页岩气渗流及应用

合集下载

页岩气藏孔渗结构特征和渗流机理研究现状

页岩气藏孔渗结构特征和渗流机理研究现状

Ab t a t s r c :Du o lr e r s r e , d itiu in a d c e n i e s s a e g si c n i e e so e o e i o a t n r y s u c s e t a g e e v s wi e d sr t n l a ln s , h l a s o s r d a n f h mp a n e g o r e b o d t e a tr a ie t o v ni n l e e g . h s k n fs ae g s r s r or i n o v n i n l g s r s r or wi xr — o o o i e — l n t o c n e t a n r y T i i d o h l a e e v i s u c n e t a a e e v i t e t l w p r s y x e v o o h a t ta lw p r a i t n d o p in d s r t n c a a t r t s Co a e t ec n e t n l a e e v i, t s e i l c oso — r — o e me b l ya d a s r t / e o p i h r c e i i . mp r dwi t o v n i a sr s r o r i p c a r t r i o o sc hh o g s mi a e sr c u e a d c mp e e p g c a im e d t on t r l r d c i i r o r d c i i . h r f r , h t e rn t o ma e g tu t r n o l xs e a e me h n s l a n au a o u t t o w p o u t t T e eo e w eh r o k o p vy l vy o t c e r h t cu eo t r g n e p g n o lx s e a e me h n s i o e o e b t e e k e eo h l a e e v i l a esr t r fso a e a d s e a e a d c mp e e p g c a im n ft o t n c st d v lp s a e g sr s r o r t u s h l o e fc ie y T u , n o d rt r vd h o e ia u p r rt e d n mi n l sso h l a e ev i n r d ci i r d c in f t l . h s i r e p o i et e r t ls p o t o y a ca ay i fs ae g sr s r o ra d p o u t t p e i t , e v o c f h vy o p r st ooi y& p r a i t h r ce it so ae g s e au i n me h d n e p g u p t c a im r t d e i a e . e me b l yc a a trsi f h l a . v l t t o sa d s e a eo t u i c s o me h n s a esu id i t sp p r n h Ke r s s aeg s p r st y wo d : h l a , o o i y& p r a i t h r c e it s s e a eme h n s e me b l y c a a trsi , e p g c a im i c

气藏开采中页岩气渗流机理的影响作用

气藏开采中页岩气渗流机理的影响作用
一 Nhomakorabea、
收稿 日期 : 2 0 1 3— 0 5—2 1
作者 简介 : 袁航( 1 9 8 3 一) , 男, 毕业于 中国地质大 学 ( 北京 ) 矿产普查与勘探专业 , 助 理工程师 , 现在中 国石化华 东分公 司非 常规资源勘探开发 指挥 部地质 所工作 。

这种压 降 的作 用 时 , 页岩 气 将 会 从 基 质 表 面 解 吸 。这 样就会 产 生浓度 差 , 在 浓度 差 的影 响下 , 页岩 气 会从 基 质中向裂缝扩散 , 同时 , 在地下渗 流的作用 下, 页岩气 将会 流 向井 筒 , 给 人们 开 采 页 岩气 提供 可 能 。根 据 页 岩气 渗流 方式 的不 同 , 将 页岩 气 的 渗 流 机 理 概 括 为 以 下几种 : 1 、 扩 散作用 下 的渗 流 机理 。在 远 离 岩层 孑 L 隙 和 岩 层裂 缝 的基质 中 , 页岩气 在 流 动 中会 产 生扩 散作 用 , 此 时 页岩气 的 渗 流会 表 现 出 条 件 性 制 约 。 比如 , 当 吸 附 天 然气 的有机 质属 于多 孔介 质 时 , 其 无 法 被直 接 释放 。 同时 , 那 些距 离 孔 隙 和 裂缝 比较 远 的 吸 附气 也 无 法 被 直 接释放 , 他 们 需 要 在 扩 散作 用 的影 响 下 沿着 有 机 质 表 面完成 运移 。而 如果 吸 附 了天 然气 的 有机 质 不 属 于 多孔介 质 , 那 么 暴 露 在 基 质孔 隙或 者 裂 缝 处 的 吸 附 气 就能被 直接 释放 。 2 、 解吸附作 用下的渗流机理。相 比较扩散作用 , 解 吸 附作用 多 发 生 在 有 机 质 中 , 而 且 不 是所 有 的 有 机 质, 前提 是 这种 有 机 质 必 须 是 多 孔 介 质 。具 备 了这 一 条件后 , 吸 附在 有 机 质 表 面 的 吸 附 气 就 会 在 解 吸 作 用 的影 响下 , 直接被 释放 到 其孔 隙 中。这 时 , 页 岩 气 的 流 动将不 再 主要 受 扩 散 作 用 的影 响 , 转 而 会 以解 吸 附 作 用为 主 。 3 、 渗吸吸人作用下的渗流机理。页岩气 的渗吸吸 入作 用主要 发 生 在 产 水 页 岩 气 藏 中 , 主 要 是 由于 受 到 热成 因作 用 的影 响 。在 这 种作 用 的 影 响 下 , 页 岩 气 藏 的束缚 水 的饱 和度将 会 高 于原 始 含水 的饱 和度 。在 这 种情 况下 , 一旦 在开 采 中发 生水 体 入 侵 , 或 者有 外 来 其 他 流体 的侵人 , 那 么这 些 外 来 流 体 将 会 在 渗 吸 吸人 的 作用 下被 吸入 页岩 的储层 , 这样一来 , 页 岩 气藏 的含 水 饱 和度将 会大 量增 加 。 4 、 达 西渗 流和 非达 西 渗 流作 用 下 的渗 流 机理 。达 西渗 流 和非 达 西 渗 流发 生作 用 的位 置 是 不 同 的 , 前 者 主 要发生 在 页岩裂 缝 中 , 这 些 裂 缝可 能 是 天然 形 成 的 , 也 可能是 在 外 力 的作 用 下产 生 的 , 比如 在 水 力 作 用 下 产 生 的裂 缝 。 当 吸 附气 或 游 离 气 进 入 到 这 些 裂 缝 中 后, 页岩 气产 生及 在裂缝 中 的渗 流都 将 遵 循 达西 定 律 。 而后者 即非达西渗流则发生于基质 的孔隙中 , 当游离 气 在基 质孔 隙 中流动 时 , 会受 到 气 体滑 脱 效 应 的影 响 , 在 这种 影 响 下 , 游离气 的流动会 发生变 向, 会 偏 离 直 线。 ( 下转第 1 4 9页)

