题之1、不等式一、选择题。

1.(2017年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-错误!未找到引用源。

,错误!未找到引用源。

)D.不能确定2.(2018年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-错误!未找到引用源。

B.-错误!未找到引用源。

C.-错误!未找到引用源。

D.-错误!未找到引用源。

3.(2018年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=错误!未找到引用源。

称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( )A.k≥1B.k≤2C.k=2D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+错误!未找到引用源。

华二自招练习题(6)---内部资料

华二自招练习题(6)---内部资料

练习六1、如图,在三角形ABC 中,以BC 为直径的半圆分别于AC AB .相交于E D .两点,若4==EC DE ,516=-BD BC ,求BC AD BD -。

2、设二次函数))((21x x x x a y --=(常数21,0x x a ≠≠)的图像与一次函数e dx y +=2(常数e d ,0≠待定)的图像交于点)0,(1x 。

若函数21y y y +=的图像与x 轴仅有一个交点,求12x x -。

3、在菱形ABCD 中,3,120==∠AB ABC ο,E 为边BC 延长线上一点,AE 与CD 交于F 。

联结BF 并延长,与DE 交于G ,求线段BG 长的最大值。

4、如图,在ABC Rt ∆中,AC AB A ==∠,90ο,N M .分别为AC AB .中点,D 为线段MN 上任意一点(D 与MN 不重合),CD BD .的延长线分别于AB AC .交于E F .若4311=+CF BE ,求BC .5、从货轮上卸下若干只箱子,其总重量为10吨,每只箱子重量不超过1吨,为了保证能把这些箱子一次性运走,问:至少需要多少辆载重量为3吨的汽车?6、若d c b a ...是和为3的正实数,证明:22222)(11111abcd d c b a ≤+++。

7、在ABC ∆中,D 是AB 边上一点(D 不和B A .重合),满足2)(BCCD AB AD =,求证:ACB ADC ∆∆∽.8、在ABC Rt ∆中,ο90,=∠=BAC AC AB ,BD 为中线,BD AE ⊥,求证:EC BE 2=.9、已知正方形ABCD ,BD BE =,BD CE //,BE 与CD 交于F ,证明:DF DE =.10.11.12. 方程032=+-a ax x 的两根βα,满足244233βαβαβα+≥+,求实数a 的取值范围。

13.已知圆O的两弦CD∆的外接圆为圆1O,过E作圆1O的切线交CB AB.交于点E,M为AB中点,DEM于F,交CA的延长线与G,求证:GFGE=.14.在一次共有10位选手参加的国际象棋比赛中,每位选手都必须与其他选手恰好对弈一局,经过数局比赛后,发现任意三位选手之间都至少有两位尚未对弈,问截至此时,此比赛最多已赛过多少局?15.如图,在直角坐标系中,存在一等腰三角形ABC,抛物线1=xy与三角形的腰BCx2022+-AC,(也可能交于AB边)分别交于FE.两点,点P在三角形内的抛物线上移动(可到FE.点),若已知AB,求PC=OC32=,3+的最小值。

华二初中自招培优讲义之自招真题试卷

华二初中自招培优讲义之自招真题试卷

自主招生数学试题5一、选择题(每小题6分,共计36分) 1、方程2681x x -+=实根的个数为( )A 、1个B 、2个C 、3个D 、4个2、某班进行一次标准化测试,试卷由25道选择题组成,每题答对得4分,不答得0分,答错扣1分,那么下列分数中不可能的是( )A 、95B 、89C 、79D 、75 3、已知二次函数2y ax bx c =++的图象如图所示,则下列6个代数式:ab 、ac 、a b c ++、a b c -+、2a b +、2a b -,其值为正的式子的个数是( )A 、2个B 、3个C 、4个D 、5个4、两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是:1p ,而在另一个瓶子中是:1q ,若把两瓶溶液混合一起,混合液中的酒精与水的容积之比是( )A 、2p q +B 、22p q p q++ C 、2pq p q + D 、22p q pq p q ++++ 5、已知直角三角形有一条直角边的长是质数n ,另外两条边长是两个自然数,那么它的周长是( )A 、21n +B 、21n -C 、2n n +D 、2n n - 6、如图,ABC ∆中,AB AC =,40A ∠=,延长AC 到D ,使CD B C =,点P 是ABD∆的内心,则BPC ∠=( )A 、145B 、135C 、120D 、105二、填空题(共6小题,每题6分,共36分)7、设直线(1)10kx k y ++-=与坐标轴所构成的直角三角形的面积是k S ,则122008...___________S S S +++=。

