高考物理—法拉第电磁感应定律的推断题综合压轴题专题复习含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理—法拉第电磁感应定律的推断题综合压轴题专题复习含答案
一、法拉第电磁感应定律
1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求:
(1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R .
【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】
(1)由题意及图象可知,当0t =时刻ab 边的受力最大,为:
10.02N F BIL ==
可得:
10.02A 0.2A 1.00.1
F I BL =
==⨯ 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒:
Q W =安310.020.1J 2.010J F L -==⨯=⨯
(2) 金属框拉出的过程中产生的热量:
2Q I Rt
=
线框的电阻:
3
22
2.010Ω 1.0Ω0.20.05
Q R I t -⨯===⨯
2.如图甲所示,一个圆形线圈的匝数n =100,线圈面积S =200cm 2,线圈的电阻r =1Ω,线圈外接一个阻值R =4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。

求:
(1)线圈中的感应电流的大小和方向;
(2)电阻R两端电压及消耗的功率;
(3)前4s内通过R的电荷量。

【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。

4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。

【解析】
【详解】
(1)0﹣4s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。

4﹣6s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。

(2)0﹣4s内,R两端的电压为:
消耗的功率为:
4﹣6s内,R两端的电压为:
消耗的功率为:
故R消耗的总功率为:
(3)前4s内通过R的电荷量为:
3.如图所示,垂直于纸面的匀强磁场磁感应强度为B。

纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。

从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:
(1)拉力做功的功率P;
(2)ab边产生的焦耳热Q.
【答案】(1)P=
222
B L v
R
(2)Q=
23
4
B L v
R
【解析】
【详解】
(1)线圈中的感应电动势
E=BLv 感应电流
I=E R
拉力大小等于安培力大小
F=BIL 拉力的功率
P=Fv=
222 B L v R
(2)线圈ab边电阻
R ab=
4
R 运动时间
t=L v
ab边产生的焦耳热
Q=I2R ab t =
23 4
B L v
R
4.如图所示,电阻不计的相同的光滑弯折金属轨道MON与M O N
'''均固定在竖直平面内,二者平行且正对,间距为L=1m,构成的斜面ONN O''跟水平面夹角均为30
α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B=0.1T.t=0时,将长度也为L=1m,电阻R=0.1Ω的金属杆ab在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g=10m/s2;不计空气阻力,轨道与地面绝缘.
(1)求t=2s时杆ab产生的电动势E的大小并判断a、b两端哪端电势高
(2)在t=2s时将与ab完全相同的金属杆cd放在MOO'M'上,发现cd杆刚好能静止,求ab杆的质量m以及放上cd杆后ab杆每下滑位移s=1m回路产生的焦耳热Q
【答案】(1) 1V;a端电势高;(2) 0.1kg;0.5J
【解析】 【详解】
解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;
ab 杆加速度为:a gsin α=
2s t =时刻速度为:10m/s v at ==
ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=
(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1
E I R =
==⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg
放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热
根据能量守恒定律则有:
300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=g
5.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:
(1)金属棒Q 放上后,金属棒户的速度v 的大小;
(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.
【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】
(1)金属棒Q 恰好处于静止时
sin mg BIL θ=
由电路分析可知E BLv = ,2E
I R
= , 代入数据得,3m/s v =
(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得
00sin ()m g mg m m a θ-=+
代入数据得,22.7m/s a =
(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2
Q Q =
=总
6.如图所示,竖直平面内两竖直放置的金属导轨间距为L 1,导轨上端接有一电动势为E 、内阻不计的电源,电源旁接有一特殊开关S ,当金属棒切割磁感线时会自动断开,不切割时自动闭合;轨道内存在三个高度均为L 2的矩形匀强磁场区域,磁感应强度大小均为B ,方向如图。

一质量为m 的金属棒从ab 位置由静止开始下落,到达cd 位置前已经开始做匀速运动,棒通过cdfe 区域的过程中始终做匀速运动。

已知定值电阻和金属棒的阻值均为R ,其余电阻不计,整个过程中金属棒与导轨接触良好,重力加速度为g ,求:
(1)金属棒匀速运动的速度大小; (2)金属棒与金属导轨间的动摩擦因数μ;
(3)金属棒经过efgh 区域时定值电阻R 上产生的焦耳热。

【答案】(1) ;(2)
;(3)mgL 2。

【解析】 【分析】
(1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件结合安培力的计算公式求解;
(2)分析导体棒的受力情况,根据平衡条件结合摩擦力的计算公式求解; (3)根据功能关系结合焦耳定律求解。