页岩气藏渗流机理及压裂井产能评价_段永刚

页岩气藏渗流机理及压裂井产能评价_段永刚
f g f g f g f g f g f g f g f g f g m g
’ S h a l e a s s e e a e m e c h a n i s m a n d f r a c t u r e d w e l l s r o d u c t i o n e v a l u a t i o n g p g p
1 1 1 2 , D U A N Y o n a n W E I M i n i a n L I J i a n i u T A N G Y a n - g- g g, g- q g, q
] 1 2 1 5 - 。 考虑页岩气解吸的压裂井数学模型 [
1 页岩气渗流机理及解吸特性
9] , 页岩气藏是一 种 “ 自生自储式” 气 藏[ 开采过
运用质量守恒 和 达 西 定 律 , 获得在页岩裂缝中
1 6] 气体流动方程 [
程中 , 地层压力 降 低 , 打 破 原 来 的 吸 附 平 衡, 原先吸 附在页岩基质 表 面 的 气 体 将 发 生 解 吸 , 形成游离态 气体 , 最终重新 到 达 平 衡 。 页 岩 气 穿 过 页 岩 孔 隙 介 扩散和渗流这 质的流动可描述 为 图 1 所 示 的 解 吸 、
6 3
同样适用页岩 气 的 吸 附 解 吸 特 性 , 因此目前主要运 用L a n m u i r等 温 吸 附 原 理 来 描 述 页 岩 气 的 吸 附 g 解吸 。
2 页岩气考虑解吸的点源解推导
页岩脆性较强 , 外力作用下易形成天然裂缝和 诱导裂缝 , 通常 将 页 岩 气 藏 简 化 成 双 重 介 质 孔 隙 结 利用点源法推导了 构模型 。 考虑页 岩 气 解 吸 特 性 ,
页岩气藏渗流机理及压裂井产能评价

页岩气藏渗流及数值模拟研究

页岩气藏渗流及数值模拟研究

页岩气藏渗流及数值模拟研究一、本文概述Overview of this article页岩气藏作为一种重要的非常规天然气资源,近年来在全球范围内受到了广泛的关注和研究。

由于其储层特性复杂,开发难度大,渗流规律及数值模拟研究成为了页岩气藏开发的关键问题。

本文旨在深入探讨页岩气藏的渗流特性,建立相应的数值模拟模型,为页岩气藏的合理开发提供理论支持和技术指导。

Shale gas reservoirs, as an important unconventional natural gas resource, have received widespread attention and research worldwide in recent years. Due to the complex reservoir characteristics and high development difficulty, the study of seepage laws and numerical simulation has become a key issue in the development of shale gas reservoirs. This article aims to deeply explore the permeability characteristics of shale gas reservoirs, establish corresponding numerical simulation models, and provide theoretical support and technical guidance for the rational development of shale gasreservoirs.本文首先将对页岩气藏的地质特征和渗流特性进行概述,包括页岩储层的岩石学特征、孔渗结构、渗流机制等。

页岩气藏地质特征分析及渗流机理研究

页岩气藏地质特征分析及渗流机理研究

和 暗色 泥页岩 。据相关部 门调 查统计页岩气资源总量在世界范 围内高达 4 5 6 x 1 0 , 接近 世界 非常规天然气 的

级, 具有独特的解吸和吸附特 征, 特别是在渗流方面具 有明显区别 与常规气体和致 密砂岩气等气体 的多级、 多尺 度 渗流特性 , 这给 页岩气 的准确认识和开发 带来 了困难 。 基于此 , 在充 分调研 国内外有关 页岩 气文献的基础上, 对页岩气的基本地质特征进行研究, 并分析不 同 颗粒尺寸下的页岩气渗流情况, 为页岩气的开发提供指导和参考。
天然裂缝和基质孔 隙是 页岩储层 的主 要储渗 空间。其 中 直接 影响到页岩气 的资源量 。大量 的页岩气实验和开发 实践
基质孔 隙又可 以划 分为溶蚀孔 、 微裂 隙、 机质 生烃形 成的微孔 表明,它正相 关于页岩气 的生气率 。因为大量的有机质 能吸 隙、 残余原生孔隙 。 .
通的发育 的微 裂缝 , 不利于 页岩气 的保存 ; 地层水也会通过 1 . O %. 1 1 . 0 7 %之间变 化。
裂缝进入 页岩 储层 , 使气井见水 早 , 含 水上升快 , 甚至可 能暴
性水淹 。
页岩气的成藏 离不开有机质 的成熟度 ,据经验统计成熟
度基本要求为 R o> 1 . 3 %。我 国的页岩气储层 中有机质的成
附更多的天然气 , 形成更多的微孔隙空间。
美国 Ne w Al b a n y页岩和 A n t r i m 页岩含有超过 2 0 %T O C
微 裂缝是影 响页岩气产 能的重要 因素 , 也进 一步加剧 了
开采页岩气 的难度和复 杂成都 。一方面 , 发 育的微裂缝在提 含量部分、 B a r n e t t 页岩平均有 机碳含量 为平均 4 . 5 %。在 我国 根据调研和统计资料发现龙马溪 组的 T O C含 量一 供储 渗空间给 页岩气 的同时, 还方便 了吸 附态天然气 的解析 , 四川盆地, . 5 l %而 小 于 4 . 8 8 %、筇 竹 寺 组 的 T OC 含 量 在 并成为页岩气 运移 、 开采 的通 道 。另一方 面,与大型断裂连 般 大 于 0

页岩气藏渗流机理及压裂井产能评价

页岩气藏渗流机理及压裂井产能评价

页岩气的吸附与解吸机理
产能评价及影响因素
产能评价及影响因素
产能评价及影响因素
产能评价及影响因素
产能评价及影响因素
产能评价及影响因素
产能评价及影响因素
总结
1.页岩气藏是自生自储型低渗气藏,气藏中的气体主要以吸附态储存在页岩基 质颗粒表面或游离态储存于孔隙和裂缝中; 2.页岩气渗流机理为由基层表面解析,向裂缝中扩散,最后流向井底; 3.考虑页岩气吸附特性,建立页岩气在裂缝中流动的渗流模型; 4.通过对渗流模型的分析,得出产能的影响因素; 5.进行产能评价,包括页岩的解吸特性,使得气井产量递减更慢且生产时间更 长;Langmuir体积越大,压力传播越慢,产量递减越慢;Langmuir压力越小,
压力传播越慢,产量递减越慢等。
页岩气的吸附与解吸机理
页岩气的吸附与解吸机理
页岩气的开采通常采用人为的排水-降压的方式,打破能量平衡而形成甲烷气 被动解吸的过程。参考煤层气解吸率一般在40%左右,多小于70%,页岩气解 析率应该略大于煤层气。解析率主要与层位含气量和储层压力等因素有关;通 常认为,页岩孔隙孔容和比表面积的增大,会降低解吸率。当页岩气藏投入开发, 初期产量来自页岩的裂缝和基质孔隙,随着地层压力降低,页岩中的吸附气逐 渐解吸,进入储层基质中成为游离气,经天然和诱导裂缝系统流入井底,吸附 气的解吸是页岩气开采的重要机制之一。页岩气的解吸与页岩中泥质含量,页 理发育程度有关,泥质含量越高,页理越发育,解吸率也就越高。
页岩气渗流模型
页岩气渗流模型
页岩气渗流模型
页岩气渗流模型
页岩气渗流件
页岩气渗流模型
页岩气的吸附与解吸机理
页岩气井的生产寿命通常比较长,部分甚至高达30年,产量年递减率一般 小于5%(多数为2%~3%)认为页岩气井稳产期较长的原因与储层吸附气含 量密切相关,页岩气后一阶段生产的天然气主要来自基质中的吸附气。页 岩气的解吸机制也是决定页岩气资源量至关重要的因素。页岩气的解吸机 理在某种程度上来说,与煤层气的解吸机理是相同的。在页岩层中,页岩 气在页岩中大部分以物理吸附状态赋存,页岩表面分子与甲烷分子间作用 力为范德华力。页岩气的解吸是吸附的逆过程,处于运动状态的气体分子 因温度、压力等条件的变化,导致动能增加而克服引力场,从页岩中脱离 成为游离相,发生解吸。