8、已知方程121011x x x x m -+-+-+-=无解,则实数m 的取值范围___________。

9、已知11x x -=,则242____________20071x x x =++。

10、如图,电路中有4个电阻和一个电流表A ,若没有电流通过电流表A ,问电阻器断路的可能情况共有______________种。

上海市华东师范大学第二附属中学2019年5月高三模拟数学试卷(解析版)

上海市华东师范大学第二附属中学2019年5月高三模拟数学试卷(解析版)

2019年上海市浦东新区华师大二附中高考数学模拟试卷(5月份)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

一.填空题1.(3分)若复数z满足1+2i,则z等于.2.(3分)计算:3.(3分)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则x2+y2=.4.(3分)关于x,y的二元一次方程的增广矩阵为.若D x=5,则实数m=.5.(3分)已知实数x、y满足不等式组,则的取值范围是6.(3分)在展开式中,含x的负整数指数幂的项共有项.7.(3分)一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为.8.(3分)连续投骰子两次得到的点数分别为m,n,作向量(m,n),则与(1,﹣1)的夹角成为直角三角形内角的概率是.9.(3分)已知集合A={(x,y)||x﹣a|+|y﹣1|≤1},B={(x,y)|(x﹣1)2+(y﹣1)2≤1},若A∩B ≠∅,则实数a的取值范围为.10.(3分)在△ABC中,BC,AC=1,以AB为边作等腰直角三角形ABD(B为直角顶点,C、D两点在直线AB的两侧).当∠C变化时,线段CD长的最大值为.11.(3分)如图,B是AC的中点,,P是平行四边形BCDE内(含边界)的一点,且,.有以下结论:①当x=0时,y∈[2,3];②当P是线段CE的中点时,,;③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;④x﹣y的最大值为﹣1;其中你认为正确的所有结论的序号为.12.(3分)对任意实数x和任意,,恒有,则实数a的取值范围为.二.选择题13.(3分)设集合A={x|x2﹣5x+4<0},B={x||x﹣a|<1},则“a∈(2,3)”是“B⊆A”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(3分)实数a,b满足a•b>0且a≠b,由a、b、、按一定顺序构成的数列()A.可能是等差数列,也可能是等比数列B.可能是等差数列,但不可能是等比数列C.不可能是等差数列,但可能是等比数列D.不可能是等差数列,也不可能是等比数列15.(3分)已知双曲线1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1 B.C.2 D.316.(3分)若函数f(x)满足:f(|x|)=|f(x)|,则称f(x)为“对等函数”,给出以下三个命题:①定义域为R的“对等函数”,其图象一定过原点;②两个定义域相同的“对等函数”的乘积一定是“对等函数”;③若定义域是D的函数y=f(x)是“对等函数”,则{y|y=f(x),x∈D}⊆{y|y≥0};在上述命题中,真命题的个数是()A.0 B.1 C.2 D.3三.解答题17.在△ABC中,角A,B,C所对的边分别为a,b,c.若b=4,•8.(1)求a2+c2的值;(2)求函数f(B)sin B cos B+cos2B的值域.18.如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.19.某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?20.已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.(I)求抛物线G的方程;(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.21.已知数列{a n}是以d为公差的等差数列,{b n}数列是以q为公比的等比数列.