立体几何新题型的解题技巧

合集下载

高中立体几何解题技巧

高中立体几何解题技巧

高中立体几何解题技巧高中立体几何解题技巧高中立体几何解题技巧篇1一、平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

二、空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

三、三视图问题(1)熟悉常见几何体的三视图,如锥体、柱体、台体、球体的三视图。

(2)组合体的分解。

由规则几何体截出一部分的几何体的分析。

(3)熟记一些常用的小结论,诸如:正四面体的体积公式是______;面积射影公式_____。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

(4)平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

(5)与球有关的题型,只能应用“老方法”,求出球的半径即可。

(6)立体几何读题:1、弄清楚图形是什么几何体,规则的、不规则的、组合体等。

2、弄清楚几何体结构特征。

面面、线面、线线之间有哪些关系(平行、垂直、相等)。

立体几何七大解题技巧 -回复

立体几何七大解题技巧 -回复

立体几何七大解题技巧-回复
1. 使用图像:画出图形或者观察图片,有助于理解和解决问题。

2. 切片法:在一个立体图形中切入一块平面,来理解和计算体积面积等。

3. 投影法:用平面来投影三维图形,从而更好地理解形状和大小。

4. 相似三角形法:利用相似三角形的性质,解决三维图形中的相关问题。

5. 合理的编号法:对于一些需要对立体图形部分进行编号的问题,要确保编号合理清晰。

6. 基础公式法:对于常见的体积、表面积公式要熟练掌握,建立其相互之间联系和推算的方法。

7. 分形思维法:将大的几何图形分成小的组成部分,进行单独计算,最后合并起来得到整个图形的解。

刍议高中数学中的立体几何解题技巧

刍议高中数学中的立体几何解题技巧

刍议高中数学中的立体几何解题技巧
立体几何解题技巧:
1、注意它的定义:首先要了解立体几何的各个概念,把它们心中栩栩
如生,当面对新概念时可以有个大概印象以类比先行理解,同时可以
借助相关图片辅助记忆。

2、先把图形想象清楚:在进行解题前一定要先把题目描述的几何体形
象地想象清楚,这样有利于利用相关定理进行解题,因为定理能够让
我们更有效的进行推理。

3、把定理有效运用:立体几何很多定理都是从事先假设好的,所以我
们在解题过程中只要把假设情况匹配合理即可,把定理有效运用,比
如一些关于勾股定理、三角形内心定理等等。

4、尝试着画出图形:有些题目可能是要求推断得出一个图形,而全都
用语言描述出来可能会有些困难,在此时建议画出图来来看关系,这
样可以更快的解决问题。

5、注意细节问题:高中数学很多题目都要求我们判断一个图形的关系,正确的判断出正确的关系需要我们注意一些细节问题,比如是否有共边、共点、对称轴等等。

6、多多练习:熟能生巧,只有大量地练习题目才能在解题上取得突破,多多思考问题,形成自己的思维分析方式,同时可以积累相关定理,
熟记一些重要的小细节,使得在进行高中几何解题时能更加便利。

立体几何新题型的解题技巧fb

立体几何新题型的解题技巧fb

立体几何题型的解题技巧一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★底面为矩形底面为正方形侧棱与底面边长相等2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。

3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.B注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)1、线线平行的判断:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,则这条直线与交线平行。

如果两个平面和第三个平面相交,则交线平行如果两条直线同时垂直于同一个平面,那么这两条直线平行如果一条直线上的所有点到另一条直线的距离相等,那么这两条直线平行 如果两条直线与一个平面所成角相等且方向相同,那么这两条直线平行 2、线面平行的判断:平面外一条直线和平面内一条直线平行,则这条直线和这个平面平行。

两个平面平行,则其中一个平面内的直线必平行于另一个平面。

如果一条直线和一个平面分别与另一个平面垂直,且直线不在这个平面内,则这条直线和这个平面平行如果一条直线与两个平行平面中的一个平行且不在另一个平面内,则这条直线与另一个平面平行一条直线垂直于一个平面,同时垂直于另一条直线,则另一条直线平行于这个平面 如果一条直线与两个相交的平面都平行,那么这条直线与交线平行 如果一条直线与一个平面平行,另合乎一条直线与这个平面垂直,那么这两天天条直线垂直 3、面面平行的判断如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行 如果一个平面内的两条相交直线与另一个平面的两条相交直线分别平行,则这两个平面平行 如果两个平面分别垂直于同一条直线,那么这两个平面平行 如果两个平面都平行于第三个平面,那么这两个平面平行如果一个平面上的所有点到另一个平面的距离相等,那么这两个平面平行 如果两个平面平行且都与第三个平面相交,则 交线平行如果两个平面平行,则其中一个平面内的所有直线与另一个平面平行如果两个平面平行,且其中一个平面与一条直线垂直,则另一个平面与这条直线也垂直 夹在两个平行平面间的平行线段相等 4、线面垂直判定定理1——如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面 判定定理2——如果一条直线和一个平面内的两条相交直线都垂直,则直线与平面垂直 如果一条直线和一个平面垂直则这条直线垂直于平面内的任意一条直线 如果两条直线同垂直于一个平面,则这两条直线平行如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面 如果两个相交平面都与另一个平面垂直,则这两个平面的交线 l 垂直于另一个平面 如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直 如果一个平面与另一个平面的垂线平行,则这两个平面互相垂直 5、面面垂直如果两个平面垂直,则在一个平面内垂直于它们的交线的直线垂直于另一个平面推论:如果两个相交平面都与另一个平面垂直,则这两个平面的交线 l 垂直于另一个平面垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系: 1.平行转化2.垂直转化每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