页岩气多尺度渗流数值模拟技术——以昭通国家级页岩气示范区为例

页岩气多尺度渗流数值模拟技术——以昭通国家级页岩气示范区为例

象的模拟,要在宏观模拟中表征上述特殊渗流现象, 合理的做法是引入等效数学模型,如气体状态方程、 渗透率模型及气体吸附模型,使流体和岩石的物理性 质随可测试到的热力学参数(压力、温度、吸附浓度) 发生变化,从而影响孔隙容积和流体相的流动性。在 本文中,公式内的各种物理量均采用国际单位制(SI) 进行说明。
A numerical simulation technology for the multi-scale flow of shale gas and its application in Zhaotong National Shale Gas Demonstration Area
ZHANG Zhuo, YUAN Xiaojun, RAO Daqian, SHU Honglin, YIN Kaigui
第 41 卷增刊 1 2021 年 3 月
天 然 气 工 业 Natural Gas Industry
· 145 ·

页岩气多尺度渗流数值模拟技术
——以昭通国家级页岩气示范区为例
张 卓 袁晓俊 饶大骞 舒红林 尹开贵
中国石油浙江油田公司
摘要 :页岩气藏的渗流机理复杂,沿用传统的油藏数值模拟器表现出了不适应性。为了实现对页岩气藏的有效模拟,引入等效数学 模型——气体状态方程、渗透率模型及气体吸附模型,并且建立嵌入式离散裂缝网格剖分方法,进而开发出流固耦合模型;在此基础上, 基于昭通国家级页岩气示范区 2 口水平井的 Petrel 地质建模成果,利用所建立的流固耦合模型进行压裂后气井的生产历史拟合和预测, 进而开展了参数敏感性分析。研究结果表明 :①流固耦合模型可以考虑孔隙压实和裂缝变形的影响,功能扩展后的数值模拟器可以 更准确地模拟致密介质中的页岩气渗流特征 ;②嵌入式离散裂缝网格剖分方法能够有效提高建模效率和数值模拟计算速度,支撑了 页岩气井生产数据的高效模拟 ;③随着基质渗透率、裂缝渗透率、裂缝长度逐渐增大,页岩气井累计产气量逐渐升高,但增幅略有 变小 ;④随着应力敏感系数的逐渐增大,单井累计产气量逐渐降低,但降幅逐渐变小。结论认为,该数值模拟技术可以应用于页岩 气井的生产动态分析,可以为同类气藏的开发提供借鉴。 关键词 :页岩气 ;多尺度渗流 ;数值模拟 ;嵌入式裂缝 ;流固耦合模型 ;昭通国家级页岩气示范区 DOI :10.3787/j.issn.1000-0976.2021.S1.021

气体渗流机理

气体渗流机理

页岩气渗流机理页岩气是指那些聚集在暗色泥页岩或高碳泥页岩中,以吸附或游离状态为主要存在方式的天然气。

它与常规天然气的理化性质完全一样,只不过赋存于渗透率、孔隙度极低的泥页岩之中,气流的阻力比常规天然气大,很大程度上增加了页岩气的开采难度,因此被业界归为非常规油气资源。

页岩自身的有效孔隙度很低,页岩气藏主要是由于大范围发育的区域性裂缝,或热裂解生气阶段产生异常高压在沿应力集中面、岩性接触过渡面或脆性薄弱面产生的裂缝提供成藏所需的最低限度的储集孔隙度和渗透率。

通常孔隙度最高仅为4% ~5%,渗透率小于1×10-3μm 。

页岩气藏有特殊的产气机制。

与常规低渗气藏不同,天然气在页岩中的流动主要有4种机理,这4种机理覆盖了从分子尺度到宏观尺度的流动。

主要表现为游离气渗流、解吸附、扩散和自吸。

第一 ,由于气体滑脱效应的存在 ,游离气在有机质和无机质基岩中的流动属非达西渗流,但在天然或水力裂缝中的流动为达西渗流。

第二,有机质上的吸附气对渗透率有不利的影响,这是由于有机质的天然气吸附层对天然气分子的引力增大所致,但是,如果有机质不属于多孔介质,仅作为连接基质孔隙或为裂缝之用,那么,在生产时,远离孔隙和裂缝的吸附气只能沿有机质表面易扩散的方式进行运移。

如果有机质属于多孔介质,部分吸附气能够直接释放进入有机质孔隙,并且,这样会使扩散的重要性被减弱 。

第三,自吸作用是当压裂水在致密气藏流动时发生的一种现象,在页岩储层压裂时,由于自吸作用和重力分异作用,导致压裂水的返排率不足50% 。

因此,气水两相在裂缝中共同流动时,往往气在裂缝的上部流动,此时,在裂缝的下部留有大量的水。

在钻井液和增产措施作业水的冷却作用下,储层接触面附近会聚集更多的束缚水,因而也会恶化自吸现象的影响。

1 Langmuir 单分子层吸附状态方程假定固体表面是均匀的,对气体分子只做单分子层吸附.设气体的压力为p,未被气体分子吸附的表面积百分数为θ.气体分子吸附的速度与气体的压力成正比,也与未被气体分子吸附的表面积成正比,则吸附速度a R cp θ=式中,c 为比例系数.气体脱附的速度与吸附气体分子所覆盖的表面积的百分数成正比,也与被吸附的气体分子中那些具备脱离表面逸向空间所需能量的分子所占的比例成正比.设吸附气体分子所覆盖的表面积的百分数为θ,设εa 为脱离表面逸向空间所需的最低能量,即吸附热εa,被吸附在表面的总分子数为Na,其中能量超过εa 的分子数为N*a,则有/*/a k Taa NN feε=式中,f 为比例系数;k 为玻尔兹曼常数.则脱附速度/a k Td R de εθ=式中,d 为比例系数达到吸附平衡时,吸附速度应等于脱附速度,即Ra= Rd,所以/0a kTcp d eεθθ=未被气体分子吸附的表面积百分数θ0与吸附气体分子所覆盖的表面积的百分数θ之和应等于1,即01θθ+=. 可得单分子层吸附方程1bpbp θ=+ 式中,/a kTc bd eεθ=如果以Q 表示单位固体表面上吸附的气体的量,a 表示单位固体表面上饱和吸附气体的量,则Langmuir 方程转化为常用的形式:1abpQ bp =+在压力很低时,上式分母中的bp 相对于1可以忽略不计,吸附气体量Q 与压力p 成正比;在压力很高时, 上式分母中的1相对于bp 可忽略不计,吸附气体量Q 达到饱和,即发生饱和吸附。