【详解】
(1)金属棒到达cd 位置前已经开始做匀速运动,根据平衡条件可得:mg =BIL 1, 由于 解得:

(2)由于金属棒切割磁感线时开关会自动断开,不切割时自动闭合,则在棒通过cdfe 区域的过程中开关是闭合的,此时棒受到安培力方向垂直于轨道向里; 根据平衡条件可得:mg =μF A , 通过导体棒的电流I ′= ,则F A =BI ′L 1, 解得μ=

(3)金属棒经过efgh 区域时金属棒切割磁感线时开关自动断开,此时导体棒仍匀速运动;
根据功能关系可知产生的总的焦耳热等于克服安培力做的功,而W 克=mgL 2, 则Q 总=mgL 2,
定值电阻R 上产生的焦耳热Q R =Q 总=mgL 2。

【点睛】
对于电磁感应问题研究思路常常有两条:一条从力的角度,根据牛顿第二定律或平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解。

7.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:
(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;
(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】
(1)0-3s 内,由法拉第电磁感应定律得:
122V B
E L L t t
∆Φ∆=
==∆∆
T=1s时,F安=BIL1=0.5N方向沿斜面向上
(2)对ab棒受力分析,设F沿斜面向下,由平衡条件:F+mg sin30° -F安=0
F=-0.5N
外力F大小为0.5N.方向沿斜面向上
(3)q=It ,
E
I
R r
=
+
;E
t
∆Φ
=

;1
∆Φ=BL S
联立解得11.512
C 1.5C
1.50.5
BL S q
R r ⨯⨯
===
++
8.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R的电荷量q。

(2)对导体棒ab施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运动距离为时做匀速运动,求棒通过磁场区1所用的时间t。

(3)对导体棒ab施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab保持该匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab通过整个磁场区过程中回路产生的电热Q。

【答案】⑴;⑵;⑶
【解析】
试题分析:⑴电路中产生的感应电动势。

通过电阻的电荷量。

导体棒穿过1区过程。

解得
(2)棒匀速运动的速度为v,则
设棒在前x0/2距离运动的时间为t1,则 由动量定律:F0 t 1-BqL=mv ;解得:
设棒在后x0/2匀速运动的时间为t2,则
所以棒通过区域1所用的总时间:
(3)进入1区时拉力为,速度,则有。