高中数学学习中的立体几何解题方法

高中数学学习中的立体几何解题方法

高中数学学习中的立体几何解题方法立体几何是高中数学中的重要内容之一,通常涉及到空间几何体的性质、体积、表面积等。

解决立体几何题目需要掌握一定的解题方法和技巧。

本文将介绍几种常用的立体几何解题方法,帮助同学们更好地应对这一知识点。

I. 平面图解法平面图解法是解决立体几何题目最常用的方法之一。

它通过将空间几何体投影到平面上,转化为平面几何问题进行求解。

在使用平面图解法时,需要注意以下几点:1. 绘制准确的平面图。

根据实际情况,选择合适的比例,绘制几何体的平面图。

注意标注各个重要点、线段、角度等信息,以便后续的计算。

2. 使用相似三角形。

在平面图中,经常需要计算几何体的某个边长或者角度,利用相似三角形的性质可以快速地求解。

通过观察平面图和实际几何体之间的关系,找到相似三角形,建立等比例关系,求解未知量。

3. 运用面积关系。

平面图解法中,面积关系也是常用的解题思路。

通过计算平面图中的面积,可以得到几何体的体积、表面积等指标。

掌握好各类几何形状的面积计算方法,能够更快速地解决问题。

II. 线段比例法线段比例法是解决立体几何问题的另一有效方法。

它基于几何体内部的线段比例关系,通过构建方程求解未知量。

使用线段比例法时,需要注意以下几点:1. 确定比例关系。

观察几何体内部的线段关系,根据题目要求建立合适的比例关系。

可以利用相似三角形的性质,或者运用平行线的截线定理,找出线段的比例关系。

2. 构建方程。

根据确定的比例关系,建立方程式。

可以利用已知的线段长度和未知量之间的比例关系,列出方程式,从而求解出未知量的数值。

3. 检查结果。

在使用线段比例法求解立体几何问题时,需要对解得的结果进行验证。

将求解得到的数值代入原始方程式中,检查是否等式成立,以确保结果的准确性。

III. 空间平移法空间平移法是解决立体几何题目的一种常用方法,它通过将几何体在空间中进行平移,转化为其他几何体的性质进行分析。

使用空间平移法时,需要注意以下几点:1. 明确平移方向和距离。

如何解决高考数学中的立体几何题

如何解决高考数学中的立体几何题

如何解决高考数学中的立体几何题在高考数学中,立体几何题是一个常见的考点,也是考生普遍感觉难以解决的问题之一。

立体几何题的解答需要掌握一定的几何知识和解题技巧。

下面将介绍一些解决高考数学中的立体几何题的方法和技巧。

一、掌握基础几何知识解决立体几何题首先需要掌握基础几何知识,包括立体图形的性质、体积和表面积的计算公式等。

熟练掌握这些基础知识可以帮助我们快速理解和解答立体几何题目。

二、分析题目,确定解题思路解决立体几何题的关键是正确地分析题目,确定解题思路。

在解答题目之前,我们应该仔细读题,理解题意,并分析给出的条件和要求。

根据题目中的信息,我们可以确定使用的几何知识和解题方法。

三、画图辅助推理在解答立体几何题时,可以通过画图辅助推理的方法来帮助理解题意,推导解题过程。

画出几何图形可以很直观地展示问题,帮助我们更好地理解并解决问题。

四、运用几何定理和性质在解答立体几何题目时,应该灵活运用几何定理和性质。

比如,当涉及到平行关系时,我们可以应用平行线的性质,通过角度对应相等、内错角和等于180度的性质来解答问题。

此外,还可以利用三角形的性质和圆锥的性质等进行推理和计算。

五、运用代数方法解题解决立体几何题目时,有时也可以运用代数方法进行解答。

通过设立方程、利用等式关系等代数技巧,将几何问题转化为代数问题,从而求解方程并得到正确答案。

六、多练习,熟练掌握解题技巧高考数学中的立体几何题目都是可以通过多练习来掌握解题技巧的。

通过反复练习各类立体几何题目,不断总结和归纳解题技巧,逐渐熟练掌握解题方法,提高解题能力和准确性。

七、注意审题和解题过程的准确性在解答立体几何题目时,我们需要特别注意审题和解题过程的准确性。

要仔细分析题目中的条件和要求,确保理解正确。

在解题过程中,要注意推理和计算的准确性,避免出现错误。

总结起来,解决高考数学中的立体几何题需要掌握基础知识,分析题目确定解题思路,运用几何定理和性质,画图辅助推理,运用代数方法解题,多练习并注意准确性。

解决立体几何问题的三种方法

解决立体几何问题的三种方法

解决立体几何问题的三种方法
嘿,朋友们!今天咱就来讲讲解决立体几何问题的三种超厉害的方法!
先来说说第一种方法——作图法。

哎呀呀,就好比你要建一座城堡,你得先把它的设计图画出来呀(比如要画一个长方体来解决相关问题)。

你看,通过仔细准确地作图,那些复杂的立体图形是不是一下子就清楚明白多啦?
第二种方法呢,是空间想象力法。

哇塞,这可神奇啦!就好像你拥有了一双能看透立体世界的眼睛(想象一个圆锥体在你脑海中旋转)。

你试着闭上眼睛,在脑海中构想出那个立体图形,感受它的形状和特点,很多问题不就迎刃而解了吗?
最后一种是公式法呀。

这就像是你手里的秘密武器!(比如用体积公式去计算一个正方体的体积)。

那些公式可是经过无数人验证的,只要你熟练掌握并运用,嘿嘿,什么难题都难不倒你!
反正我觉得这三种方法真的超有用!大家一定要好好去尝试,去掌握。

相信你们一定能在立体几何的世界里游刃有余!。

数学立体几何大题解题技巧

数学立体几何大题解题技巧

数学立体几何大题解题技巧1.平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角①平移法;②补形法;③向量法。

(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3.空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4.熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.翻折、展开关注不变因素平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

掌握立体几何题的解题思路

掌握立体几何题的解题思路

掌握立体几何题的解题思路立体几何题一直是学生们比较头疼的问题之一,需要多角度的思考和灵活运用几何知识。

在解题过程中,有一些基本的解题思路是很重要的。

本文将介绍一些解题的思路,帮助读者提高解题能力。

一、了解基本几何概念在解立体几何题之前,首先要掌握一些基本的几何概念。

比如,了解各种几何图形的性质、平行线的性质、三角形的性质等。

只有对这些基本概念有清晰的认识,才能更好地解决问题。

二、画图辅助分析对于立体几何题,画图是非常重要的一步。

通过画图,可以更好地理解题目,并辅助分析。

在画图的过程中,要注意选择合适的比例和角度,尽可能地将题目中的条件和要求反映在图上。

同时,可以根据图形的特点来推导出相应的结论,为后续的解题提供线索。

三、运用几何定理解立体几何题时,几何定理是非常重要的工具。

不同的题目涉及到的几何定理也不尽相同,需要根据具体题目的要求来灵活运用。

比如,平行线的性质可以帮助我们推导出一些平行线之间的关系;等腰三角形的性质可以帮助我们求解一些角度或边长;球面的性质可以帮助我们计算球体的体积或表面积等。

四、利用三维立体图形的特点与平面几何不同,立体几何题目中的图形是三维的,具有一些特殊的性质和关系。

在解题过程中,要善于利用这些特点。

比如,正方体的对角线相等,正三角形的高和边长之间的关系等。

只有充分利用这些特点,才能更好地解决问题。

五、建立几何方程有些立体几何题目需要通过建立方程求解。

建立几何方程的关键是要找到合适的变量,并根据题目中的条件建立方程。

在建立方程的过程中,要根据题目的要求,灵活运用几何定理,并利用已知条件求解未知量。

通过解方程,可以得到问题的解答。

六、多角度思考解立体几何题目时,要注重多角度思考。

有时候,换一种角度看待问题,可能会得到更简洁明了的解决方法。

比如,从平面几何的角度来看待某个立体几何题目,或者从立体几何的角度来看待某个平面几何题目等。

只有从多个角度思考,才能更全面地掌握问题的解决思路。

高中数学立体几何考点的解题技巧

高中数学立体几何考点的解题技巧

高中数学立体几何考点的解题技巧高中数学中立体几何题目是高考数学核心考点,从近几年全国及自主命题各省市高考试题分析,随着课程改革实施范畴的扩大,立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

