广义相对论的简介共28页
广义相对论简介
四、黑洞(black hole)
设一飞船自无限远,由静止向星球自由降落。
M
dt , dr
dt , dr
r
0
v
r m
2 1 v 2GM 2 mv 2 GMm , 2 2 r 2 c c r
dt 2GM dt , dr 1 2 dl cr 2GM 1 2 cr
8.11 广义相对论(引力的时空理论)简介 一、等效原理和局域惯性系 1、严格的惯性系 自由粒子总保持静止或匀速直线运动状态的 参考系,是严格的惯性系。 无引力场的区域,才是严格的惯性系! 例如,太空中远离任何物体的区域。 但参考系由其他物体群构成。这样,自由粒 子将不复存在,惯性系的定义出现了问题! 在引力场中,存在严格的惯性系吗?
―黑洞”不“黑”:1974年,霍金结合量子 力学和相对论,指出黑洞并非全黑 — 黑洞能 够辐射,这就是著名的霍金辐射。黑洞在辐 射过程中,将能量辐射出去,这意味着黑洞 将逐渐缩小,最后在爆炸中结束生命。
19
天文学家还发现,黑洞吸引其他恒星的物质 ,不是一下子就吸引过去,而是在看不见的周 围形成一个会转的物质盘 ( 叫做吸积盘 ) 。另外 一个恒星的物质是先打到这个盘上去,盘上的 物质才像螺旋一样进入黑洞。
为验证时空弯曲和惯 性系拖曳效应 (大质量 物体旋转拖动周围时空 发生扭曲), 2004 年 4 月 20 日美国发射“引力探 测器B”卫星。证实了爱 因斯坦的理论预言的误 差低于1%。
黑洞视频:
21
此时rs 10 km 。
17
黑洞拉伸、撕裂并吞噬一小部分恒星,最终将恒星大部 18 分质量抛向宇宙空间的模拟过程图。
恒星演化的晚期,其核心部分经过核反应 T ∼ 6109K,各类中微子过程都能够发生, 中微子将核心区的能量迅速带走 引力坍缩 强冲击波 外层物质抛射或超新星爆发 致密天体(白矮星、中子星、黑洞)
广义相对论详解
广义相对论详解
广义相对论是爱因斯坦在20世纪初提出的一种重要的物理学理论,它是对牛顿力学的一种深刻扩展和修正。
广义相对论的核心思想是:质量和能量会扭曲时空,而物质和能量的运动则会受到时空的扭曲影响。
这种扭曲效应可以被看作是物质和能量对时空的“重力”作用,因此广义相对论被认为是一种描述重力的理论。
广义相对论的核心方程是爱因斯坦场方程,它描述了时空的几何结构和物质的分布之间的关系。
这个方程通常写成:Rμν - 1/2 gμνR = 8πTμν
其中Rμν是时空的曲率张量,gμν是时空的度规张量,R是曲率标量,Tμν是物质和能量的张量。
这个方程的意义是:左边描述了时空的几何结构,右边描述了物质和能量的分布,两者之间通过这个方程建立了联系。
广义相对论是一种非常成功的理论,它在很多方面都得到了验证。
例如,它成功地解释了黑洞的存在和性质,预测了引力波的存在并在2015年被实验观测到,还解释了宇宙加速膨胀的现象。
此外,广义相对论还为现代宇宙学提供了重要的理论基础。
然而,广义相对论也存在一些问题和挑战。
例如,它无法与量子力学相一致,因此需要发展出一种量子引力理论来解决这个问题。
此外,广义相对论对于时空的奇异性(例如
黑洞内部和宇宙大爆炸的起源)的描述也存在一些困难。
广义相对论是一种非常重要的物理学理论,它成功地解释了很多重要的现象,为现代物理学做出了巨大的贡献。
然而,它仍然需要进一步的发展和完善,以更好地解释我们观测到的自然现象。
广义相对论简介
16
身边的相对论
GPS(全球定位系统)卫星位于距离地面大约2万千米。根 据广义相对论,物质质量的存在会造成时空的弯曲,质量越 大,距离越近,就弯曲得越厉害,时间则会越慢。受地球质 量的影响,在地球表面的时空要比GPS卫星所在的时空更加 弯曲,这样,从地球上看,GPS卫星上的时钟就要走得比较 快,用广义相对论的公式可以计算出,每天快大约45微秒。
二、广义相对论的两个基本原理
1、广义相对性原理:在任何参考系中,物理定律的 形式都是相同的。