页岩气藏气体流动机理及数值模拟研究

页岩气藏气体流动机理及数值模拟研究

页岩气藏气体流动机理及数值模拟研究页岩气是一种以页岩为主要储层的天然气资源,由于其在储层中的特殊性质,其流动机理和数值模拟研究对于有效开发和利用页岩气具有重要意义。

在页岩气藏中,气体流动的机理主要包括渗流机理和吸附机理。

渗流机理是指气体在页岩储层中的渗流过程,主要受到渗透率、孔隙度和渗透率分布等因素的影响。

吸附机理是指气体在页岩储层中与页岩表面发生吸附作用,主要受到吸附等温线和吸附解吸速率等因素的影响。

为了研究页岩气藏中气体的流动机理,数值模拟成为一种重要的研究手段。

数值模拟可以通过建立数学模型和计算方法,模拟气体在页岩储层中的流动过程,对气体的渗流和吸附行为进行定量描述。

数值模拟可以通过改变渗透率、孔隙度和吸附等温线等参数,研究它们对气体流动的影响,从而为页岩气藏的开发和利用提供科学依据。

在数值模拟研究中,常用的方法包括有限差分法、有限元法和边界元法等。

这些方法可以通过离散化储层模型,将连续的流动方程转化为离散的代数方程,然后通过迭代求解,得到气体在储层中的流动状态。

数值模拟可以通过改变模型的边界条件和参数,模拟不同的开发方案和条件,评估其对气体产量和开发效果的影响。

然而,数值模拟研究也存在一些挑战和限制。

首先,页岩气藏储层复杂多变,储层参数的确定和模型的建立存在一定的不确定性。

其次,数值模拟需要大量的计算资源和时间,对计算机性能和算法效率提出了较高的要求。

此外,数值模拟结果的可靠性和准确性也需要通过与实际生产数据和实验结果进行验证。

尽管存在一些挑战,但数值模拟研究对于页岩气藏的开发和利用具有重要意义。

通过数值模拟,可以评估不同的开发方案和条件对气体产量和开发效果的影响,优化开发策略,降低开发成本。

此外,数值模拟还可以预测页岩气藏的产量潜力和剩余资源,为储量评价和资源管理提供科学依据。

页岩气藏气体流动机理和数值模拟研究对于有效开发和利用页岩气具有重要意义。

通过研究气体在页岩储层中的渗流和吸附行为,可以揭示气体流动的机理,为开发策略的制定和优化提供依据。

页岩气体积压裂滑溜水的研究及应用

页岩气体积压裂滑溜水的研究及应用

Re s e a r c h a n d a p pl i c a t i o n o f s l i c k wa t e r f o r s ha l e v o l u me f r a c t u r i n g
Ch e n Pe ng f e i , Li u Yo u qu a n ,De n g Su f e n , W u We ng a n g 。 Le i Yi n g qu a n 。。Zh a ng Ya d o ng 。 Hu a n g Che n z hi
Ga s e l d Co m pa ny Lu z ho u 6 46 001, Si c ku a n, Chi n a ;3. CN PC Chu an qi n g Dr i ng En gi n e e r i n g

Co m pan y Li ai r t e d, Che ngdu 6 1 0 0 5I, Si c hu an, Chi n a)
具 有可连 续混 配 、 低 摩 阻和 高返排 率性 能 。根据 四 川 页岩 储层 特征 和 实验 结果 , 研 制 了降 阻性 能高
的聚 丙烯酰胺 降 阻剂 、 高效 复合 防膨 剂及微 乳 助排 剂 , 研 制 了适 于 四川 页岩 气体 积 压 裂 的滑 溜 水 。
该 配方在 四 川 W 、 C区块直 井 8井 次现场试 验 表 明 , 降 阻率 为 6 5 . 5 ~6 8 . 3 ;w 区块 平 均返 排
Che ngdu 6 1 0 21 3,Si c h u a n,C h i n a;2 .S o u t h e r n Si c h u a n Ga s Di s t r i c t , Pe t r 0 C hi n a So t h wP s f 0 Z &