高考立体几何试题在选择、填空题中侧重立体几何中的概念型、空间想象型、简单运算型问题,而解答题侧重立体几何中的逻辑推理型问题,要紧考查线线关系、线面关系和面面关系,及空间角、面积与体积的运算,其解题方法一样都有两种或两种以上,同时一样都能用空间向量来求解。

1、平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合查找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2、空间角的运算方法与技巧:要紧步骤:一作、二证、三算;若用向量,那确实是一证、二算。

(1)两条异面直线所成的角①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中运算,或用向量运算。

②用公式运算。

(3)二面角①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的运算法:(i)找到平面角,然后在三角形中运算(解三角形)或用向量运算;(ii)射影面积法;(iii)向量夹角公式。

3、空间距离的运算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也能够借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一样先找出其公垂线,然后求其公垂线段的长。

在不能直截了当作出公垂线的情形下,可转化为线面距离求解(这种情形高考不做要求)。

(3)求点到平面的距离:一样找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而运算;也能够利用“三棱锥体积法”直截了当求距离;有时直截了当利用已知点求距离比较困难时,我们能够把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

如何应对高中数学中的立体几何问题

如何应对高中数学中的立体几何问题

如何应对高中数学中的立体几何问题立体几何是高中数学中的重要内容之一,它不仅考察了学生对几何形体的理解,更要求学生能够灵活运用相关的定理和公式解决实际问题。

在面对立体几何问题时,学生应该建立起良好的解题思路和方法,同时也需要掌握一些技巧和窍门。

本文将从几个方面介绍如何应对高中数学中的立体几何问题。

一、理清题目在解决立体几何问题前,首先要仔细观察题目,理解题目的要求和条件。

建议在解题前将题目中的条件和要求用自己的话表述一遍,确保自己对题目有一个准确的理解。

二、画图与构建空间模型立体几何的问题通常需要通过绘制图形来解决。

因此,学生在解题过程中应该善于利用纸和笔,将题目中的信息转化为具体的图形。

同时,在绘制图形时,要按照题目中给出的条件进行构建,并且标注出已知和需要求解的量。

通过清晰的图形和空间模型,有助于把握问题的关键点,进而找到解决问题的方法。

三、熟练掌握与几何相关的定理和公式立体几何问题中,往往需要运用到一些与几何相关的定理和公式。

例如,平行线截割比例定理、正方体的体积公式、球的体积公式等。

学生需要通过大量的练习,熟练掌握这些定理和公式的应用,以便能够在解题时灵活运用。

在掌握定理和公式的基础上,还需了解其应用范围和限制条件,避免在解题过程中出现误用。

四、运用三视图法解决与立体几何有关的题目时,可以尝试运用三视图法。

三视图法是指通过正视图、俯视图和左视图来观察几何体并加以分析解题。

通过绘制几何体的不同视图,有助于学生全面了解几何体的形状和结构,从而更好地解决与其相关的问题。

同时,在运用三视图法时,学生还需要理解不同视图之间的对应关系,以及如何通过已知视图的信息推导出待求解的信息。

五、利用立体几何软件辅助随着科技的发展,现在有许多立体几何相关的软件可以用来辅助解题。

学生可以尝试使用这些软件进行图形的绘制和分析。

通过利用这些软件,可以更快速地构建和展示几何模型,减少绘图和计算的工作量,从而更好地专注于解题思路的构建。

立体几何题的解题技巧

立体几何题的解题技巧

立体几何题的解题技巧立体几何是数学中的一个重要分支,主要研究与空间有关的图形、物体以及它们之间的关系。

解立体几何题需要掌握一定的几何知识和解题技巧。

在本文中,将介绍一些常用的解题技巧,并通过一些例题来加深理解。

一、了解基本几何概念在解立体几何题前,首先要对一些基本几何概念进行了解。

比如,需要熟悉各种几何体的定义、性质和性质定理。

同时,要掌握几何图形的投影、展开和截面等概念。

只有对这些基本概念有清晰的理解,才能更好地解答问题。

二、画准确的图形画图是解立体几何题的基础,准确的图形可以帮助我们更好地理解题目。

在画图时,要准确地根据题目中给出的要求,按照比例和尺寸画出几何体。

三、根据已知条件引入辅助线常常会遇到一些复杂的立体几何题,此时可以通过引入辅助线来简化问题。

辅助线有时可以分解图形、构造相似三角形或等腰三角形等。

通过引入辅助线,可以将原问题转化为更简单的几何问题。

四、利用相似关系或等价关系求解在解立体几何题时,经常会用到相似关系或等价关系来求解。

例如,利用相似三角形的性质可以求解连线比等问题,利用等腰三角形的性质可以求解边长、高度等问题。

因此,在解题过程中要善于利用相似关系和等价关系。

五、利用平面几何知识辅助解题立体几何和平面几何之间存在一定的联系,有时可以通过运用平面几何知识来辅助解决立体几何问题。

例如,平面几何中的角平分线定理可以在立体几何中用来求解面的分割线等问题。

六、注意投影关系与可视性在有关几何体的投影、展开以及截面的问题中,需要注意投影关系和可视性。

投影关系是指物体在不同位置或角度下的投影特征。

在解题过程中要善于利用投影关系来推导或求解。

另外,要考虑立体几何体的可视性,即在不同视角下,哪些部分能够被看到,哪些部分被遮挡住。

七、灵活运用体积和表面积计算公式在解立体几何题时,经常需要计算体积和表面积。

要熟练掌握各种几何体的体积和表面积计算公式,并在解题过程中灵活运用。

有时可以通过求两个几何体的体积或表面积之差来解题。

初中二年级几何学习技巧如何解决空间立体形题

初中二年级几何学习技巧如何解决空间立体形题

初中二年级几何学习技巧如何解决空间立体形题在初中二年级的几何学习中,空间立体形题是一个比较常见的类型,要求学生在二维平面上画出一个与实物相似的立体图形。

对于初学者来说,解决这类题目可能会有一定的难度。

本文将介绍一些解决空间立体形题的技巧,帮助学生更好地理解和应对这类题目。

1. 观察题目在解决空间立体形题之前,第一步是仔细观察题目中给出的信息,包括图形的描述、已知条件以及问题要求。

正确的观察是解决问题的基础,只有深入理解题目,才能有针对性地解决问题。

2. 绘制图形对于空间立体形题,绘制准确的图形是非常重要的。

可以使用纸和铅笔,在平面上按照题目所给的信息,画出与实物相似的立体图形。

绘制图形时应注意比例和准确度,确保图形与实物的对应关系。