解得;。

进入i 区时的拉力。

导体棒以后通过每区都以速度做匀速运动,由功能关系有
解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化
9.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.
(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22
mR
t B L 停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;
(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.
【答案】(1)22B L v
f R
=;(2)22
mvR x B L = 2Q mv =;(3)丙图正确 【解析】 【详解】
(1)根据右手定则,感应电流方向a 至b
依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A
又有F A =BI 1L ,1BLv
I R
=
联立解得:22B L v
f R
=
(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-
又有F BIL =,
BLv
I R
=,x vt = 联立得:22mvR
x B L
=
根据动能定理有:()2
1022
A fx W m v --=- 根据功能关系有:Q =W A 得:Q =mv 2 (3)丙图正确
当磁场速度小于v 时,棒ab 静止不动;
当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.
10.如图所示足够长的光滑平行金属导轨MN 、PQ 组成的平面与水平面成37°放置,导轨宽度L=1m ,一匀强磁场垂直导轨平面向下,导轨上端M 与P 之间连接阻值R=0.3Ω的电阻,质量为m=0.4kg 、电阻r=0.1Ω的金属棒ab 始终紧贴在导轨上.现使金属导轨ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图像中的OA 段为曲线,AB 段为直线,导轨电阻不计.g=10m/s 2,忽略ab 棒在运动过程中对原磁场的影响.求:
(1)磁感应强度B 的大小;
(2)金属棒ab 在开始运动的2.0s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的2.0s 内,电阻R 产生的焦耳热. 【答案】(1)0.4B T = (2)6q C = (3) 5.4R Q J = 【解析】
(1)导体棒在沿斜面方向的重力分力与安培力平衡: 得sin mg BIL θ=
导体棒切割磁感线产生的电动势为: E BLv =
由闭合电路欧姆定律知:
E
I R r
=
+ 3.66/0.6
x v m s t =
== 联立解得:0.4B T = (2)6()()()
E BsL
q It t t C R r t R r R r R r ∆Φ∆Φ==
====+∆+++ (3)由功能关系得:2
1sin 2
mgx mv Q θ=
+ 5.4R Q
Q R J R r
=
=+ 综上所述本题答案是:(1)0.4T (2)6C (3)5.4J
点睛:对于本题要从力的角度分析安培力作用下导体棒的平衡问题,列平衡方程,另外要借助于动能定理、功能关系求能量之间的关系.
11.如图1所示,MN 和PQ 为竖直放置的两根足够长的光滑平行金属导轨,两导轨间距为l ,电阻均可忽略不计.在M 和P 之间接有阻值为R 的定值电阻,导体杆ab 质量为m 、电阻不计,并与导轨接触良好.整个装置处于磁感应强度为B 、方向垂直纸面向里的匀强磁场中.将导体杆ab 由静止释放.求:
(1)a. 试定性说明ab 杆的运动;b. ab 杆下落稳定后,电阻R 上的热功率. (2)若将M 和P 之间的电阻R 改为接一电动势为E ,内阻为r 的直流电源,发现杆ab 由静止向上运动(始终未到达MP 处),如图2所示.
a. 试定性说明ab 杆的运动:
b. 杆稳定运动后,电源的输出功率.
(3)若将M 和P 之间的电阻R 改为接一电容为C 的电容器,如图3所示.ab 杆由静止释放.请推导证明杆做匀加速直线运动,并求出杆的加速度.
【答案】(1)加速度逐渐减小的变加速直线运动;P=2222m g R B l
(2)加速度逐渐减小的加速;P=mgE Bl -2222m g r B l
(3)a=22mg m B l C + 【解析】
(1)a 、对ab 杆下滑过程,由牛顿第二定律22B l v mg ma R
-=,可知随着速度的增大,加速度逐渐减小,当22B l v mg R
=时,加速度为零,杆做匀速直线运动;故杆先做加速度逐渐减小的加速,再做匀速直线运动.
b 、ab 杆稳定下滑时,做匀速直线运动:22B l v mg R
=,可得22mgR v B l = 故22222222
B l v mgR m g R P v mg R B l B l =⋅=⋅= (2)a 、对ab 杆上滑过程,由牛顿第二定律:BIL mg ma -=,上滑的速度增大,感应电流与电源提供的电流方向相反,总电流逐渐减小,故加速度逐渐减小;同样加速度为零时杆向上匀速直线运动.
B 、杆向上匀速时,BIl mg =
mg I Bl
= 电源的输出功率2P EI I r =- 解得:2()Emg mg P r Bl Bl
=- (3)设杆下滑经t ∆时间,由牛顿第二定律:mg BIl ma -=,
电容器的充电电流Q I t ∆=
∆ 电容器增加的电量为:Q C U CBL v ∆=∆=∆ 而v a t
∆=∆ 联立解得:mg B CBla l ma -⋅⋅=
可知杆下滑过程给电容器充电的过程加速度恒定不变,故为匀加速直线运动. 解得:22mg a m B l C
=+ 【点睛】对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下物体的平衡问题;另一条是能量,分析电磁感应现象中的能量如何转化是关键.
12.如图所示,导线全部为裸导线,半径为r 的圆内有垂直于平面的匀强磁场,磁感应强度为B ,一根长度大于2r 的导线MN 以速度v 在圆环上自左向右匀速滑动,电路的固定电阻为R ,其余电阻忽略不计.试求MN 从圆环的左端到右端的过程中电阻R 上的电流强度的平均值及通过的电荷量.
【答案】2Brv R π2
B r R
π 【解析】
试题分析:由于ΔΦ=B·ΔS =B·πr 2,完成这一变化所用的时间2t=
r v ∆ 故2
Brv E t π∆Φ==∆ 所以电阻R 上的电流强度平均值为2E Brv I R R
π== 通过R 的电荷量为2
·B r q I t R
π∆== 考点:法拉第电磁感应定律;电量
13.如图所示,两根互相平行的金属导轨MN 、PQ 水平放置,相距d=1m 、且足够长、不计电阻。

AC 、BD 区域光滑,其它区域粗糙且动摩擦因数μ=0.2,并在AB 的左侧和CD 的右侧存在着竖直向下的匀强磁场,磁感应强度B=2T 。

在导轨中央放置着两根质量均为m=1kg ,电阻均为R=2Ω的金属棒a 、b ,用一锁定装置将一弹簧压缩在金属棒a 、b 之间(弹簧与a 、b 不栓连),此时弹簧具有的弹性势能E=9J 。