2、等效原理:一个均匀的引力场与一个做匀加速运 动的参考系等价。
分为弱等效原理和强等效原理, 弱等效原理认为惯性力场与引力场的动力学效应是
局部不可分辨的。 强等效原理认为,则将“动力学效应”提升到“任何物
理效应”。 要注意:等效原理仅对局部惯性系成立,对非局部
3
广义相对论方程:它将引力描述为时空的扭曲。“这个方 程的右边部分描述的是宇宙中的能量(包括加速宇宙膨胀 的暗能量),而左边的部分描述的则是时空的几何形式。 这一方程展示了爱因斯坦广义相对论的核心,那就是质 量和能量决定了几何形式和曲率,而这便是引力的实质 。” 揭示了时空与物质-能量之间的关系:“这是一个非 常优雅的方程,它揭示了事物之间的相互关系,比如太 阳的存在扭曲了时空,因此地球才会在轨道上围绕太阳 运行。它同样揭示了宇宙自大爆炸以来是如何演化的, 并预言了黑洞的存在。”
8
光线在太阳附近的偏折
通常物体的引力场都太弱,20世纪只能观测到太阳 引力场引起的光线弯曲.
δ
太阳
由于太阳引 力场的作用,我 们有可能观测到 太阳后面的恒 星,最好的观测 时间是发生日全 食的时候.
1919年5月29日,发生日全食,英国考察队分赴几内亚湾和巴西进行 观测,证实了爱因斯坦的预言,这是对相对论的最早证实.
广义相对论简介
广义相对论简介广义相对性原理和等效原理狭义相对论认为,在不同的惯性参考系中一切物理规律都是相同的.爱因斯坦在此基础上又向前迈进了一大步,认为在任何参考系中(包括非惯性系)物理规律都是相同的,这就是广义相对性原理.下面介绍广义相对论的另一个基本原理.假设宇宙飞船是全封闭的,宇航员和外界没有任何联系,那么他就没有任何办法来判断,使物体以某一加速度下落的力到底是引力还是惯性力.实际上,不仅是自由落体的实验,飞船内部的任何物理过程都不能告诉我们,飞船到底是在加速运动,还是停泊在一个行星的表面.这里谈到的情景和本章第一节所述伽利略大船中的情景十分相似.这个事实使我们想到:一个均匀的引力场与一个做匀加速运动的参考系等价.爱因斯坦把它作为广义相对论的第二个基本原理,这就是著名的等效原理.从这两个基本原理出发可以直接得出一些意想不到的结论.假设在引力可以忽略的宇宙空间有一艘宇宙飞船在做匀加速直线运动,一束光垂直于运动方向射入这艘飞船.船外静止的观察者当然会看到这束光是沿直线传播的,但是飞船中的观察者以飞船为参考系看到的却是另外一番情景.为了记录光束在飞船中的径迹,他在船中等距离地放置一些半透明的屏(如图),光可以透过这些屏,同时在屏上留下光点.由于飞船在前进,光到达下一屏的位置总会比到达上一展的位置更加靠近船尾.如果飞船做匀速直线运动,光在任何相邻两屏之间飞行时,飞船前进的距离都相等,飞船上的观察者看到光的径迹仍是一条直线(如图中的虚线),尽管直线的方向与船外静止观察者看到的直线方向不一样.如果飞船做匀加速直线运动,在光向右传播的同时,飞船的速度也在不断增大,因此船上观察者记录下的光的径迹是一条抛物线(如图中的实线).根据等效原理,飞船中的观察者也完全可以认为飞船没有加速运动,而是在船尾方向存在一块巨大的物体,它的引力场影响了飞船内的物理过程.因此我们得出结论:物体的引力能使光线弯曲.通常物体的引力场都太弱,20世纪初只能观测到太阳引力场引起的光线弯曲.由于太阳引力场的作用,我们有可能看到太阳后面的恒星(如图).但是,平时的明亮天空使我们无法观星,所以最好的时机是发生日全食的时候.1919年5月29日恰好有一次日全食,两支英国考察队分赴几内亚湾和巴西进行观测,其结果完全证实了爱因斯坦的预言.这是广义相对论的最早的验证.如图的现象表明,星球的强引力场能使它背后传来的光线会聚,这种现象叫做引力透镜效应.宇宙中很可能存在着黑洞,黑洞不辐射电磁波,因此无法直接观测,但是它的巨大质量和极小的体积使它附近具有极强的引力场,所以引力透镜效应是探索黑洞的途径之一.时间间隔与引力场有关引力场的存在使得空间不同位置的时间进程出现差别.