3. 利用剖视图在解决空间立体形题时,有时候可以使用剖视图的方式来更清晰地展示立体图形。

剖视图是指将立体图形切割或打开,以展示内部结构的视图。

通过剖视图,可以更好地理解立体图形的形状和关系,并更方便地计算其面积和体积。

4. 使用三视图三视图是指一个立体图形在三个不同方向上的图形投影。

通过观察一个立体图形的三视图,可以更全面地了解其形状和结构。

通常,三视图由正视图、侧视图和俯视图组成。

利用三视图,可以确定不同面的位置和尺寸关系,帮助理解立体图形的结构。

5. 运用几何关系在解决空间立体形题时,运用几何关系是非常重要的一步。

几何关系包括相似、垂直、平行等。

通过观察题目中给出的已知条件,利用相应的几何关系去解决问题。

6. 计算面积和体积在解决空间立体形题时,计算面积和体积是经常需要进行的计算。

对于不同的立体图形,有不同的计算公式。

例如,对于长方体的表面积和体积计算,可以使用公式S = 2lw + 2lh + 2wh 和 V = lwh。

熟练掌握这些计算公式,能够更快速地解决空间立体形题。

7. 实践和练习最后,要掌握解决空间立体形题的技巧,需要进行实践和练习。

多做一些类似的题目,不断反思和总结解题过程中的方法和技巧,逐渐提高解决问题的能力。

立体几何题型及解题方法总结

立体几何题型及解题方法总结

立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。

比如说正方体,正方体的体积公式就是边长的立方。

要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。

2. 还有求立体图形表面积的题型呢。

这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。

像长方体,表面积就是六个面的面积之和。

假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。

哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。

3. 立体几何里关于线面关系的题型也不少。

这就像在一个迷宫里找路,线和面的关系复杂得很。

比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。

像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。

这就像是建房子时的柱子和地面的关系,必须垂直才稳当。

判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。

就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。

比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。

5. 面面平行的题型有点像照镜子。

两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。

就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。

想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。

立体几何新题型的解题技巧

立体几何新题型的解题技巧

立体几何新题型的解题技巧引言立体几何是数学中一个重要的分支,涉及到空间图形的性质和相关计算方法。

随着学习和教学的不断进展,立体几何的题型也在不断演化和创新。

本文将介绍一些新的立体几何题型以及解题的技巧和方法。

球和圆锥的交点在立体几何中,球和圆锥是常见的几何图形。

当球与圆锥相交时,我们可以利用一些几何性质来解题。

首先,当球和圆锥的底面相切时,交点为一个单点,即切点。

此时,可以通过计算切点的坐标和其他相关属性,解决与此题型相关的问题。

其次,当球与圆锥的侧面相交时,交点为一个圆。

我们可以通过确定圆心坐标和圆的半径来解题。

同时,利用圆和圆锥的几何性质,可以推导出一些关键结果,如切线的性质和相切点的计算方法。

空间旋转问题在立体几何中,空间旋转是一个常见的题型。

利用空间旋转的性质,可以推导出一些重要的结论。

首先,考虑一个立方体绕着一个轴线旋转的情况。

我们可以观察到,旋转后的立方体仍然是一个立方体,边长可能发生变化,但是形状保持不变。

利用这个性质,我们可以解决一些与立方体旋转相关的问题。

其次,如果我们考虑一个长方体绕着一个轴线旋转的情况,同样可以得出类似的结论。

我们可以利用旋转后的长方体的性质,确定旋转后的长方体的体积和表面积等。

平行关系的判断在立体几何中,平行是一个重要的关系,涉及到平面与直线、平面与平面之间的关系判断。

对于平行关系的判断,我们可以利用一些特殊的性质和定理。

首先,平行的直线具有相同的斜率。

我们可以利用直线的斜率来判断两条直线是否平行。

如果两条直线的斜率相等,则它们是平行的。

其次,我们可以通过考虑两个平面之间的夹角来判断它们是否平行。

如果两个平面之间的夹角为零或180度,则它们是平行的。

三棱柱的表面积与体积计算三棱柱是一个常见的立体几何图形,具有三个棱面和两个底面。

计算三棱柱的表面积和体积是一个重要的题型。

首先,三棱柱的底面积可以通过底面的形状和尺寸计算得出。

如果底面是一个正三角形,可以使用三角形的面积公式计算。

如何应对初中数学中的立体几何题目解题技巧探秘

如何应对初中数学中的立体几何题目解题技巧探秘

如何应对初中数学中的立体几何题目解题技巧探秘在初中数学学习中,立体几何是一个相对复杂的知识点。

同学们在解题过程中经常会遇到困惑和困难。

本文将探秘一些应对初中数学中的立体几何题目的解题技巧,帮助同学们更好地掌握这一知识点。

一、立体几何题目的分类立体几何题目主要分为两类:体积题和表面积题。

体积题是求立体图形的体积,而表面积题则是求立体图形的表面积。

在解题之前,我们首先要明确题目所属的类型。

二、立体几何题目解题步骤针对立体几何题目的解题步骤,我们可以总结为以下几个方面:1. 阅读题目:仔细阅读题目,明确题目要求以及给定的条件。

理解题意是解题的第一步,不容忽视。

2. 画图:根据题目要求和给定条件,将立体图形画出来。

绘图是解题的关键步骤,有助于我们更好地理解题意,并找出解题思路。

3. 确定解题方法:根据题目要求选择合适的解题方法。

对于体积题,可以使用公式求解;对于表面积题,则需要根据立体图形的特点进行计算。

4. 进行计算:根据选择的解题方法进行计算。

在计算过程中,要注意单位的转换和计算的准确性。

5. 检查答案:计算完成后,要进行答案的检查。

检查的目的是确保计算的准确性,避免因计算错误而导致答案错误。

三、解题技巧探秘除了上述的解题步骤,下面分享一些解决立体几何题目的技巧:1. 熟悉常见几何体:要掌握立体几何,首先要熟悉常见的几何体,如正方体、长方体、圆锥、圆柱等。