(Ⅰ)若数列的前n项和为S n,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整数q的值;(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项b k,使得b k恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;(Ⅲ)若b1=a r,b2=a s≠a r,b3=a t(其中t>s>r,且(s﹣r)是(t﹣r)的约数),求证:数列{b n}中每一项都是数列{a n}中的项.2019年上海市浦东新区华师大二附中高考数学模拟试卷(5月份)参考答案与解析一.填空题1.【解答】解:∵iz+i∴iz+i=﹣1+2i∴z=1+i故答案为:1+i.2.【解答】解:;∴.故答案为:.3.【解答】解:由题意可得:x+y=20,(x﹣10)2+(y﹣10)2=8,解得则x2+y2=208,故答案为:208.4.【解答】解:由题意,D x5,∴m=﹣2,故答案为﹣2.5.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).的几何意义为阴影部分的动点(x,y)到定点P(﹣1,1)连线的斜率的取值范围.由图象可知当点与OB平行时,直线的斜率最大,当点位于A时,直线的斜率最小,由A(1,0),∴OB的斜率k=1AP的斜率k,∴w≤1.则的取值范围是:,.故答案为:,.6.【解答】解:展开式的通项为其中r=0,1,2 (10)要使x的指数为负整数有r=4,6,8,10故含x的负整数指数幂的项共有4项故答案为:47.【解答】解:设圆柱的高为:2,由题意圆柱的侧面积为:2×2π=4π圆柱的体积为:2π12=2π球的表面积为:4π,球的半径为:1;球的体积为:所以这个圆柱的体积与这个球的体积之比为:故答案为:8.【解答】解:由题意知本题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴(m,n)与(1,﹣1)不可能同向.∴夹角θ≠0.∵θ∈(0,]•0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P.故答案为:9.【解答】解:分别画出集合A={(x,y)||x﹣a|+|y﹣1|≤1},B={(x,y)|(x﹣1)2+(y﹣1)2≤1},表示的平面图形,集合A表示是一个正方形,集合B表示一个圆.如图所示.其中A(a+1,1),B(a﹣1,1),欲使得A∩B≠∅,只须A或B点在圆内即可,∴(a+1﹣1)2+(1﹣1)2≤1或(a﹣1﹣1)2+(1﹣1)2≤1,解得:﹣1≤a≤1或1≤a≤3,即﹣1≤a≤3.故答案为:[﹣1,3].10.【解答】解:如右图:∵AB=BD,∴在△ABC中,由正弦定理得,∴BD sin∠ABC=sin∠ACB,在△BCD中,CD2=BD2+BC2﹣2BD•BC cos(90°+∠ABC)=AB2+2+2BD sin∠ABC=AC2+BC2﹣2AC•BC cos∠ACB+2+2sin∠ACB=5﹣2cos∠ACB+2sin∠ACB=5+4sin(∠ACB﹣45°),∴当∠ACB=135°时CD2最大为9,CD最大值为3,故答案为:3.11.【解答】解:对于①当,据共线向量的充要条件得到P在线段BE上,故1≤y≤3,故①错对于②当当P是线段CE的中点时,故②对对于③x+y为定值1时,A,B,P三点共线,又P是平行四边形BCDE内(含边界)的一点,故P的轨迹是线段,故③对故答案为②③④12.【解答】解:原不等式等价于(3+2sinθcosθ﹣a sinθ﹣a cosθ)2,θ∈[0,]①,由①得a②,或a③,在②中,,(sinθ+cosθ),显然当1≤x时,f(x)=x为减函数,从而上式最大值为f(1)=1,由此可得a;在③中,(sinθ+cosθ),当且仅当sinθ+cosθ时取等号,所以的最小值为,由此可得a,综上,a或a.故答案为:a或a.二.选择题13.【解答】解:根据题意,集合A={x|x2﹣5x+4<0}={x|1<x<4}=(1,4),B={x||x﹣a|<1}=(a﹣1,a+1),若“a∈(2,3)”,可得1<a﹣1<2,3<a+1<4,必有“B⊆A”,若“B⊆A”,则有,解可得2≤a≤3,“a∈(2,3)”不一定成立;则“a∈(2,3)”是“B⊆A”的充分不必要条件;故选:A.14.【解答】解:(1)若a>b>0则有a>>>b若能构成等差数列,则a+b,得2,解得a=b(舍),即此时无法构成等差数列若能构成等比数列,则a•b•,得2,解得a=b(舍),即此时无法构成等比数列(2)若b<a<0,则有>a>>b若能构成等差数列,则b=a,得23a﹣b4ab=9a2﹣6ab+b2得b=9a,或b=a(舍)当b=9a时这四个数为﹣3a,a,5a,9a,成等差数列.于是b=9a<0,满足题意但此时•b<0,a•>0,不可能相等,故仍无法构成等数列故选:B.15.