我们考察一个转动的巨大圆盘(如图).从地面上看,圆盘上除转动轴的位置外,各点都在做加速运动,越是靠近边缘,加速度越大,方向指向盘心.从地面上还会看到,越是靠近边缘的点,速度越大.根据狭义相对论,同一个过程,越是发生在靠近边缘的位置,这个过程所持续的时间就越长.或者说,靠近边缘位置的时间进程比较缓慢.现在再以圆盘本身为参考系研究这个现象.圆盘上的人认为,盘上存在着一个引力场,方向由盘心指向边缘.既然靠近边缘位置的时间进程比较缓慢,盘上的人就可以得出结论:在引力势较低的位置,时间进程比较慢.宇宙中有一类恒星,体积很小,质量却不小,叫做矮星.矮星表面的引力很强,引力势比地球表面低得多.矮星表面的时间进程比较慢,那里的原子发光的频率比同种原子在地球上发光的频率低,看起来偏红.这个现象叫做引力红移,已经在天文观测中得到证实.现代技术也能够在地球上验证引力红移.杆的长度与引力场有关仍然考察转动的圆盘.同样的杆,放在盘上的不同位置,它们随盘运动的速度就不一样,根据狭义相对论,它们的长度也就不一样,越是靠近边缘,杆就越短.盘上的人也观察到了这种差别,不过他以圆盘为参考系,认为盘是静止的,同时他还认为盘上各点存在着指向圆盘边缘的引力,因此他得出结论:引力势越低的位置,杆的长度越短.杆的长度和引力场的分布有关,这个现象反映出这样的事实,即由于物质的存在,实际空间并不是均匀的,这和我们过去的观念有很大的差别.打个比方,一块布上面的格子是整齐的(如图甲),如果用手向下压,格子就弯曲了(如图乙).物理学借用了“弯曲”这个词,通常说,由于物质的存在,实际的空间是弯曲的.行星沿椭圆轨道绕太阳运动,有时离太阳近些,有时远些.太阳的巨大质量使它周围的空间发生弯曲,其结果是,行星每公转一周它的轨道的长轴都比上一个周期偏转一个角度,这个现象叫做行星轨道的进动.理论分析表明只有水星轨道的进动比较显著,达到约每世纪0.01°.这个现象早在广义相对论出现之前就已经发现,只是无法解释,所以它实际是广义相对论的最早的佐证.广义相对论与几何学最后,我们再次回到转动的圆盘.狭义相对论告诉我们,只有沿着运动方向的长度发生变化,垂直于运动方向的长度不会变化;如果以圆盘为参考系,就可以说,沿着引力方向的空间尺度没有变化,只有垂直于引力方向的空间尺度发生了改变.这一点具有非常深刻的意义,因为这时测量圆盘的周长和直径,它们的比值就不再是3.141 59…,而是别的值,三角形的内角和也不会是180°了……简而言之,由于实际空间是弯曲的,我们学习的几何学已经不适用了.几何学反映的是人对空间关系的认识.有史以来人们只是在比较小的空间尺度中接触到比较弱的引力场.这种情况下空间的弯曲可以忽略,在此基础上人类发展了欧几里得几何学,它反映了平直空间的实际.广义相对论告诉我们实际空间是弯曲的,因此描述实际空间的应该是更具有一般意义的非欧几何.不过,作为非欧几何的特例,欧几里得几何学在它的适用范围内仍是正确的,还将继续发挥作用.。
广义相对论通俗解释
广义相对论通俗解释一、什么是广义相对论(一)什么是相对性呢?所谓相对,意思是说:同类事物之间以及同类事物的各个部分之间在一定条件下有互相转化的可能性。
例如:夏天温度高,冬天温度低;四季交替的现象,物质的熔点、沸点等。
(二)物理学上把人眼所见的东西称为视觉,也就是说人的感官所接受到的光信号必须经过大脑的处理才成为人的知觉,即光信号——电信号——神经信号,这是一种典型的“线性感觉”,其缺点就是易于疲劳、不能同时显示微小的变化。
然而,人的思维活动又必须依赖于人的视觉功能,所以人们期望出现一种新的技术手段来弥补人们感官的不足,于是,新的媒介应运而生了。
人们惊奇地发现,原来这个世界还有另外一种光——电磁波!对这种光的统一命名为“电磁波”。
后来,人们为了区别于“看得见的光”,于是用了一个新的名词——“电磁波”来代替它,意思是人们对这种光有了更深刻的认识。