了解它们的性质和特点,有助于更好地解题。

2. 利用相似关系:在解题过程中,可以利用相似关系简化计算。

通过找出相似的几何体,可以减少计算量,提高解题效率。

3. 运用剖析图形的方法:对于复杂的立体图形,可以通过剖析图形的方法将其分解为较为简单的几何体,从而更容易求解。

4. 善于利用公式:立体几何问题中,存在一些常用的体积和表面积计算公式,如长方体的体积公式为V=长×宽×高。

熟练掌握这些公式并能够灵活运用,能够帮助我们更快地解决问题。

立体几何题型的解题技巧适合总结提高用

立体几何题型的解题技巧适合总结提高用

第六讲立体几何新题型的解题技巧考点1点到平面的距离例1 (福建卷理)如图,正三棱柱 ABC-ABQ i 的所有棱长都为2 , D 为CC 1中点.湖南卷)如图,已知两个正四棱锥 P-ABCD 与Q-ABCD 的(I )证明PQ 丄平面 ABCD ;(n )求异面直线AQ 与PB 所成的角; (川)求点P 到平面QAD 的距离.(n) (川) 求证:AB I 丄平面ABD ;求二面角 A-AD-B 的大小;求点C 到平面ABD 的距离.例2.(高分别为1和2,AB=4.考点2异面直线的距离例3已知三棱锥S-ABC,底面是边长为4j2的正三角形,棱SC的长为2,且垂直于底面.E、CD与SE间的距离.D分别为BC、AB的中点,求考点3直线到平面的距离例4. 如图,在棱长为2的正方体AC i 中, G是AA的中点,求BD到平面GB i D i的距离.考点4例5 (异面直线所成的角北京卷文)斜边AB如图,在RtAAOB中,N OAB=」,6以直线AO为轴旋转得到,且二面角B - AO -C的直二面角.D是AB的中点.(I)求证:平面COD丄平面AOB ;(II)求异面直线AO与CD所成角的大小.=4 . Rt △ AOC 可以通过Rt △AOB例6.(广东卷)如图所示, AF 、DE 分别是O O 、O O i 的直径.AD 与两圆所在的平面均垂 直,AD =8,BC 是O O 的直径,AB = AC = 6, OE//AD.(I )求二面角B —AD — F 的大小; (n )求直线BD 与EF 所成的角.考点5 例7.( 四棱锥S-ABCD 中,底面ABCD 为平行四边形,侧面 SBC 丄底面ABCDAB =2 , BC =2^2, SA = SB =^/3 .(I) 证明SA 丄BC ;(n)求直线SD 与平面SAB 所成角的大小.考点6二面角 例8.(湖南卷文)如图,已知直二面角 a -P Q-P , A 亡 PQ , , C 亡 P , CA=CB , N BAP = 45 二(I )证明BC 丄PQ ;(II )求二面角B —AC — P 的大小.直线和平面所成的角 全国卷I 理)直线CA 和平面a 所成的角为30 "BQ3例9 .( 重庆卷)如图,在四棱锥P — ABCD 中,PA 丄底面 ABCD,NDAB 为直角,AB || CD , AD = CD=2AB, E 、F 分别为 PC 、 CD 的中点. (I)试证:CD 丄平面BEF ; (n)设PA= k• AB,且二面角E-BD-C 的平面角大于30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何新题型的解题技巧立体几何新题型的解题技巧【命题趋向】在高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.(B)版.①理解空间向量的概念,掌握空间向量的加法、减法和数乘.②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算.③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念.⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式.⑦会画直棱柱、正棱锥的直观图.空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1(2007年福建卷理)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力.解答过程:解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得455AF =,又1122AG AB ==, 210sin 4455AG AFG AF ∴===∠.AB CD1A1C1BABCD1A1C1BOF所以二面角1A A D B --的大小为10arcsin 4.(Ⅲ)1A BD △中,1115226A BD BD A D A B S ===∴=△,,,1BCD S =△.在正三棱柱中,1A 到平面11BCC B 的距离为3. 设点C 到平面1A BD 的距离为d . 由11A BCD C A BD V V --=,得111333BCDA BD S S d =△△,1322BCD A BD S d S ∴==△△.∴点C 到平面1A BD 的距离为22.解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,(003)A ,,,1(120)B ,,, 1(123)AB ∴=-,,,(210)BD =-,,,1(123)BA =-,,. 12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(113)AD =--,,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,. 令1z =得(301)=-,,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD ,xz AB C D1A1C1BO Fy1AB ∴为平面1A BD 的法向量.cos <n ,1113364222AB AB AB -->===-n n .∴二面角1A A D B --的大小为6arccos 4.(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(123)BC AB =-=-,,,,,.∴点C 到平面1A BD 的距离1122222BC AB d AB -===.小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2.( 2006年湖南卷)如图,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.(Ⅰ)证明PQ ⊥平面ABCD ; (Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:方法一 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在QBCPADOMPQ 上,从而P 、A 、Q 、C 四点共面.取OC 的中点N ,连接PN . 因为21,21===OC NO OA NO OQ PO ,所以OANOOQ PO =, 从而AQ ∥PN ,∠BPN (或其补角)是异面直线AQ 与PB 所成的角.因为2222(22)13PB OB OP =+=+=,222(2)1 3.PN ON OP =+=+=10)2()22(2222=+==ONOB BN所以9333210392cos 222=⨯⨯-+=⋅-∠PN PB BN PN PB BPN +=. 从而异面直线AQ 与PB 所成的角是93arccos . (Ⅲ)连结OM ,则112.22OM AB OQ === 所以∠MQP =45°.由(Ⅰ)知AD ⊥平面PMQ ,所以平面PMQ ⊥平面QAD . 过P 作PH ⊥QM 于H ,PH ⊥平面QAD .从而PH 的长是点P 到平面QAD 的距离. 又0323,sin 45.2PQ PO QO PH PQ =+=∴==. 即点P 到平面QAD 的距离是322. 方法二(Ⅰ)连结AC 、BD ,设O BD AC = .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD .从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD .由(Ⅰ),QO ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,1),A (22,0,0),Q (0,0,-2),B (0,22,0).QBCPADz yx O所以)2,0,22(--=AQ(0,22,1)PB =-于是93,cos =〉〈PB AQ . (Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=AD ,(0,0,3)PQ =-,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅0AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x . 取x =1,得)2,1,1(--=n . 所以点P 到平面QAD 的距离322PQ n d n⋅==. 考点2 异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离. 典型例题例3 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离. 