渗流的应用

渗流的应用

渗流的应用渗流是指流体在多孔介质中的运动过程。

多孔介质可以是岩石、土壤、过滤材料等,流体可以是水、气体或其他液体。

渗流广泛应用于地下水资源开发、石油开采、土壤水分运动等领域。

渗流在地下水资源开发中起着重要的作用。

地下水是人类重要的淡水资源之一,通过渗流可以将地表水引入地下,形成地下水储备。

渗流过程中,流体在多孔介质中的运动受到多种因素的影响,如孔隙度、渗透率、水头差等。

通过对这些因素的研究,可以合理利用地下水资源,保证人类的生活用水需求。

渗流在石油开采中也扮演着重要的角色。

石油是世界上主要的能源之一,而石油的开采需要通过渗流的方式来进行。

在石油开采过程中,通过注入高压液体或气体,使石油在多孔介质中流动,从而提高石油的采集效率。

渗流模型的建立和优化,可以帮助工程师更好地预测石油开采的效果,减少资源的浪费。

渗流还在土壤水分运动中起着重要的作用。

土壤是植物生长的基质,土壤中的水分对植物生长起着至关重要的作用。

通过渗流的方式,水分可以在土壤中向植物根部输送,满足植物的生长需求。

同时,渗流还可以影响土壤中的养分运动,对植物的吸收起到调节作用。

因此,对土壤中的渗流过程进行研究,可以帮助农民合理灌溉,提高农作物的产量和质量。

除了上述应用领域,渗流还在环境工程、地质灾害评估等方面有着重要的应用价值。

例如,在环境工程中,通过渗流模型的建立,可以预测污染物在地下水中的传播规律,指导环境污染治理。

在地质灾害评估中,渗流模型可以帮助预测地下水位变化对地质灾害的影响,提前采取相应的防灾措施。

渗流作为一种流体在多孔介质中的运动方式,在地下水资源开发、石油开采、土壤水分运动等方面都有着广泛的应用。

通过对渗流过程的研究和模拟,可以更好地理解和利用地下水资源,提高石油开采效率,改善土壤环境,保护生态系统。

渗流的应用将进一步推动相关领域的发展和进步,为人类社会的可持续发展做出贡献。

页岩气跨尺度渗流模型及其应用研究

页岩气跨尺度渗流模型及其应用研究

页岩气跨尺度渗流模型及其应用研究以页岩气跨尺度渗流模型及其应用研究为题,本文将探讨页岩气的渗流模型以及其在不同尺度下的应用。

第一部分:引言页岩气作为一种非常重要的非常规天然气资源,在能源领域具有巨大的潜力。

然而,由于页岩气储层的复杂性和渗流机理的不确定性,有效开发和生产页岩气仍然面临着很多挑战。

因此,建立准确的跨尺度渗流模型,并应用于页岩气的开发和生产中具有重要的意义。

第二部分:页岩气渗流模型页岩气渗流模型是研究页岩气储层渗流行为的关键工具。

基于渗流理论和实验数据,研究者们提出了各种各样的模型来描述页岩气在储层中的流动特性。

其中,最常用的模型是双渗流模型和多孔介质模型。

双渗流模型通过将页岩气储层划分为裂缝和母岩两个渗流区域,分别考虑了裂缝和母岩的渗流特性。

而多孔介质模型则将页岩气储层看作是一个均质多孔介质,通过介质参数的确定来描述渗流行为。

这些模型在解释页岩气储层的渗流机制和预测页岩气产能方面发挥了重要作用。

第三部分:页岩气跨尺度渗流模型的应用在页岩气开发和生产中,除了需要建立准确的渗流模型外,还需要考虑不同尺度下的渗流特性。

从微观尺度来看,页岩气储层是由纳米级孔隙和裂缝组成的复杂多孔介质。

通过分子模拟和纳米尺度实验,可以揭示页岩气在纳米级孔隙中的渗流行为。

从介观尺度来看,页岩气储层是由微米级孔隙和裂缝组成的多孔介质。

通过扫描电镜和气体吸附实验,可以研究页岩气在微米级孔隙中的渗流行为。

从宏观尺度来看,页岩气储层是由毫米级裂缝和孔隙组成的多孔介质。

通过压力测试和产能试井,可以评估页岩气储层的渗流能力和产能。

第四部分:页岩气跨尺度渗流模型的应用案例以某页岩气储层为例,本文介绍了在不同尺度下应用的页岩气跨尺度渗流模型。

首先,通过纳米尺度的分子模拟和实验,研究了页岩气在纳米级孔隙中的渗流特性。

然后,通过微米尺度的扫描电镜和气体吸附实验,揭示了页岩气在微米级孔隙中的渗流行为。

最后,通过宏观尺度的压力测试和产能试井,评估了页岩气储层的渗流能力和产能。

页岩气的开发和利用

页岩气的开发和利用

頁岩气的开发和利用随着人口的不断增长和科技的不断进步,能源需求的日益增长成为全球面临的一个重要问题。

传统能源的供应方式已经不能满足社会的需求,因此寻找新的能源来源成为当前重要的任务之一。

而在这个领域中,頁岩气开采已成为发展的热门领域之一,其具有广泛应用的前景和良好的经济效益,因此受到了越来越多的关注。

本文将探讨頁岩气开发和利用的相关问题。

一、頁岩气概述頁岩气,也称为致密天然气,是一种存在于頁岩岩石层中的天然气,以甲烷为主要成分,同时含有其他烃类物质。

頁岩气的开发利用技术主要是水力压裂技术,即在高压条件下将大量的水和砂岩等填充物质压入岩层中,使之裂开,从而释放頁岩气。

与传统自然气勘探不同的是,頁岩气勘探需要通过水力压裂技术来开采,这使得勘探成本增加,但开采量也随之增加。

二、頁岩气的开发利用1、頁岩气的应用领域頁岩气的应用领域较为广泛,其中最主要的是发电、工业和家庭供气等。

頁岩气的产量相对较大,并且利用技术较为成熟,因此可用于取代传统煤炭和石油等能源,有效降低对环境和健康的影响。

2、頁岩气的利益分配在頁岩气的开发过程中,利益分配是一个关键的问题,因为勘探和开发技术需要投入大量资金和人力资源,并且相关政策和法律条款也需要满足一定的要求。

通常,利益分配的主要参与方包括政府、勘探公司和居民。

政府通常会通过税收、准入条件等方式参与利益分配,勘探公司则通过销售收益和开采成本的调整来获得利益,而居民则通过土地使用权、矿产资源权利等来获得一定的收益。

3、頁岩气的环境问题与其他能源开发一样,頁岩气的勘探和开发可能会对环境造成影响。

许多人担忧水力压裂技术可能会导致水污染,而且开发过程可能会对当地家庭和自然资源产生负面影响。

但实际上,只要采取正确的管理策略和技术,减少环境影响并保护当地生态和自然环境是完全可行的。

三、頁岩气的未来頁岩气开采和利用已经成为了一个越来越重要的话题,在未来的发展中也将继续发挥着重要的作用。

随着技术和管理策略的不断发展,頁岩气的开采和利用也将变得更加高效和环保,同时也将创造更多的就业机会和经济效益。

页岩气研究综述成藏机理储层性质渗流机理吸附机理含气性分析及主要开发技术

页岩气研究综述成藏机理储层性质渗流机理吸附机理含气性分析及主要开发技术

4
储层性质及页岩气渗流
5
页岩气开发主要技术研究
第16页/共63页
五、页岩气开发主要技术研究
主要技术
页岩气开采技术,主要有水平井+多段压裂技术、清水压裂技术、 重复压裂和近期出现的最新压裂技术——同步压裂技术,这些 先进技术不断提高页岩气井产量。虽然有吸附与游离相天然气 的同时存在,但页岩气的开发并不需要排水降压。页岩中游离 相天然气的采出,能够自然达到降压目的,并导致吸附相及少 量溶解相天然气游离化,进一步提高了天然气的产能,实现长 期稳产目的。由于孔隙度和渗透率较低,页岩天然气的生产率 和采收率亦低,页岩气的最终采收率依赖有效的压裂措施。因 此,压裂技术和开采工艺直接影响页岩气井的经济效益。
该井6月3日开钻,7月15日钻至1777.77米完钻。垂深 613.58米,水平段长1022.52米,水平段气显示良好, 3次点火成功,展示了建南浅层页岩气勘探的良好前 景。
第7页/共63页
二、国内外页岩气开发和研究现状
研究现状
目前有关页岩气的研究,绝大多数集中在页岩气的地质理论上, 包括成藏、储层特征等方面。
第29页/共63页
多级压裂特点就是多段压裂和分段压裂,它可 以在同一口井对不同的产层进行单独压裂
第30页/共63页
第31页/共63页
2 水力压裂关键因素
页岩气开发水力压裂原理就是利用储层的天然或诱导裂缝系统,使用含有各种添加剂的压裂 液在高压下注入地层,是储层裂缝网络扩大,并依靠支撑剂支撑裂缝,从而改善储层裂缝网 络系统,达到增产目的。
第20页/共63页
五、页岩气开发主要技术研究
重复压裂技术
所谓重复压裂技术是指同层第二次的或更多次的压裂,即第一次 对某层段进行压裂后,对该层段再进行压裂,甚至更多次的压 裂。要使重复压裂处理获得成功,必须在压裂后,能够产生更 长或者导流能力更好的支撑剂裂缝,或者使作业井能够比重复 压裂前更好的连通净产层。实现这些目标需要掌握更多关于储 层和生产井状况资料,以便了解重复增产处理获得成功的原因, 并以此为基础改进以后的处理。评估重复压裂前、后的平均储 层压力、渗透率厚度成绩和有效裂缝长度与倒流的能力,能够 使工程师们确定重新压裂前生产井产能不好的原因,以及重复 压裂成功或失败的因素。