(三)那么“相对论”是研究什么的呢?“相对论”就是对这种“电磁波”进行研究的科学理论,换句话说,相对论研究的就是人们眼睛看不见的“电磁波”的规律。
它指出,人们看不见的“电磁波”实际上是一种人们看得见的但是人们以前没有发现的一种“非光”的波——引力波。
如果我们不用“正确”这个词的话,那么相对论和量子力学是一回事,从相对论里推导出来的公式就等于量子力学中的公式。
同样,根据量子力学的观点,测量不确定度等于零时,理论也就是正确的。
也就是说,对于牛顿力学来说,理论永远都是正确的,而对于量子力学来说,理论只有在绝对精确的状态下才是正确的,因此,可以说测量的结果不确定度等于零,对于牛顿力学来说,它永远都是正确的,而对于量子力学来说,它则是不正确的。
什么叫做时间相对性呢?简单地说,就是不管你是谁,不管你是什么东西,甚至连整个宇宙都不会以你为中心运动的,在某种意义上,时间相对性并不是因为事物本身运动造成的,而是因为人的存在造成的。
也就是说,没有人,就没有时间相对性。
因此,说相对论也研究时间的话,那是很荒唐的。
广义相对论
广义相对论广义相对论(General Relativity),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。
这也就解释了为什么水星的轨道飘忽不定.广义相对论是阿尔伯特·爱因斯坦于1915年发表的用几何语言描述的引力理论,它代表了现代物理学中引力广义相对论理论研究的最高水平。
广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。
在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。
从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。
广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。
不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。
爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。
有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。
光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。
广义相对论还预言了引力波的存在。
北京时间2015年9月14日17点50分45秒,激光干涉仪引力波天文台(以下简称LIGO)分别位于美国路易斯安那州的利文斯顿(Livingston)和华盛顿州的汉福德(Hanford )的两个的探测器,观测到了一次置信度高达5.1倍标准差的引力波事件:GW150914。
爱因斯坦广义相对论简介
ห้องสมุดไป่ตู้
到的度规张量定义的所在的时空几何——具体说来是时空中的长度和角度是如何被测 量的——并不是狭义相对论的闵可夫斯基度规,这种度规被概括地称作半黎曼度规或伪 黎曼度规。并且每一种黎曼度规都自然地与一种特别的联络相关联,这种联络被称作列 维-奇维塔联络;事实上这种联络能够满足爱因斯坦等效原理的要求并使得时空具有局 部的闵可夫斯基性(这是指在一个适合的局部惯性坐标系下度规是闵可夫斯基性的,其 度规的导数和连接系数即克里斯托费尔符号都为零。)[22]。总体上可以归纳为,在爱因 斯坦的理论中引力引起的时空弯曲是一种可微分流形,这种流形在局部是平直的,但整 体上可能具有非常不同的全局几何。