思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解答过程:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF 的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是 AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离此类题目再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化. 典型例题例4. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法求解. 解答过程:解析一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . BACDOGH 1A 1C 1D1B 1O又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解析二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角.异面直线所成的角是高考考查的重点. 典型例题例5(2007年北京卷文)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形内. 解答过程:解法1:(I )由题意,CO AO ⊥,BO AO ⊥,BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,O CADBECO ∴⊥平面AOB ,又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,225CE CO OE ∴=+=.又132DE AO ==.∴在Rt CDE △中,515tan 33CE CDE DE===.∴异面直线AO 与CD 所成角的大小为15arctan 3.解法2:(I )同解法1.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(0023)A ,,,(200)C ,,,(013)D ,,,(0023)OA ∴=,,,(213)CD =-,,, cos OA CD OA CD OA CD∴<>=,6642322==.∴异面直线AO 与CD 所成角的大小为6arccos 4.小结: 求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的范围:⎥⎦⎤ ⎝⎛2,0π. 例6.(2006年广东卷)如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE //AD . (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.O CADB xyz命题目的:本题主要考查二面角以及异面直线所成的角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:关键是用恰当的方法找到所求的空间距离和角并掌握利用空间向量求空间距离和角的一般方法.解答过程: (Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB , AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.是矩形的直径,是圆、ABFC O BC AF ∴ ,是正方形,又ABFC AC AB ∴==6由于ABFC 是正方形,所以∠BAF =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD0186482cos ,.10||||10082BD FE BD FE BD FE ⋅++<>===⨯设异面直线BD 与EF 所成角为α,则 .82cos cos ,.10BD FE α=<>=故直线BD 与EF 所成的角为1082arccos . 考点5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算. 线面角在空间角中占有重要地位,是高考的常考内容. 典型例题例7.(2007年全国卷Ⅰ理)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,22BC =,3SA SB ==.(Ⅰ)证明SA BC ⊥;DBCAS(Ⅱ)求直线SD 与平面SAB 所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力. 解答过程:解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由22AD BC ==,3SA =,2AO =,得1SO =,11SD =. SAB △的面积22111222S ABSA AB ⎛⎫=-= ⎪⎝⎭.连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得2h =. 设SD 与平面SAB 所成角为α,则222sin 1111h SD α===.所以,直线SD 与平面SBC 所成的我为22arcsin 11.解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,(200)A ,,,(020)B ,,,(020)C -,,,(001)S ,,,(201)SA =-,,, (0220)CB =,,,0SA CB =,所以SA BC ⊥.DBCASOEGyxzODBCAS(Ⅱ)取AB 中点E ,22022E ⎛⎫ ⎪ ⎪⎝⎭,,, 连结SE ,取SE 中点G ,连结OG ,221442G ⎛⎫ ⎪ ⎪⎝⎭,,. 221442OG ⎛⎫= ⎪ ⎪⎝⎭,,,22122SE ⎛⎫= ⎪ ⎪⎝⎭,,,(220)AB =-,,. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.(2220)D ,,,(2221)DS =-,,.22cos 11OG DS OG DSα==,22sin 11β=,所以,直线SD 与平面SAB 所成的角为22arcsin 11.小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值. 考点6 二面角此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点,应重视. 典型例题例8.(2007年湖南卷文)如图,已知直二面角PQ αβ--,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β内过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,BO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则3AO =,3sin 302OH AO ==. 在Rt OAB △中,45ABO BAO ∠=∠=,所以3BO AO ==, 于是在Rt BOH △中,3tan 232BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直ABCQ αβ P AB CQαβ P OH线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=. 不妨设2AC =,则3AO =,1CO =.在Rt OAB △中,45ABO BAO ∠=∠=, 所以3BO AO ==. 则相关各点的坐标分别是(000)O ,,,(300)B ,,,(030)A ,,,(001)C ,,. 所以(330)AB =-,,,(031)AC =-,,. 设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得33030x y y z ⎧-=⎪⎨-+=⎪⎩,取1x =,得1(113)n =,,.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,. 所以121215cos 5||||51n n n n θ===⨯.故二面角B AC P --的大小为5arccos5. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面内的两条相交直线确定棱,②由二面角两个平面内的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.例9.( 2006年重庆卷)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点. (Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的ABC Qα β POxyz取值范围.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法. 解答过程:解法一:(Ⅰ)证:由已知DF //=AB 且∠DAD 为直角,故ABFD 是矩形,从而CD ⊥BF .又PA ⊥底面ABCD,CD ⊥AD ,故由三垂线定理知CD ⊥PD .