【解答】解:∵双曲线,∴双曲线的渐近线方程是y=±x又抛物线y2=2px(p>0)的准线方程是x,故A,B两点的纵坐标分别是y=±,双曲线的离心率为2,所以,∴则,A,B两点的纵坐标分别是y=±,又,△AOB的面积为,x轴是角AOB的角平分线∴,得p=2.故选:C.16.【解答】解:①定义域为R的“对等函数”,可令x=0,即f(0)=|f(0)|,解得f(0)=0,或f(0)=1,故①错误;②两个定义域相同的“对等函数”,设y=f(x)和y=g(x)均为“对等函数”,可得f(|x|)=|f(x)|,g(|x|)=|g(x)|,设F(x)=f(x)g(x),即有F(|x|)=f(|x|)g(|x|)=|f(x)g(x)|=|F(x)|,则乘积一定是“对等函数,故②正确”;③若定义域是D的函数y=f(x)是“对等函数”,可得f(|x|)=|f(x)|,可取f(x)=x|x|,x∈R,可得x≥0时,f(x)≥0;x<0时,f(x)<0,故③错误.故选:B.三.解答题17.【解答】解:(1)∵•8,∴ac cos B=8,由余弦定理得b2=a2+c2﹣2ac cos B=a2+c2﹣16,∴a2+c2=32;(2)∵a2+c2≥2ac,∴ac≤16,∵ac cos B=8,∴cos B,∵B∈(0,π),∴0<B,∵f(B)sin B cos B+cos2B sin2B(1+cos2B)=sin(2B),∵<2B,∴sin(2B)∈[,1],则f(B)的值域为[1,].18.【解答】(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BCPB,CD∴∠cos∠COD.19.【解答】解:(1)设内环线列车的平均速度为v千米/小时,则要使内环线乘客最长候车时间为10分钟,可得∴v≥20∴要使内环线乘客最长候车时间为10分钟,内环线列车的最小平均速度是20千米/小时;(2)设内环线投入x列列车运行,则外环线投入(18﹣x)列列车运行,内、外环线乘客最长候车时间分别为t1,t2分钟,则,∴∴∴∵x∈N+,∴x=10∴当内环线投入10列列车运行,外环线投入8列列车时,内外环线乘客的最长候车时间之差不超过1分钟.20.【解答】解:(1)由题知,抛物线的准线方程为y+1=0, 1所以抛物线C的方程为x2=4y.(2)当直线AB的斜率不存在时,直线与抛物线只有一个交点,故直线AB的斜率一定存在,设直线AB方y=kx+1交抛物线C于点A(x1,y1),B(x2,y2),由抛物线定义知|AF|=y1+1,|BF|=y2+1,所以|AC|=y1,|BD|=y2,由得x2﹣4kx﹣4=0,显然△>0,则x1+x2=4k,x1•x2=﹣4,所以y1•y21,所以|AC|•|BD|为定值1.(3)解:由x2=4y,y x2,y x,得直线AM方程y x1(x﹣x1)(1),直线BM方程y x2(x﹣x2)(2),由(2)﹣(1)得(x1﹣x2)x,所以x(x1+x2)=2k,∴y=﹣1所以点M坐标为(2k,﹣1),点M到直线AB距离d2,弦AB长为|AB|4(1+k2),△ACM与△BDM面积之和,S(|AB|﹣2)•d(2+4k2)×22(1+2k2),当k=0时,即AB方程为y=1时,△ACM与△BDM面积之和最小值为2.21.【解答】解:(Ⅰ)由题意知,a n=2n,b n=2•q n﹣1,所以由S3<a1003+5b2﹣2010,可得到b1+b2+b3<a1003+5b2﹣2010⇒b1﹣4b2+b3<2006﹣2010⇒q2﹣4q+3<0.解得1<q<3,又q为整数,所以q=2;故答案为2.(Ⅱ)假设数列{b n}中存在一项b k,满足b k=b m+b m+1+b m+2++b m+p﹣1,因为b n=2n,∴b k>b m+p﹣1⇒2k>2m+p﹣1⇒k>m+p﹣1⇒k≥m+p(*)又=2m+p﹣2m<2m+p,所以k<m+p,此与(*)式矛盾.所以,这样的项b k不存在;故答案为不存在.(Ⅲ)由b1=a r,得b2=b1q=a r q=a s=a r+(s﹣r)d,则又⇒,从而,因为a s≠a r⇒b1≠b2,所以q≠1,又a r≠0,故.又t>s>r,且(s﹣r)是(t﹣r)的约数,所以q是整数,且q≥2,对于数列中任一项b i(这里只要讨论i>3的情形),有b i=a r q i﹣1=a r+a r(q i﹣1﹣1)=a r+a r(q﹣1)(1+q+q2++q i﹣2)=a r+d(s﹣r)(1+q+q2++q i﹣2)=a r+[((s﹣r)(1+q+q2++q i﹣2)+1)﹣1]•d,由于(s﹣r)(1+q+q2++q i﹣2)+1是正整数,所以b i一定是数列{a n}的项.故得证.。