在洛伦兹对称性下可以引入光锥的概念(见左图),光锥构成了狭义相对论中的因果 结构:对于每一个发生在时空中的事件A,原则上有能够通过传播速度小于光速的信号 或相互作用影响到事件A或被事件A影响的一组事件(具有因果联系),例如图中的事件 B;也有一组不可能互相影响的事件(不具有因果联系),例如图中的事件C;而这些事 件间有无因果联系都与观测者无关[19]。将光锥和自由落体的世界线联系起来可以导出时 空的半黎曼度规,或至少可以得到一个正的标量因子,在数学上这是共形结构的定义[20]。
广义相对论简介
爱因斯坦提出:引力不同于其它种类的力, 爱因斯坦提出:引力不同于其它种类的力, 事实的后果。 它只不过是时空不平坦的这一 事实的后果。 物体并非由于称为引力的力而沿弯曲轨道运动, 物体并非由于称为引力的力而沿弯曲轨道运动, 而是沿着弯曲空间中最接近直线的称之为测地线 而是沿着弯曲空间中最接近直线的称之为测地线 的轨迹运动。 的轨迹运动。
才可能形成黑洞, 质量 M > (2 ∼ 3) M⊙时,才可能形成黑洞, 此时rs ∼ 10 km 。
9
地球的 rs
恒星演化的晚期, 恒星演化的晚期,其核心部分经过核反应 T ∼ 6×109K, 各类中微子过程都能够发生, × , 各类中微子过程都能够发生, 中微子将核心区的能量迅速带走→ 中微子将核心区的能量迅速带走 →引力坍缩 → 强冲击波 → 外层物质抛射或超新星爆发 白矮星、中子星、黑洞) → 致密天体(白矮星、中子星、黑洞) 4.引力波 引力波 广义相对论预言了引力波的存在。 广义相对论预言了引力波的存在。 加速的物体系,会引起周围时空性质变化, 加速的物体系,会引起周围时空性质变化, 并以波动(引力波)的形式向外传播。 并以波动(引力波)的形式向外传播。
太阳
ห้องสมุดไป่ตู้
•
·
水 若再考虑空间弯曲,得到: 星 若再考虑空间弯曲,得到:
附加
= 5557.62′′ / 100年 , 实测 = 5600.73′′ / 100年
牛
= 43 .0 3′′ / 100 年 ,
Ω 牛+ Ω 附加=5600.65′′ ′′/100年 ′′ 年
相符得非常好。 理论值Ω 牛+ Ω 附加和观测值 Ω 相符得非常好。 这是对广义相对论的重大验证之一。 这是对广义相对论的重大验证之一。
普及物理——广义相对论简介
广义相对论简介20世纪早期,自然科学中物理学开始崛起,物理学由古典物理中的经典力学发现其存在一定的局限性,19世纪末到20世纪初物理中的现代理论逐渐形成并走向成熟,其中现代力学中贡献最大的科学家无疑是德国著名物理学家——爱因斯坦,其建立了最有名的力学理论——《广义相对论》。
在广义相对论发表之后爱因斯坦曾经说过:“如果我不发现《狭义相对论》5年之内必定有人会发现,但如果我不发现《广义相对论》50年之后也不一定有人能发现!”由此可见广义相对论的难度在当时是相当高的,据说即使是现在《广义相对论》也是很难被人们普遍理解和接受的一个理论。
但这种理论实际上并不难,只是一般的人普遍缺乏一种空间想象力,由于在《广义相对论》中的内容在现实中很难观察到才导致这样一个理论很难被人们普遍接受。
如果具有一定的空间构思能力,那么对于理解《广义相对论》也就不会太困难。
等效原理:在经典力学中参考系的定义为静止、匀速直线运动、匀速圆周运动的空间可作为参考系。
由于经典力学中时间是一个不会变化的量而在相对论中时间与空间合为一体,因此不能只考虑空间而不考虑时间。
正是有了这样的一条限制导致研究相对论的人在这里停止研究。
而爱因斯坦并不这样想,之后并对其作出了两个假设假设:第一个是,如果有两个密闭的空间内分别存在两个人,其中一个空间静止、而另一个空间保持移动的速度运动,此时如果空间内的两个人与外界完全隔离,则会出现两个空间内的人都认为知己所在的空间是静止的,这时可以认为做匀速直线运动的空间参考系等效于静止的空间参考系。
第二个假设是,如果存在两个空间,一个空间静止在星球表面,重力加速度为a,另一个空间在宇宙中保持加速度为a的匀加速直线运动,如果两个空间完全封闭,则可以认为两个空间是等效的。
上述的内容称为《广义相对论》内容中的等效原理。