在△PDC 中,E 、F 分别PC 、CD 的中点,故EF ∥PD ,从而CD ⊥EF ,由此得CD ⊥面BEF . (Ⅱ)连结AC 交BF 于G .易知G 为AC 的中点.连接EG ,则在△PAC 中易知EG ∥PA .又因PA ⊥底面ABCD ,故EG ⊥底面ABCD .在底面ABCD 中,过G 作GH ⊥BD ,垂足为H ,连接EH .由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 设AB=a ,则在△PAC 中,有 EG =21PA =21ka . 以下计算GH ,考察底面的平面图.连结GD .因S △GBD =21BD ·GH=21GB ·DF . 故GH =BDDFGB ⋅.在△ABD 中,因为AB =a ,AD =2a ,得BD =5a. 而GB =21FB =21AD =a ,DF =AB ,从而得 GH =BD AB GB ⋅= aaa 5⋅=.55a 因此tan ∠EHG=GH EG =.255521k a ka= 由k >0知EHG ∠是锐角,故要使EHG ∠>︒30,必须k 25>tan ︒30=,33 解之得,k 的取值范围为k >.15152 解法二:(Ⅰ)如图,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB=a ,则易知点A,B,C,D,F 的坐标分别为 A (0,0,0),B (a ,0,0),C (2a ,2a ,0),D (0,2a ,0), F (a ,2a ,0). 从而DC =(2a ,0,0), BF =(0,2a ,0),DC ·BF =0,故DC ⊥BF .设PA =b ,则P (0,0,b ),而E 为PC 中点.故 E ⎪⎭⎫ ⎝⎛2,,b a a . 从而BE =⎪⎭⎫⎝⎛2,,0b a ,DC ·BE =0,故DC ⊥BE . 由此得CD ⊥面BEF .(Ⅱ)设E 在xOy 平面上的投影为G ,过G 作GH ⊥BD 垂足为H ,由三垂线定理知EH ⊥BD .从而∠EHG 为二面角E -BD -C 的平面角. 由PA =k ·AB 得P (0,0,ka ),E ⎪⎭⎫⎝⎛2,,ka a a ,G (a ,a ,0). 设H (x ,y ,0),则GH =(x -a ,y -a ,0), BD =(-a ,2a ,0), 由GH ·BD =0得-a (x -a )+2a (y -a )=0,即 x -2y =-a ①又因BH =(x-a,y,0),且BH 与BD 的方向相同,故a a x --=ay2,即 2x +y =2a ② 由①②解得x =53a ,y=54a ,从而GH =⎪⎭⎫⎝⎛--0,51,52a a ,|GH |=55a .tan ∠EHG = EG GH =a ka552=k 25. 由k >0知,∠EHG 是锐角,由∠EHG >,30︒得tan ∠EHG >tan ,30︒即k 25>.33 故k 的取值范围为k >15152. 考点7 利用空间向量求空间距离和角众所周知,利用空间向量求空间距离和角的套路与格式固定.当掌握了用向量的方法解决立体几何问题这套强有力的工具时,不仅会降低题目的难度,而且使得作题具有很强的操作性. 典型例题例10.(2007年江苏卷)如图,已知1111ABCD A B C D -是棱长为3的正方体, 点E 在1AA 上,点F 在1CC 上,且11AE FC ==.(1)求证:1E B F D ,,,四点共面; (2)若点G 在BC 上,23BG =,点M 在1BB 上, GM BF ⊥,垂足为H ,求证:EM ⊥平面11BCC B ;(3)用θ表示截面1EBFD 和侧面11BCC B 所成的锐二面角的大小,求tan θ.命题意图:本小题主要考查平面的基本性质、线线平行、线面垂直、二面角等基础知识和基本运算,考查空间想象能力、逻辑推理能力和运算能力. 过程指引:解法一:(1)如图,在1DD 上取点N ,使1DN =,连结EN ,CN ,则1AE DN ==,12CF ND ==.因为AE DN ∥,1ND CF ∥,所以四边形ADNE ,1CFD N 都为平行四边形.CBAG HMDEF1B1A1D1CCBAG HMDEF 1B1A1D1CN从而EN AD ∥,1FD CN ∥. 又因为AD BC ∥,所以EN BC ∥,故四边形BCNE 是平行四边形,由此推知CN BE ∥,从而1FD BE ∥.因此,1E B F D ,,,四点共面.(2)如图,GM BF ⊥,又BM BC ⊥,所以BGM CFB =∠∠,tan tan BM BG BGM BG CFB ==∠∠23132BC BGCF ==⨯=. 因为AE BM ∥,所以ABME 为平行四边形,从而AB EM ∥. 又AB ⊥平面11BCC B ,所以EM ⊥平面11BCC B . (3)如图,连结EH .因为MH BF ⊥,EM BF ⊥,所以BF ⊥平面EMH ,得EH BF ⊥. 于是EHM ∠是所求的二面角的平面角,即EHM θ=∠.因为MBH CFB =∠∠,所以sin sin MH BM MBH BM CFB ==∠∠22223311332BC BMBC CF ==⨯=++,tan 13EM MH θ==.解法二:(1)建立如图所示的坐标系,则(301)BE =,,,(032)BF =,,,1(333)BD =,,,所以1BD BE BF =+,故1BD ,BE ,BF 共面. 又它们有公共点B ,所以1E B F D ,,,四点共面.(2)如图,设(00)M z ,,,则203GM z ⎛⎫=- ⎪⎝⎭,,, 而(032)BF =,,,由题设得23203GM BF z =-+=, 得1z =.因为(001)M ,,,(301)E ,,,有(300)ME =,,, 又1(003)BB =,,,(030)BC =,,,所以10ME BB =,0ME BC =,从而1ME BB ⊥,ME BC ⊥.故ME ⊥平面11BCC B .CBAG HMDEF1B1A1D1Czyx(3)设向量(3)BP x y =,,⊥截面1EBFD ,于是BP BE ⊥,BP BF ⊥. 而(301)BE =,,,(032)BF =,,,得330BP BE x =+=,360BP BF y =+=,解得1x =-,2y =-,所以(123)BP =--,,. 又(300)BA =,,⊥平面11BCC B ,所以BP 和BA 的夹角等于θ或πθ-(θ为锐角). 于是1cos 14BP BA BP BAθ==. 故tan 13θ=.小结:向量法求二面角的大小关键是确定两个平面的法向量的坐标,再用公式求夹角;点面距离一般转化为AB 在面BDF 的法向量n 上的投影的绝对值. 例11.(2006年全国Ⅰ卷)如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM =MB =MN (I )证明AC ⊥NB ;(II )若︒=∠60ACB ,求NB 与平面ABC 所成角的余弦值. 命题目的:本题主要考查异面直线垂直、直线与平面所成角的有关 知识,考查空间想象能力、逻辑思维能力和运算能力. 过程指引:方法一关键是用恰当的方法找到所求的空间角; 方法二关键是掌握利用空间向量求空间角的一般方法. 解答过程:解法一: (Ⅰ)由已知l 2⊥MN , l 2⊥l 1 , MN ∩l 1 =M, 可得 l 2⊥平面ABN . 由已知MN ⊥l 1 , AM =MB =MN ,可知AN =NB 且AN ⊥NB . 又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(Ⅱ)∵Rt △CAN ≌Rt △CNB , ∴AC =BC ,又已知∠ACB =60°,因此△ABC 为正三角形. ∵Rt △ANB ≌Rt △CNB , ∴NC =NA =NB ,因此N 在平面ABC 内的射影H 是正三角形ABC 的中心,连结BH ,∠NBH 为NB 与平面ABC 所成的角.N MHCB AN MCBA在Rt △NHB 中,cos ∠NBH = HB NB = 33AB22AB = 63.解法二: 如图,建立空间直角坐标系M -xyz . 令MN=1, 则有A (-1,0,0),B (1,0,0),N (0,1,0),(Ⅰ)∵MN 是 l 1、l 2的公垂线, l 1⊥l 2, ∴l 2⊥平面ABN .l 2平行于z 轴. 故可设C (0,1,m ). 于是 =(1,1,m ), =(1,-1,0). ∴·=1+(-1)+0=0 ∴AC ⊥NB .(Ⅱ)∵ =(1,1,m ), =(-1,1,m ), ∴||=||, 又已知∠ACB =60°,∴△ABC 为正三角形,AC =BC =AB =2. 在Rt △CNB 中,NB =2, 可得NC =2,故C (0,1, 2). 连结MC ,作NH ⊥MC 于H ,设H (0,λ, 2λ) (λ>0). ∴=(0,1-λ,-2λ), =(0,1, 2) ∵ · = 1-λ-2λ=0, ∴λ= 13 ,∴H (0, 13, 23), 可得=(0,23, - 23), 连结BH , 则=(-1,13, 23),∵·=0+29 - 29 =0, ∴⊥, 又MC ∩BH =H , ∴HN ⊥平面ABC , ∠NBH 为NB 与平面ABC 所成的角. 又=(-1,1,0),∴cos ∠NBH = = 4323×2 = 63.考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可.