上海市华东师范大学第二附属中学2019届高三年级第二学期开学考数学试卷(简略答案)

上海市华东师范大学第二附属中学2019届高三年级第二学期开学考数学试卷(简略答案)

华二附中2019届高三年级第二学期开学考数学试卷2019.03时间:120分钟;满分150分一、填空题: 1. 行列式1958的值为 2. 设集合{1,2,3,4}A =,{2,0,2}B =-,则AB =3. 已知向量{1,5,7}a =-,{2,1,5}b =,则||a b +=4. 如果复数z 满足2220z z -+=,那么||z = 5. 椭圆2221x y +=的焦距是6. 掷一颗均匀的骰子,所得点数为质数的概率是 (结果用最简分数表示)7. 若圆锥的侧面积与底面积之比为2,则其母线与轴的夹角大小为8. 从5名男教师和4名女教师中选出4人参加“组团式援疆”工作,且要求选出的4人中 男女教师都有,则不同的选取方法的种数为 (结果用数值表示)9. 若两直线1:2l y kx k =++,2:24l y x =-+的交点在第一象限,则正整数k =10. 若321()nx x -的二项式展开式中,常数项为正数,则正整数n 的最小值是 11. 已知122x x ay b++=+(,a b ∈R )既是奇函数,又是减函数,则a b +=12.已知坐标平面上的曲线Γ和直线l ,称l 为Γ的一条“基线”,若l 与Γ有且仅有一个公 共点P ,且Γ除P 之外的所有点都在l 的同侧,则下列曲线中:①arcsin y x =;②y =③211y x =+;④1y x x=-;没有“基线”的是 (写出所有符合要求的曲线编号) 二、选择题:13. 已知数列{}n a 的极限是A ,如果数列{}n b 满足66210310n n na nb a n ⎧≤=⎨>⎩,那么数列{}n b 的 极限是( )A. 3A B. 2A C. A D. 不存在14. 已知,x y ∈R ,则“1x >或1y >”是“2x y +>”的( )条件A. 充要B. 充分非必要C. 必要非充分D. 既非充分也非必要 15.《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”,则以正方体1111ABCD A B C D -的顶点为顶点的鳖臑的个数为( )A. 12 B. 24 C. 48 D. 5816. 称()y f x =(x D ∈)“有界”,若存在实数m M ≤,使得对所有x D ∈,都有()m f x M ≤≤,设1()y f x =(x ∈R )是增函数,2()y f x =(x ∈R )是周期函数,且对所有x ∈R ,1()0f x >,2()0f x >,已知12()()h f x f x =,下列命题中真命题是( )A. 若()h x 是周期函数,则1()f x 有界B. 若()h x 是周期函数,则2()f x 有界C. 若1()f x 有界,则()h x 不是周期函数D. 若2()f x 有界,则()h x 不是周期函数 三、 解答题:17. 如图,正三棱柱111ABC A B C -底面三角形的周长为6,侧棱长1AA 长为3. (1)求正三棱柱111ABC A B C -的体积; (2)求异面直线1A C 与AB 所成角的大小.18. 