页岩气纳米级孔隙渗流动态特征

页岩气纳米级孔隙渗流动态特征
[ 8]
2. 2 孔隙中气体流动因素分析 达西流动和分子扩散流动是气体在孔隙通道内流 动的主要机制 。 孔隙直径不同则两种流动机制所发挥 的作用不同 。 根据分 子 运 动 理 论 , 自由程描述了气体 气体分 分子在未与其他分子 发 生 碰 撞 前 经 过 的 路 程 , 子平均自由程的表达式为 :
( 。 国土资源部 “ 中国重点地区页岩气资源潜力及有利区优先项目 ” 编号 : 0 9 G Y X Q 1 5) 基金项目 : ( 李治平 , 教授 , 博士 ; 主要从事油气田 开 发 理 论 与 开 采 方 法 等 方 面 的 教 学 与 科 研 工 作 。 地 址 : 北 1 9 6 3 年生 , 1 0 0 0 8 3) 作者简介 : ( ) : 京市海淀区学院路 2 9 号 。 电话 : 0 1 0 8 2 3 1 0 6 9 0。E-m a i l l z o f f i c e 2 6. c o m @1 p : 李智锋 。 电话 : 1 3 4 8 8 6 6 3 6 4 4。E-m a i l k z l e e 2 6. c o m 通讯作者 : @1 y
的 孔 隙 半 径 主 要 在 5~1 5n m, S o n d e r e l d等 、 g 、 等人 M i l n e r M( 2 0 1 0) E l m a t i M、 C u r t i s M E( 2 0 1 1) g
[ 3]
都发现了页岩有机质中的纳米级孔隙 。 页岩中纳米级 孔隙的存在使得气体在这些孔隙中的流动方式及控制 方程的研究 非 常 重 要 。 有 2 0% ~8 5% 的 页 岩 气 是 以 吸附气的状态存 在
。气
主要发生 体分子的自由程与孔 隙 直 径 相 比 小 于 1 时 , 如果比值大 于 1, 则主要产 气体分子之间的相互碰撞 ; 生气体分子与孔隙壁面分子之间的碰撞 。 因此将气体 分子自由程大于孔隙直径 ( 的分子所占总的分 子 量 D) 的比例为α, 那么小于 D 的则占 1- α。 孔隙内符合达西流动产生的流量为 :

页岩气体积压裂滑溜水的研究及应用_陈鹏飞

页岩气体积压裂滑溜水的研究及应用_陈鹏飞

Abstract:The shale reservoir requires volume fracturing with large displacement and large a- mount of fluid in order to obtain industrial gas flow.According to the volume fracturing require- ment,the slick water should have low viscosity,low friction,high flowback,excellent antiswell-
ing and good compatibility properties with reservoir.Combing the Sichuan reservoir characteris- tics with experimental result,we developed a polyacrylamide friction reducer,an efficient anti- swelling agent and microemulsion surfactant,and developed a liquid formulation fitting to Si- chuan shale reservoir.The field tests of 8wells in Sichuan W and C blocks showed that the excel- lent performance of friction reduction,whose friction reduction rate is 65.5% to 68.3%;the W block average flowback rate is 46.19% ,the C block average flowback rate is 27.93% ,and the cumulative test production reach 6.24×104~11.35 × 104 m3/d..