光线的弯曲:总所周知,如果在地球上抛出一个物体,若其运动速度达到7.9km/s,此时物体将绕着地球做圆周运动。
《广义相对论简介》课件
引力场在局域范围内可近似为牛顿引力,满足线性 叠加原理。
引力场方程的推导与表述
80%
场方程的推导
基于爱因斯坦的场方程,通过数 学推导得到引力场方程。
100%
场方程的表述
引力场方程表述了物质和能量如 何弯曲时空,进而产生引力。
80%
几何意义
引力场方程是时空曲率与物质能 量分布之间的联系。
引力场方程的解与意义
爱因斯坦对物理学基础问题的关注
爱因斯坦对物理学的基础问题产生了浓厚的兴趣,开始探索光速不变和相对性 原理背后的更深层次原理。
爱因斯坦的科研经历与思想转变
从特殊相对论到广义相对论的过渡
爱因斯坦在提出特殊相对论后,意识到其只能解释惯性参考系下的物理现象,因此开始探索引力问题,最终发展 出广义相对论。
对等效原理和最小作用量原理的应用
详细描述
1919年,爱丁顿和戴森带领的探险队在日 全食期间观测到太阳附近的星光发生偏折的 现象,与广义相对论的预测相符,证实了爱
因斯坦的理论。
水星轨道近日点的进动现象
总结词
水星轨道近日点的进动现象观测结果与牛顿经典力学预测不符,而与广义相对论的预测 一致。
详细描述
水星是太阳系中离太阳最近的行星,其轨道近日点会发生进动现象。观测数据显示,水 星轨道的进动速度比牛顿经典力学预测的要快,这一现象只有通过广义相对论才能得到
广义协变原理
总结词
该原理要求所有物理定律在任何参照系中都 保持形式不变,即具有协变性。
详细描述
广义协变原理是广义相对论的另一个重要原 理,它要求所有物理定律在不同的参照系中 保持形式不变,即具有协变性。这意味着物 理定律的形式在任何参照系中都应该是一样 的,不受参照系选择的影响。这一原理进一 步强调了物理定律的普遍性和相对性,是广 义相对论的重要基石之一。
广义相对论简介完整版课件
2.广义相对性原理和等效原理: (1)广义相对性原理:在任何参考系中,物理规律都是__相__同_的。
(2)等效原理:一个均匀的引力场与一个做匀加速运动的参考系 __等__价_。
3.广义相对论的几个结论: (1)光线经过强引力场发生_弯__曲__。 (2)引力红移:引力场的存在使得空间不同位置的__时__间_进程出 现了差别。而使矮星表面原子发光频率__偏__低_。
【盲区扫描】 1.在牛顿力学中,物体的质量是保持不变的。 2.在相对论力学中,物体静止时的质量最小。 3.静止的物体也具有能量,称为静质能。 4.E=mc2中能量E包括静质能E0和动能Ek,不是物体的内能。 5.狭义相对论只适用于惯性参考系。 6.相对论力学中,物体的质量随物体的速度的增大而增大。 7.引力场越强,相对论效应越明显,时钟变慢的效应越明显。
1.了解广义相对论的基本原理。
学习 目标
2.初步了解广义相对论的几个主要观点以及主
要观测证据。
广义相对论简介 1.超越狭义相对论的思考:爱因斯坦思考狭义相对论无法解决 的两个问题: (1)引力问题:万有引力理论无法纳入_狭__义__相__对__论__的框架。 (2)非惯性系问题:狭义相对论只适用于__惯__性__参__考__系_。它们是 促成广义相对论的前提。
2.(2014·徐州高二检测)设想有一艘飞船以v=0.8c的速度在地
球上空飞行,如果这时从飞船上沿其运动方向抛出一物体,该
物体相对于飞船的速度为0.9c,从地面上的人看来,物体的速
度为( )
A.1.7c
B.0.1c
C.0.99c
D.无法确定
【解析】选C。根据相对论速度变换公式:u= u v ,
【通关1+1】 1.(多选)以下说法中错误的是( ) A.矮星表面的引力很强 B.时钟在引力场弱的地方比在引力场强的地方走得快些 C.在引力场越弱的地方,物体长度越长 D.在引力场强的地方,光谱线向绿端偏移
广义相对论简介
径,球面上每点可以用坐标
(, ) 表示。