已知函数2()sin cos sin f x x x x =-. (1)求()f x 的最小正周期;(2)设△ABC 为锐角三角形,角A B 的对边长()0f A =,求△ABC 的面积.19. 某地自2014年至2019年每年年初统计所得的人口数量如表所示.(1)根据表中的数据计算2014年至2018年每年该地人口的增长数量,并描述该地人口数 量的变化趋势;(2)研究人员用函数0.6544450()2000 4.48781t P t e -=++拟合该地的人口数量,其中t 的单位是年,2014年初对应时刻0t =,()P t 的单位是千人,设()P t 的反函数为()T x ,求(2400)T的值(精确到0.1),并解释其实际意义.20. 设常数m ≥xOy 中,已知点F ,直线:l y m =,曲线:x Γ=0y m ≤≤),l 与y 轴交于点A ,与Γ交于点B ,P 、Q 分别是曲线Γ 与线段AB 上的动点.(1)用m 表示点B 到点F 的距离;(2)若0AP FQ ⋅=且FA FP FQ +=,求m 的值;(3)设m =P 、Q ,使得△FPQ 是等边三角形,求△FPQ 的边长.21. 已知*n ∈N 和31n +个实数1231n x x x +≤≤⋅⋅⋅≤,若有穷数列{}k a 由数列{}k x 的项重新排列而成,且下列条件同时成立:① 3n 个数1||k k a a +-,1||k n k a a ++-,21||k n k a a ++-(1k n ≤≤)两两不同;② 当1k n ≤≤时,2111||||||k n k k n k k k a a a a a a +++++->->-都成立,则称{}k a 为{}k x 的一个 “友数列”.(1)若1n =,121x x ==,32x =,43x =,写出{}k x 的全部友数列;(2)已知{}k a 是通项公式为k x k =(131k n ≤≤+)的数列{}k x 的一个友数列,且131n a x +=,求31n a +(用n 表示);(3)设2n ≥,求所有使得通项公式为kk a q =(131k n ≤≤+)的数列{}k a 不能成为任何数列{}k x 的友数列的正实数q 的个数(用n 表示).华二附中2019届高三年级第二学期开学考数学试卷参考答案2019.03 一. 填空题1. 37-2. {2}3. 134.5.6.12 7. 6π 8. 20219. 1 10. 10 11. 1- 12. ②④ 二. 选择题13. A 14. C 15. B 16. C 三. 解答题17.(1)(2)1318.(1)T π=;(2)S =19.(1)2015201453f f -=,2016201568f f -=,2017201673f f -=,2018201763f f -=,2019201846f f -=,2014年至2018年每年该地人口的增长数量呈先增后减的趋势,每一年 人口总数呈逐渐递增的趋势;(2)(2400) 5.5T =,其实际意义为:可根据数学模型预测人口数量增长规律,及提供有效依据,即经过半年时间,该地人口数量总人数即增长到2400人.20.(1)||1BF =-;(2)1m =;(3.21.(1)1、1、2、3;(2)31121n a n +≤≤-,31n a +∈*N ;(3)略.。