现解除锁定,当弹簧恢复原长时,
a 、
b 棒刚好进入磁场,且b 棒向右运动x=0.8m 后停止,g 取10m/s 2,求:
(1)a 、b 棒刚进入磁场时的速度大小;
(2)金属棒b 刚进入磁场时的加速度大小
(3)整个运动过程中电路中产生的焦耳热。

【答案】(1)3m/s (2)8m/s 2(3)5.8J
【解析】
【分析】
对ab 系统,所受的合外力为零,则动量守恒,根据动量守恒定律和能量关系列式求解速度;(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,求解感应电流,根据牛顿第二定律求解b 刚进入磁场时的加速度;(3)由能量守恒求解产生的热量.
【详解】
(1)对ab 系统,由动量守恒:0=mv a -mv b 由能量关系:221122
P a b E mv mv =
+ 解得v a =v b =3m/s
(2)当ab 棒进入磁场后,两棒均切割磁感线,产生感生电动势串联,则有:
E a =E b =Bdv a =6V 又:232a E I A R == 对b ,由牛顿第二定律:BId+μmg=ma b
解得a b =8m/s 2
(3)由动量守恒可知,ab 棒速率时刻相同,即两者移动相同距离后停止,则对系统,由能量守恒:E P =2μmgx+Q
解得Q=5.8J
【点睛】
此题是力、电磁综合题目,关键是分析两棒的受力情况和运动情况,运用动量守恒定律和能量守恒关系列式求解.
14.两根足够长的平行光滑金属导轨MN 、PQ 相距为d ,导轨平面与水平面的夹角θ=30°,导轨电阻不计.磁感应强度为B 的匀强磁场垂直于导轨平面向上,长为d 的金属棒ab 垂直于MN 、PQ 放置于导轨上,且始终与导轨接触良好,金属棒的质量为m 、电阻为R .两金属导轨的上端连接一个阻值也为R 的定值电阻,重力加速度为g .现闭合开关S ,给金属棒施加一个方向垂直于棒且平行于导轨平面向上、大小为mg 的恒力F ,使金属棒由静止开始运动.求:
(1)金属棒能达到的最大速度v m ;
(2)金属棒达到最大速度一半时的加速度;
(3)若金属棒上滑距离为L 时速度恰达到最大,则金属棒由静止开始上滑4L 的过程中,金属棒上产生的电热Q 0.
【答案】(1) 22mgR B d ;(2)14g ;(3) 322
44
4m g R mgL B d - 【解析】
【详解】
(1)设最大速度为m v ,此时加速度为0,平行斜面方向有:F mgsin BId θ=+ 据题知:2E I R
= m E Bdv = 已知F mg =,联解得:22m mgR v B d =
(2)当金属棒的速度2m v v =时,则:2
I I '= 由牛顿第二定律有:sin F BdI mg ma θ'--= 解得:14
a g = (3)设整个电路放出的热量为Q ,由能量守恒定律有:214sin 42m F L Q mg L mv θ⋅=+⋅+ 又:r R =,02
Q Q = 所以金属棒上产生的电热:322
0444m g R Q mgL B d
=-
15.如图甲所示的螺线管,匝数n =1500匝,横截面积S =20cm 2,方向向右穿过螺线管的匀强磁场的磁感应强度按图乙所示规律变化。


(1)2s 内穿过线圈的磁通量的变化量是多少? (2)磁通量的变化率多大?
(3)线圈中感应电动势大小为多少?
【答案】(1)8×10-3Wb (2)4×10-3Wb/s (3)6.0V
【解析】
【详解】
(1)磁通量的变化量是由磁感应强度的变化引起的, 则11B S Φ=,22B S Φ=,21∆Φ=Φ-Φ。

43(62)2010Wb 810Wb BS --∆Φ∆=-⨯⨯=⨯=
(2)磁通量的变化率为:
3
3810Wb/s 410Wb/s 2
t --∆Φ⨯==⨯∆ (3)根据法拉第电磁感应定律得感应电动势的大小:
31500410V 6.0V E n t
-==⨯⨯=∆Φ∆ 答:(1)2s 内穿过线圈的磁通量的变化量8×
10-3Wb (2)磁通量的变化率为4×
10-3Wb/s (3)线圈中感应电动势大小为6.0V。

相关文档
最新文档