解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°⇒AB =3a . BD =2a ⇒正六棱柱体积为V .NMHxCBozyV =a a 360sin 212162⋅︒⋅⋅⋅)-(=a a ⋅22129)-(=a a a 4)21)(21(89--≤33289)(⋅ . 当且仅当 1-2a =4a ⇒ a =61时,体积最大,此时底面边长为1-2a =1-2×61=32.∴ 答案为61.例13 .如图左,在正三角形ABC 中,D 、E 、F 分别为各边的中点,G 、H 、I 、J 分别为AF 、AD 、BE 、DE 的中点,将△ABC 沿DE 、EF 、DF 折成三棱锥后,GH 与IJ 所成角的度数为( )A 、90°B 、60°C 、45°D 、0°[思路启迪] 画出折叠后的图形,可看出GH ,IJ 是一对异面直线,即求异面直线所成角. 过点D 分别作IJ 和GH 的平行线,即AD 与DF ,所以 ∠ADF 即为所求. 因此GH 与IJ 所成角为60°,答案:B 例14.长方体ABCD -A 1B 1C 1D 1中,① 设对角线D 1B 与自D 1出发的三条棱分别成α、β、γ角求证:cos 2α+cos 2β+cos 2γ=1② 设D 1B 与自D 1出发的三个面成α、β、γ角,求证: cos 2α+cos 2β+cos 2γ=2[思路启迪] ①因为三个角有一个公共边即D 1B ,在构造 的直角三角形中,角的邻边分别是从长方体一个顶点出 发的三条棱,在解题中注意使用对角线长与棱长的关系BA C DEFG HIJ(A 、B 、C )DE F GHIJ ABCAD A 1B 1C 1D 1③ 利用长方体性质,先找出α,β,γ,然后利用各边 ④ 所构成的直角三角形来解.解答过程:①连接BC 1,设∠BD 1C 1=α,长方体三条棱 长分别为a ,b ,c ,设D 1B =l则cos 2α=22l a 同理cos 2β=22l b ,cos 2γ=22lc∴cos 2α+cos 2β+cos 2γ=2222l +c +b a =1 ②连接D 1C ,∵ BC ⊥平面DCC 1D 1∴ ∠BD 1C 即是D 1B 与平面DCC 1D 1所成的角,不妨设∠BD 1C =α,则cos 2α=222+l b a 同理:cos 2β=222l+c b ,cos 2γ=222l ac +. 又∵l 2=a 2+b 2+c 2. ∴cos 2α+cos 2β+cos 2γ=2222)2l +c +b (a =2. 考点9.简单多面体的侧面积及体积和球的计算棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于31Sh 其中S 是底面积,h 是棱锥的高. 典型例题例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a , A 1在底面△ABC 上的射影O 在AC 上 ① 求AB 与侧面AC 1所成角;② 若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC 1所成角即是∠CAB ;②三棱锥侧面积转化成三个侧面面积之和,侧面BCC 1B 1是正方形,侧面ACC 1A 1和侧面ABB 1A 1是平行四边形,分别求其面积即可.A 1B 1C 1AB CDO解答过程:①点A 1在底面ABC 的射影在AC 上, ∴ 平面ACC 1A 1⊥平面ABC .在△ABC 中,由BC =AC =a ,AB =2a . ∴ ∠ACB =90°,∴ BC ⊥AC . ∴ BC ⊥平面ACC 1A 1.即 ∠CAB 为AB 与侧面AC 1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC 1所成角是45°.② ∵ O 是AC 中点,在Rt △AA 1O 中,AA 1=a ,AO =21a . ∴ AO 1=23a . ∴ 侧面ACC 1A 1面积S 1=2123a =AO AC ⋅. 又BC ⊥平面ACC 1A 1 , ∴ BC ⊥CC 1.又BB 1=BC =a ,∴ 侧面BCC 1B 1是正方形,面积S 2=a 2. 过O 作OD ⊥AB 于D ,∵ A 1O ⊥平面ABC , ∴A 1D ⊥AB . 在Rt △AOD 中,AO =21a ,∠CAD =45° ∴ OD =42a 在Rt△A 1OD中,A 1D=222122342)+()(=a a O +A OD =a 87. ∴ 侧面ABB 1A 1面积S 3=a a D =A AB 8721⋅⋅=227a . ∴ 三棱柱侧面积 S =S 1+S 2+S 3=273221a )++(. 例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )ABCMNKL ANA 、23B 、23C 、3D 、3[思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =31Sh 即可. 解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L . 则AK ⊥MN ,KL ⊥MN . ∴ ∠AKL =30°.则四棱锥A —MNCB 的高h =︒⋅30sin AK =23. KL ⋅242S MNCB +==33⋅. ∴ 233331V MNCB A ⋅⋅=-=23. ∴ 答案 A例17.如图,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又PA ⊥AB ,PA =4,∠PAD =60° ① 求四棱锥的体积;② 求二面角P -BC -D 的大小.思路启迪①找棱锥高线是关键,由题中条件可设△PAD 的高PH 即是棱锥的高.②找出二面角平面角∠PEH ,在Rt △PHE 中即可求出此角. 解答过程:①∵ PA ⊥AB ,AD ⊥AB . ∴ AB ⊥面PAD .又AB ⊂面ABCD . ∴ 面PAD ⊥面ABCD .在面PAD 内,作PH ⊥AD 交AD 延长线于H . 则PH ⊥面ABCD ,即PH 就是四棱锥的高. 又∠PAD =60°,∴ PH = 3223460sin ==⋅︒⋅PA . ∴ 32321331S 31V ABCD ABCD P ===-⋅⨯⋅⋅⋅PH . ② 过H 作HE ⊥BC 交BC 延长线于E ,连接PE ,PAHEDBC则HE =AB =3.∵ PH ⊥面ABCD , ∴ PE ⊥BC . ∴ ∠PEH 为二面角P -BC -D 的平面角. ∴ tan ∠PEH =332=HE PH . 即二面角的大小为 arctan332. 例18 .(2006年全国卷Ⅱ)已知圆O 1是半径为R 的球O 的一个小圆,且圆O 1的面积与球O 的表面积的比值为92,则线段OO 1与R 的比值为 . 命题目的:①球截面的性质;②球表面积公式. 过程指引:依面积之比可求得Rr,再在Rt △OO 1A 中即得 解答过程:设小圆半径为r ,球半径为R 则92422=R r ππ ⇒ 92422=Rr ⇒ 322=R r ∴ cos ∠OAO 1=322=R r 而31981sin 1=-==αR OO 故填31 【专题训练与高考预测】 一、选择题1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( ) A.3π B. 4πC. 410arctan D. 46arcsin2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面αCB 1A1B 1C DABCDEA 1B 1C 1RrAO 1O内与a 异面的任意直线,则a 与b 所成的角( )A. 最小值θ,最大值θπ-B. 最小值θ,最大值2π C. 最小值θ,无最大值 D. 无最小值,最大值4π3.在一个︒45的二面角的一平面内有一条直线与二面角的棱成︒45角,则此直线与二面角的另一平面所成的角为( )A. ︒30B. ︒45C. ︒60D. ︒904.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,︒=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成的角的正弦值为( ) A.21B. 23C.22D. 435.已知在ABC ∆中,AB =9,AC =15,︒=∠120BAC ,它所在平面外一点P 到ABC ∆三顶点的距离都是14,那么点P 到平面ABC ∆的距离为( )A. 13B. 11C. 9D. 76.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A.29B. 3C.556 D. 2 7.将︒=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成︒60的二面角,则MP 与NQ 间的距离等于( )A.a 23 B. a 43C. a 46D.a 43 8.二面角βα--l 的平面角为︒120,在α内,l AB ⊥于B ,AB =2,在β内,l CD ⊥于D ,CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )B AC D D 1 C 1B 1A 1ADB AD 1C 1B 1A 1M N。

相关文档
最新文档