2019年华二高三第一学期月考数学试卷

2019年华二高三第一学期月考数学试卷

华二附中高三月考数学卷2019.12一. 填空题1. 若1lim 241n bn n →∞-=+,则b =2. 若{1,2,3}A =,{3,5}B =,用列举法表示{2|,}A B a b a A b B *=-∈∈=3. 已知2i -是实系数一元二次方程20x px q ++=的两个根,则q =4. 在61()x x+的二项展开式中,常数项的值为 5. 三阶行列式20161201924202236x中,第2行第1列元素2019的代数余子式是9,则x =6. 在边长为1的正三角形ABC 中,设2BC BD =,3CA CE =,则AD BE ⋅=7. 设无穷等比数列{}n a 的公比为q ,首项10a >,231lim()2n n a a a a →∞++⋅⋅⋅+>,则公比q 的取值范围是8. 在三棱锥D ABC -中,2AC BC ==,3CD =,CD ⊥平面ABC ,90ACB ∠=︒,若其主视图、俯视图如图所示,则其左视图的面积为9. 已知ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且BC 边上的高为a ,则b c c b +的取值范围为 10. 某校“附中杯”排球队的成员来自学校高一、高二共10个班的12位同学,其中高一(4) 班高二(4)班各出2人,其余班级各出1人,这12人中要选6人为主力队员,则这6人来 自不同班级的概率为11. 圆O 的半径为1,P 圆周上的一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为12. 已知集合[,1][4,9]A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是二. 选择题13. cos cot 0θθ>,则角θ所在的象限是( )A. 第二或第三象限B. 第一或第四象限C. 第三或第四象限D. 第一或第二象限14. 已知函数()2sin(2)6f x x π=+,把函数()f x 的图像沿x 轴向左平移6π个单位,得到 函数()g x 的图像,关于函数()g x ,下列说法正确的是( ) A. 在[,]42ππ上是增函数 B. 其图像关于直线4x π=-对称C. 函数()g x 是奇函数D. 当[0,]3x π∈时,函数的值域是[1,2]- 15. 已知n ∈N ,x ∈R ,则函数22()lim 2n n n x f x x +→∞-=-的大致图像是( )A. B. C. D.16. 已知点为椭圆221916x y +=上的任意一点,点1F 、2F 分别为该椭圆的上下焦点,设 12PF F α=∠,21PF F β=∠,则sin sin αβ+的最大值为( )A.377 B. 477 C. 89 D. 32三. 解答题17. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知6a =, 3sin 3A =,2B A π=+. (1)求b 的值;(2)求ABC 的面积.18. 如图,已知点P 在圆柱1OO 的底面圆O 上,AB 为圆O 的直径.(1)若圆柱1OO 的体积V 为12π,2OA =,120AOP ∠=︒,求异面直线1A B 与AP 所成的角(用反三角函数表示结果);(2)若圆柱1OO 的轴截面是边长为2的正方形,四面体1AA BP 外接球为球G ,求A B 、两点在球G 上球面距离.19. 已知函数2()816f x x x m =+-,9()13g x x x =+-+. (1)对于任意12,[1,1]x x ∈-,都有12()()f x g x ≤,求实数m 的取值范围; (2)对于任意1[1,1]x ∈-,总存在2[1,1]x ∈-,使得12()()g x f x =,求实数m 的取值范围.20. 已知曲线C|1|(0)ax a =->.(1)当12a =时,试确定曲线C 的形状及其焦点坐标; (2)若直线l:2y x a =-交曲线C 于点M N 、,线段MN 中点的横坐标为2-,试问 此时曲线C 上是否存在不同的两点A 、B 关于直线l 对称? (3)当a 为大于1的常数时,设11(,)P x y 是曲线C 上的一点,过点P 作一条斜率为211(1)a x y - 的直线l ,又设d 为原点到直线l 的距离,1r 、2r 分别为点P 与曲线C两焦点的距离,求证:d 是一个定值,并求出该定值.21. 数列{}n a 满足112n n n a a a +-=-对任意的2n ≥,n ∈*N 恒成立,n S 为其前n 项的和,且44a =,836S =.(1)求数列{}n a 的通项n a ;(2)数列{}n b 满足12122321213(21)2n n n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--, 其中1,2,,k n =⋅⋅⋅,n ∈*N ;① 证明:数列{}n b 为等比数列;② 求集合3{(,)|,,}p m m pa a m p m pb b =∈*N .参考答案一. 填空题1. 82. {3,1,1,3}--3. 54. 155. 56. 14-7. 2(,1)38.9. 10.193311. 22+ 12. 1或3-二. 选择题13. D 14. D 15. B 16. B三. 解答题17.(1)b =2)18.(1)arccos 5;(2)557arccos 2225π-. 19.(1)[22,)+∞;(2)[10,21.5]-.20.(1)22143y x +=,曲线C 是焦点在x 轴上的椭圆,其长半轴长为1,焦点坐标为1(,0)2±;(2)不存在;(3d =21.(1)n a n =;(2)①12n n b -=;②{(6,8)}.。