■ 物理四维时空流形有类似黎曼流形的性质。观察者在引力场中作自由落体运动,他附近的小
邻域里不存在引力场。因此总能将时空流形的一个小邻域当作欧几里德区域,在那里建立惯性参 照系(自由落体参照系),其中狭义相对论成立。根据狭义相对论,两个无限接近事件的间隔,即
3.3 弯曲空间的矢量分析
(1)张量的定义 考虑一般坐标变换
x x (x )
(3.13)
无限小位移 dx 在一般坐标变换下如下式变换:
dx
x x
dx
(3.14)
重复指标均隐含求和,以后不再特别声明。
按定义,反变矢量 A 由四个分量组成,它的分量在坐标变换下如(3.14)式一样变换
假设是爱因斯坦提出来的,称为等效原理。 等效原理使惯性系和非惯性系(相对惯性系加速的参照系)完全平等起来 ,是观念上的极大
进步。在这个假设下,无所谓惯性系和非惯性系,参照系都是一样的。质点在不同参照系有不同 的行为,只是因为不同参照系引力场的强度不同。注意,我们这里说“引力场的强度不同”而不 说“引力场不同”,是希望避免与“引力场是一种客观存在,因此与参照系无关”相矛盾。我们仍
产生的加速度与物体的质量无关。这意味着对任意两个物体 A 和 B 有普适的比例常数
mgA mIA
m
B g
m
B I
(3.3)
不妨令它等于 1,即
mg mI m
(3.4)
在牛顿力学中,引力质量和惯性质量是两个性质完全不同的参数。他们严格相等在牛顿力学中没 有办法解释。
设想一些彼此相距遥远而且和其他物体相距遥远的质点,因而这些质点不受任何力的作用,
,
广义相对论的简介.doc
广义相对论的简介广义相对论简介generaltheoryofrelativity,1,广义相对论简介generaltheoryofrelativity,爱因斯坦的思考1、非惯性系与惯性系平权?2、时空与物质有关?突破(对惯性和引力的思考),在引力场中,一个自由降落的参考系中,人们无法感觉引力的存在!,2,§1广义相对论的基本原理一、等效原理1、惯性质量与引力质量,,,实验表明,定义,称该场点的引力强度,,3,2、惯性力与引力,自由空间加速电梯,引力场中静止的电梯,,,考察相对观察者静止的物体的运动,,,但各自分析的原因不同,,惯性力,引力,,4,,引力场中某一时空点自由下降电梯,远离引力场的自由空间匀速运动的电梯,惯性力可以“抵消”引力,结论:,,,5,在引力场中的某一时空点自由下落的参考系和惯性系等效,在这样两个参考系中得到的力学规律相同局域等效等效并非等同,,6,3、广义相对论的等效原理局域内加速参考系与引力场的一切物理效应等效或说:在任何引力场中任一时空点,人们总可以建立一个自由下落的局域参考系,在这一参考系中狭义相对论所确立的物理规律全部有效。
4、广义相对论的局域惯性系狭义相对论成立的参考系或引力为0的参考系,5、广义相对论的惯性定律在局惯系内,物体不受力,则维持原状态。
牛力的惯性定律与广义的惯性定律表述相同但含义不同在引力场中每个时空点的邻域可以建立若干个局惯系同一点各局惯系作匀速运动(相互间可用洛仑兹变换)不同时空点的局惯系间有相对加速度牛力:惯性系是区域性的各惯性系间无相对加速度,8,,,引力场源,r,,以该点的引力场强自由降落可有多个相对匀速运动可用洛仑兹变换,图示局惯系,9,二、广义相对性原理principleofgeneralcovariance(广义协变性原理)物理规律在一切参考系中形式相同小结广义相对论基本原理1)等效原理2)相对性原理3)马赫原理Machprinciple时空性质由物质及其运动所决定,10,2)引力作用几何化,时空的几何结构,的启示,本课介绍:广义相对论的理论框架1)物理规律中引入引力作用等效原理加速度引力弱引力场,牛顿,11,§2引力场的时空弯曲,一、弯曲空间的概念,,平面是二维平直空间,测地线是弧线,由测量判定空间,测地线是直线,球面是二维弯曲空间,12,测地线,圆周率圆周率二、引力场的空间弯曲以爱因斯坦转盘为例说明,,,在此,