页岩气储层多级压裂水平井非线性渗流理论研究

页岩气储层多级压裂水平井非线性渗流理论研究

页岩气储层多级压裂水平井非线性渗流理论研究一、本文概述本文旨在深入研究和探讨页岩气储层多级压裂水平井的非线性渗流理论。

随着全球能源需求的持续增长,页岩气作为一种重要的清洁能源,其开发和利用受到了广泛关注。

然而,页岩气储层具有低孔、低渗、非均质性强等特点,使得其开发面临诸多挑战。

因此,研究页岩气储层的多级压裂水平井非线性渗流理论,对于提高页岩气开采效率、降低开采成本、实现页岩气资源的可持续利用具有重要的理论和实践意义。

本文首先对页岩气储层的基本特性进行概述,包括其地质特征、储层物性、渗流特性等。

然后,详细介绍多级压裂水平井的基本原理和技术特点,包括压裂设计、裂缝扩展、裂缝网络形成等过程。

在此基础上,重点研究非线性渗流理论在页岩气储层多级压裂水平井中的应用,包括渗流模型的建立、求解方法的选择、渗流规律的揭示等。

本文还将探讨非线性渗流理论在页岩气储层多级压裂水平井中的实际应用,包括渗流模拟、产能预测、优化决策等方面。

通过实际案例的分析和模拟,验证非线性渗流理论的有效性和可靠性,为页岩气储层的开发提供理论支持和技术指导。

本文还将对页岩气储层多级压裂水平井非线性渗流理论的发展趋势进行展望,以期为未来页岩气资源的开发和利用提供新的思路和方法。

二、页岩气储层渗流特性分析页岩气储层是一种典型的低孔低渗储层,其渗流特性相较于常规储层具有显著的不同。

页岩气储层中,由于页岩的微观结构复杂,裂缝和孔隙分布不均,使得气体在储层中的流动变得极为复杂。

因此,深入研究页岩气储层的渗流特性,对于提高页岩气开采效率和优化开采工艺具有重要意义。

在页岩气储层中,气体的流动主要受到基质渗透率、裂缝渗透率、裂缝间距、裂缝开度以及气体物理性质等多种因素的影响。

其中,基质渗透率是页岩气储层渗流特性的重要参数之一。

由于页岩的微观结构复杂,基质渗透率往往较低,这限制了气体在基质中的流动能力。

而裂缝渗透率则相对较高,是气体在页岩气储层中流动的主要通道。

页岩气储层孔隙结构与渗透性特征研究

页岩气储层孔隙结构与渗透性特征研究

页岩气储层孔隙结构与渗透性特征研究页岩气作为一种非常重要的天然气资源,一直以来都备受关注。

然而,由于页岩气储层的特殊性质,包括孔隙结构和渗透性特征等,使得其有效开采面临着很大的挑战。

因此,研究页岩气储层的孔隙结构与渗透性特征具有重要的理论和实际意义。

首先,让我们来了解一下什么是页岩气储层。

页岩气是一种通过水平钻井和压裂技术开采的天然气,其主要存在于致密的页岩层中。

相比于传统的天然气储层,页岩气储层的孔隙结构非常复杂,主要包括微观孔隙、纳米孔隙和裂缝等组成。

同时,由于页岩的致密性,其渗透性也非常低,使得气体难以流动,从而限制了页岩气的有效开采。

对于页岩气储层的孔隙结构而言,主要存在两种类型的孔隙,即自然孔隙和人工孔隙。

自然孔隙主要指的是岩石本身的孔隙,主要是微观孔隙和纳米孔隙,这些孔隙是天然形成的,通常较小且连通性较差。

人工孔隙则是通过压裂技术形成的,主要是裂缝,这些孔隙具有较好的连通性,能够提高气体的渗透性。

研究表明,页岩气储层的孔隙结构对气体的吸附和扩散具有重要影响,对渗透性也具有决定性作用。

而对于页岩气储层的渗透性而言,其主要受孔隙结构、裂缝的连通性和构造应力等因素的影响。

首先,孔隙结构的复杂性使得气体在储层内的流动受到很大限制。

微观孔隙和纳米孔隙通常较小,气体分子难以通过,从而使渗透性降低。

而一旦裂缝形成,气体会通过裂缝进一步扩散,从而提高渗透性。

其次,构造应力的作用也对渗透性产生了影响。

应力会改变岩石的物理性质,如弹性模量、应力刚度等,从而影响气体的渗透性。

为了更好地研究页岩气储层的孔隙结构与渗透性特征,科学家们采用了多种研究方法和技术。

例如,扫描电子显微镜(SEM)和透射电子显微镜(TEM)等显微镜技术,可以观察储层样品的微观结构,并分析孔隙的大小和连通性。

此外,蒙特卡罗模拟和分子动力学模拟等计算方法,可以模拟气体在孔隙内的扩散过程,研究渗透性的变化规律。

这些研究手段的应用,为我们深入理解页岩气储层的特性和开采问题提供了强有力的支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页岩气渗流及应用1 页岩气概述随着世界各国对于煤、石油、天然气等化石能源需求的不断攀升,页岩气、致密气、煤层气等非常规能源,作为常规能源的重要补充,逐渐进入人们的视野。

页岩气是以多种相态存在,主体上富集于泥页岩(部分粉砂岩)地层中的天然气聚集。

页岩气藏中的天然气不仅包括了存在于裂缝中的游离相天然气,也包括了存在于岩石颗粒表面上的吸附气。

页岩气与其他类型天然气的显著差别在于,其具有典型的“自生自储”特点。

全球对页岩气的勘探开发并不普遍,仅美国和加拿大在这方面做了大量工作。

近十年来,美国页岩气行业发展迅速,目前已进入页岩气开发的快速发展阶段,加拿大页岩气商业化开采还处于起步阶段。

页岩气在美国已经成为天然气家族中的重要成员,正广泛应用于燃气化工、汽车燃料等方面。

作为一个新兴的非常规能源,页岩气资源的勘探开发需要大量技术、资金和人员投入。

我国页岩气资源的勘探开发刚刚起步,经验匮乏,技术不成熟,实现页岩气资源的规模开发还有很长的路要走。

北美页岩气开发的成功经验和先进技术非常值得我们借鉴和参考。

目前,世界上对页岩气的研究并不普遍,只有美国和加拿大对此做过大量工作,特别是美国,对国内的5大页岩气盆地进行了十分系统的研究工作,在页岩气勘探开采方面取得了很大的突破,积累了丰富的经验。

我国对页岩气的研究与勘探开发还处于探索阶段。

20世纪60—90年代,在页岩油藏有所发现的基础上,部分学者对页岩气藏做过一定的探讨。

近2年,张金川等国内学者相继发表了一些关于页岩气方面的著作,将为我国的油气勘探打开新的局面。

据国家工程院预测,我国原油供给的对外依存度到2020年将达到55%,天然气供需缺口2010年为200×108m3,2020年将达到800×108m3。

而我国天然气勘探开发尽管目前处于大发展阶段,但是天然气资源同原油一样具有“低、深、难”的特点。

在我国油气消费需求与日俱增的情况下,为进一步从根本上解决油气可持续发展的问题,需要积极寻找新的接替资源。

从美国和加拿大的勘探开发成果看,页岩气是非常现实的常规油气资源的接替资源之一。

1.1 页岩气特点页岩气与深盆气、煤层气一样都属于“持续式”聚集的非常规天然气。

所谓页岩气(Shale Gas)系指富含有机质、成熟的暗色泥页岩或高碳泥页岩中由于有机质吸附作用或岩石中存在着裂缝和基质孔隙,使之储集和保存了一定具商业价值的生物成因和/ 或热解成因天然气。

页岩气系统具有典型的自生自储特性。

1.1.1页岩产气机理与赋存形式天然气在页岩中的生成、吸附与溶解逃离,具有与煤层气大致相同的机理过程。

通过生物作用或热成熟作用所产生的天然气首先满足有机质和岩石颗粒表面吸附的需要,此时所形成的页岩气主要以吸附状态赋存于页岩内部。

当吸附气量与溶解的逃逸气量达到饱和时,富裕的页岩气解吸进入基质孔隙。

随着天然气的大量生成,页岩内压力升高,出现造隙及排出,游离状天然气进入页岩裂缝中并聚积。

页岩岩性多为沥青质或富含有机质的暗色、黑色泥页岩和高碳泥页岩类,岩石组成一般包括30%~50%的粘土矿物、15%~25%的粉砂质(石英颗粒)和4%~30%的有机质。

正是由于页岩具有这样的特性,所以页岩中的天然气具有多种存在方式,主要包括了2种形式,即游离态(大量存在于页岩孔隙和裂缝中)和吸附态(大量存在于粘土矿物、有机质、干酪根颗粒及孔隙表面上) ,其中吸附态存在的天然气占天然气赋存总量的20%以上(Barnett Shale) 到85%(Lewis Shale)。

图1.2 页岩气在岩石中存在形式图1.1.2 页岩气成因前人对美国5大页岩气盆地页岩气的成因研究表明,页岩气可以通过以下2种途径演变而来。

第1种途径:热裂解成因气。

页岩中热成因气的形成有3个途径:①干酪根分解成气体和沥青;②沥青分解成油和气体(步骤1和步骤2为初次裂解);③油分解成气体、高含碳量的焦炭或者沥青残余物(二次裂解) 。

最后一个步骤主要取决于系统中油的残余量和储层的吸附作用。

美国Fort Worth盆地的Barnett 页岩气就是通过来源于干酪根热降解和残余油的二次裂解,主要以残余油的二次裂解为主,正因为如此,使得Barnett 页岩气具有较大资源潜力。

第2种途径:生物成因气。

一般指页岩在成岩的生物化学阶段直接由细菌降解而成的气体,也有气藏经后期改造而成的生物气。

如美国密歇根盆地的Antrim页岩气是干酪根成熟过程中所产生的热降解气和产甲烷菌新陈代谢活动中所产生的生物成因气,以后者为主。

其原因可能是发育良好的裂缝系统不仅使天然气和携带大量细菌的原始地层水进入Antrim页岩内,而且来自上覆更新统冰川漂移物中含水层的大气降水也同时侵入,有利于细菌甲烷的形成。