2019华东师范大学第二附属中学数学自主招生试卷

2019华东师范大学第二附属中学数学自主招生试卷
得到 1 的数有几个?(1 可重复出现)
第1页共3页
9. ABC 中,a、b、c 均为自然数且 a b c , a2 b2 c2 ab ac bc 13 ,求周长小 于 30 的 ABC 有多少个?
x, 若x为无理数
10.
f
(x)
q
1 , 若x p
q p
,
p, q
N*,
且p, q互质, q
第3页共3页
参考答案
1. a 3 , b 6 , a b 2 3 6
3
6
6
2. (a b 1)2 2c2 , | a b 1| 2 | c | , a b 1 , c 0 , a b c 1
3. a 1 , b 0 , c 1 ,答案为 0 或 2
4. 设直径为 d, (d 40)2 3d 2 13.75 240 d 20 ,边长为 60 4
,求
4x
4z
1
.
第2页共3页
14. 锐角 ABC 中,D、E 是 BC 上的点, ABC 、 ABD 、 ADC 外心为 O、P、Q, 求证:(1) APQ ∽ ABC ;(2)若 EO⊥PQ,则 QO⊥PE. 15. 函数 4x 5 y 20 与 x、y 轴相交于 A、B,l 与 AB、OA 交于 C、D 且平分 SAOB ,求 CD2 的最小值.
2019 年华二附中自招数学试卷
1.
f (x)
1x 2
x
1 3
,函数最大值为
a
,最小值为 b ,求
a
b
.
2. 有理数 a、b、c, a2 b2 1 2(c2 ab b a) ,求 a b c .
3. a 是最大负整数,b 是绝对值最小的有理数,c 的倒数是 c,求 a2017 2018b c2019 .

华二数学自主招生试题(13)---内部资料

华二数学自主招生试题(13)---内部资料

数学自主招生试题(7)一 填空题1 坐标平面上有两个圆,A B ,圆心均为(3,7)-,若圆A 与x 轴相切,圆B 与y 轴相切,则圆A 和圆B 的面积比为______2 若实数,a b 满足2222114a b a b +=+,则20172018()()______b a a b-= 3 函数|1||2||3||4||5|y x x x x x =+++++++++,当______x =时,min ______y = 4 一副中国象棋红方棋子共有16个,将它们反面朝上放在棋盘上,任取一个不是兵和帅的概率是______5 设a =,则32______a ++=6 三角形三边长为7,8,5a b c ===, 则(sin sin sin )(cot cot cot )______222A B C A B C ++++= 7 设[]x 为不大于x 的最大整数,集合21{|2[]3},{|28}8x A x x x B x =-==<<,则______A B =I8 方程6209350xy x y -++=的所有整数解为aa9 方程4230x x --+=的四个实根的平方和为______ 10 在三位数中,数字7恰好出现一次的共有______个二解答题11 设,,0a b c >,证明不等式(1)(1)(1)2(1a b c b c a +++≥+12 已知ABC V 的最短边为BC ,设,P Q 分别在线段,AB AC 上,使PCB BAC QBC ∠=∠=∠。

证明:ABC V 的外心与APQ V 的外心的连线垂直于BC13 求有序三元正整数组(,,)a b c 的个数,使得2()4abc a b c =+++14 对任意的实数[1,1]x ∈-,有2||1(0)ax bx c ac ++≤≠,求2()||x f cx bx a =++在[1,1]-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档