我们涉及两个惯性系:,系:即实验室系,研究的问题:测量一段弧的长度及圆周长,14,根据等效原理转动参考系等效为引力场引力场强是,注意到,由洛仑兹变换可得,,,愈强弯曲愈烈,15,三、史瓦西场中固有时与真实距离Schwarcchildfield,1、场的特征,,相对静止的球对称分布的物质球外部的场,2、某处的固有时由静止在该处的标准钟测得的时间间隔某处真实距离由静止在该处的标准尺测得的空间间隔,刚性微分尺,16,在无引力的地方有一系列的走时完全一样的钟然后把它们分别放到引力场中的各个时空点称各地的标准钟,3、标准时间标准长度无引力影响的时间和长度,标准钟,在无引力的地方有一系列的完全一样的刚性微分尺然后把它们分别放到引力场中的各个时空点称各地的标准尺,17,远离引力场处,,,,,,,,18,4、引力场中的固有时与真实距离,S系--史瓦西场系--瞬时静止在S系中确定时空点的局惯系S0系--飞来局惯系由无限远处沿径向自由飞到史瓦西场确定的时空点系中的一只标准钟,S0系中先后与相遇的两只钟,系的确定时空点处的标准钟测得的是原时,设,同样在确定的时空点的标准尺测的是原长,轻?,引力场愈强钟愈慢,3)空间弯曲,引力场愈强尺缩愈烈,22,四、史瓦西场和黑洞如果引力源质量M 很大对应有关值,例,,视界半径,Blackhole,无限缓慢,,23,§3广义相对论的可观测效应一、光的引力频移,处发光频率为,处接收到的频率为,频移,设,24,若太阳发光,引力红移gravitationalredshift,,频移,25,二、光线的引力偏折引力的作用1)空间弯曲2)光线偏离测地线,1919年5月29日测,三、行星(水星)近日点的旋进雷达回波延迟效应,26,。
45广义相对论简介
1971年,威勒(J.A.Wheeler)命名这样的事物 为“黑洞”,因为光无法从中逃逸。基于许多证据, 天文学家有许多他们认为可能是黑洞的候选天体(其 证据是:它们的巨大质量可以从其对其他物体的相互 作用中得到;并且有时它们会发出X射线,这被认为 是正在坠入其中的物质发出的)。 显示超级黑洞存在的一个线索是几十年前发现的 类星体(遥远星系中最明亮的物体)。类星体比它所 在的整个星系还亮几百倍,却比我们的太阳系还小。 在这么小的空间里怎么能发出那么强烈的光和辐射呢? 一个可能的解释是黑洞。
四、广义相对论时空特性的几个例子 1. 光线的引力偏折 由于太阳造成时空弯曲,遥远星球发出的光线 经过太阳附近时会发生弯曲。 星球实 其偏转角: 际位置 理论值
1.75
太阳 地球
视影
实验观测值: 1919年5月29日发生日全食时,在 巴西和西非两个观测队所得的结果 是
和
1.98 0.12 1.61 0.30
施瓦氏用坐标的术语表述了它的“公制”概念: 在距离物体很远的地方,近似于一个带有一条用以表 示时间的附加t 轴的球坐标,另一个坐标r用作该处 的球坐标半径;而更远的地方,它只给出物体的距离。 然而当球坐标很小的时候,这个解开始变得奇怪 起来。在r=0的中心处有一个“奇点”,那里的时空 弯曲是无限的;围绕该点的区域内,球坐标的负方向 实际成为时间(而非空间)的方向。任何处于这个范 围内的事物,包括光,都会为潮汐力扯碎并被强迫坠 向奇点。这个区域被一个施瓦氏坐标消失的面与宇宙 的其他部分分离开来。 当时的人们并未为此担心,因为所有已知的物体 的密度都达不到使这个内部区域扩大到物体之外的程 度,即对于所有已知情况,施瓦氏解的这个奇怪部分 都不适用。
五、膨胀的宇宙 1. 星系谱线红移 1929年,美国天文学家哈勃观测到星系谱线 的红移现象,发现星系离开我们的退行速度为
广义相对论简介共30页文档
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
广义相对论简介
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