图1.3 页岩气成因图1.2 页岩气开发目前可采的工业性页岩气藏埋深最浅为182m。

页岩总孔隙度一般小于10%,而含气的有效孔隙度一般只有1%~5%,渗透率则随裂缝发育程度的不同而有较大变化。

页岩具有广泛的饱含气性,天然气的赋存状态多变,吸附态天然气的含量变化在20%~85%之间。

巴耐特页岩气田是目前世界上开发最成功的页岩气田,也是美国目前产量最大的页岩气田,其产量占美国总页岩气产量的50%~60%。

1.2.1 井型与井距在常规油气藏中,如果钻井过密,每口井的生产速度和井间干扰会对油气藏整体压力产生影响,但是对于页岩气藏来说并非如此。

由于页岩渗透率极低,只要钻井密度不够大或者临近井的压裂裂缝没有相互交叉,每口井只能采出该井所控制那一小块气藏里的天然气。

因此,页岩气产量与钻井数量和压裂规模密切相关。

页岩气藏需要的井数为常规气藏的10倍,井距较小。

截至2008年,巴耐特页岩气田总井数为12000口。

在2008年产量高峰期的时候,有180多台钻机同时作业,相当于美国所有可用钻机数的10%。

近几年钻的井绝大多数为水平井(通常为20~40口的丛式井),水平段长度通常为1000~2000m,压裂级数为4~15级。

大多数页岩气井井距为400~800m,但是为了提高采收率,一些区块的井距甚至为245~283m(相当于16口井/km2)。

图1.4 巴耐特页岩井型与产气量1.2.2 生产剖面巴耐特页岩7000多口气井的生产剖面极为类似:均为早期出现一个产量高峰,之后迅速下滑。

每口井的产能都与所在区块的地质特征及完井作业的有效性(是否实现了与产层的最大接触)有关。

井与井之间的产能差异明显大于常油气藏。

图1.5 巴耐特页岩水平井生产剖面很高的初始产量和紧随其后的快速下滑意味着岩气资源开发很快,4年之内就可以开发出2/3。

这确保了每口井的投资成本可以很快回收。

增加钻井量可以迅速提高产量,一旦停止钻井,产量就会迅下滑。

从对巴耐特页岩气井的生产剖面分析可以推断其他有待开发的页岩气藏的生产特征,即产量与钻井数量成函数关系。

假设每年钻80口井,每口井的设计和生产特征相同,一个新开的页岩气藏7年之后能达到高产稳产期。

为了维持稳产,必须不停地钻井;如果彻底停止钻井,3年之后产气量就会下降到稳产期产量的一半。

图1.6 新开发气藏页岩气生产剖面1.2.3 产量递减率巴耐特页岩气井的产量递减率明显高于大多数常规气井。

总体来说,巴耐特页岩气井产量第二年比第一年下降39%,第三年比第二年下降50%。

几年之后,产量下降速率会放缓但还是相当高,因此,几年之后大部分可采气都可以采出了。

垂直井的产量递减率也很高:第二年比第一年下降42%,第三年比第二年下降55%。

图1.7 巴耐特页岩水平井产量递减率1.2.4 单井最终可采资源量在历史产量数据的基础上对巴耐特页岩气井的单井最终可采资源量进行了预测。

水平井平均单井可采量为3860×104m3,60%的井在平均值以下。

这些预测是建立在完井初期的产气量基础上的,没有考虑新产层压裂和老产层的重复压裂所带来的产量剧增,所以数据有点保守。

垂直井的单井最终可采资源量分布与水平井非常类似,但总体数值有点低,平均单井可采量为2070×104m3。

页岩气藏每口井的单井产量和可采资源量之间差别很大,这反映了原始地质储量、储层的局部地质特征、井的水平段长度以及压裂规模之间的差异。

平均单井产量最高的区块称为“核心区块”巴耐特页岩现有水平井最终单井开采资源量1.3气资源评价页岩气资源潜力计算的方法较多,主要分为静态法和动态法两大方面:(1)静态法是依据页岩储层的静态地质参数计算其资源量,具体又细分为成因法(物质平衡法、Tissot法)、类比法(面积丰度类比法、体积丰度类比法、特尔菲法)、统计法(蒙特卡罗法、FORSPAN模型法);(2)动态法是根据页岩气在开发过程中的动态资料计算其资源量,目前对页岩气进行资源量评价的动态法主要包括:物质平衡法、递减法、数值模拟法。

2 页岩气井水力压裂技术及其适用性页岩储层厚度薄,渗透率低,水平井加多级压裂是目前美国页岩气开发应用最广泛的方式。

目前常用的技术有多级压裂、清水压裂、水力喷射压裂、重复压裂和同步压裂等。

2.1 多级压裂多级压裂是利用封堵球或限流技术分隔储层不同层位进行分段压裂的技术。

多级压裂能够根据储层的含气性特点对同一井眼中不同位置地层进行分段压裂,其主要作业方式有连续油管压裂和滑套完井两种。

多级压裂技术是页岩气水力压裂的主要技术。

多级压裂的特点是多段压裂和分段压裂,它可以在同一口井中对不同的产层进行单独压裂。

多级压裂增产效率高,技术成熟,适用于产层较多,水平井段较长的井。

图2.1 滑套完井多级压裂作业图2.2 清水压裂清水压裂是利用大量清水注入地层诱导产生具有足够几何尺寸和导流能力的裂缝以实现在低渗的、大面积的净产层里获得天然气工业产出的压裂措施。

清水压裂利用储层的天然裂缝注入压裂液,使地层产生诱导裂缝,在压裂过程中,岩石碎屑脱落并沉降在裂缝中,起到支撑作用,使裂缝在压裂液退去之后仍保持张开清水压裂的成功就在于它以较低的开支获得了和凝胶压裂相同甚至更好的增产效果,目前的清水压裂多是使用混合的清水压裂液, 它是在传统的清水压裂液中加入了减阻剂、凝胶、支撑剂等添加剂, 又叫减阻水压裂。

清水压裂相比凝胶压裂液来说携砂能力弱,压裂半径小。

清水压裂以岩石的天然裂缝为通道注入压裂液,岩石杨氏模量越高裂越易形成粗糙的节理,保持裂缝的导流能力因此适用于天然裂缝系统较发育,岩层杨氏模量高的地层。

图2.2 清水压裂压裂液体积组分2.3 水力喷射压裂水力喷射压裂是用高速和高压流体携带砂体进行射孔,打开地层与井筒之间的通道后,提高流体排量,从而在地层中打开裂缝的水力压裂技术( 图2) 。

当页岩储层发育较多的天然裂缝时,如果用常规的方式对裸眼井进行压裂, 大而裸露的井壁表面会使大量流体损失,从而影响增产效果。

水力喷射压裂能够在裸眼井中不使用密封元件而维持较低的井筒压力,迅速、准确地压开多条裂缝。

相关文档
最新文档