八年级数学下册 10.3《生活中的概率问题》同步练习 鲁教版

合集下载

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(03)

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(03)

鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(03)一、选择题(共4小题)1.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.2.同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()A.两正面都朝上B.两背面都朝上C.一个正面朝上,另一个背面朝上D.三种情况发生的概率一样大3.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.4.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.二、填空题(共5小题)5.用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为.6.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.7.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.8.有4张看上去无差别的卡片,上面分别写着2,3,4,5.随机抽取1张后,放回并混合在一起,再随机抽取1张,则第二次抽出的数字能够整除第一次抽出的数字的概率是.9.从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是.三、解答题(共21小题)10.某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:(1)求a、b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.11.某校开展校园“美德少年”评选活动,共有“助人为乐”,“自强自立”、“孝老爱亲”,“诚实守信”四种类别,每位同学只能参评其中一类,评选后,把最终入选的20位校园“美德少年”分类统计,制作了如下统计表,后来发现,统计表中前两行的数据都是正确的,后两行的数据中有一个是错误的.根据以上信息,解答下列问题:(1)统计表中的a=,b;(2)统计表后两行错误的数据是,该数据的正确值是;(3)校园小记者决定从A,B,C三位“自强自立美德少年”中随机采访两位,用画树状图或列表的方法,求A,B都被采访到的概率.12.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.13.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm 的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.14.为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.15.达州市某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级,绘制了两种不完整统计图.根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图,求A等级中一男一女参加比赛的概率.(男生分别用代码A1、A2表示,女生分别用代码B1、B2表示)16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.17.“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.18.老师和小明同学玩数学游戏.老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字外其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率.于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.19.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算m=;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.20.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果,节目组规定:每位选手至少获得两位评委的“通过”才能晋级(1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.21.901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:(1)该班的学生共有名;(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.22.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.小云玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之积为负数的概率.24.八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.25.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.26.为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:(1)某市2015年1﹣5月份新注册小型企业一共家,请将折线统计图补充完整.(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.27.某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.28.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.29.一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.30.2015年湘潭市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D四所.(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;(2)求填报方案中含有A学校的概率.第11页(共11页)鲁教五四版八年级(下)中考题单元试卷:第10章 频率与概率(03)参考答案一、选择题(共4小题)1.B ; 2.C ; 3.C ; 4.C ;二、填空题(共5小题)5.; 6.; 7.; 8.; 9.;三、解答题(共21小题)10. ; 11.4;0.15;0.32;0.30; 12. ; 13. ; 14. ; 15.40;20;40; 16. ; 17. ; 18. ; 19.40;15%; 20. ; 21.60;22. ; 23. ; 24.36;40;5; 25.144;3; 26.16; 27. ; 28.144;; 29.; 30. ;。

2021年八年级数学下册 第十章频率与概率复习教案 鲁教版

2021年八年级数学下册 第十章频率与概率复习教案 鲁教版

2021年八年级数学下册 第十章频率与概率复习教案 鲁教版一、知识目标:经历解决问题的活动过程,进一步体会概率与统计的联系,建立良好的随机观念通过具体问题情境,让学生进一步体会如何评判某件事情是否“合算”,并利用它对一些游戏活动的公平性作出评判二、教学重点和难点重点:难点:体会如何评判某件事情是否“合算”三、归纳 ⎪⎩⎪⎨⎧⎩⎨⎧不确定事件不可能事件必然事件确定事件事件 四、典例分析1 、将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.(1)一次实验中,硬币两次落地后可能出现几种情况图片来源,百度搜索→硬币.(2)做20次实验,根据实验结果,填写下表.结果 正正 正反 反反 频数 频率(3)根据上表,制作相应的频数分布直方图. (4)经观察,哪种情况发生的频率较大. (5)实验结果为“正反”的频率是多大.(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。

(7)依上表,绘制相应的折线统计图.(8)计算“正反”出现的概率.(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近.2 、已知一口袋中放有黑白两种颜色的球,其中黑色球6个,白色球若干,为了估算白球的个数,可以每次从中取出一球,共取50次,如果其中有白球45个,则可估算其中白球个数为多少个?简要说出你的计算过程.五、练习1.口袋中有2个白球,1个黑球,从中任取一个球,用实验的方法估计摸到白球的概率为_________.2.把一对骰子掷一次,共有_________种不同的结果.3.任意掷三枚均匀硬币,如果把掷出正面朝上记为“上”,掷出正面朝下记为“下”,所有的结果为_________.4.必然事件的概率为_________,不可能事件的概率为_________,不确定事件的概率范围是_________.5.频数和频率都能反映一个对象在实验总次数中出现的频繁程度,我认为:(1)频数和频率间的关系是_________.(2)每个实验结果出现的频数之和等于_________.(3)每个实验结果出现的频率之和等于_________.六、个人小结单元测试班级:__________________姓名:___________________得分:_____________________一、填空题1.样本频率分布反映了_________.2.在对100个数据进行整理的频率分布表中,各组的频数之和等于_________,各组的频率之和等于_________.3.在频率分布直方图中,小长方形的面积等于_________,各小长方形的面积的和等于_________.4.把一组数据分成5组,列出频率分布表,其中第1, 2, 3组的频率之和为0.61,第5组的频率为0.12,那么第4组的频率为_________.5.观察图1,回答下列问题.图1(1)第_________组的频率最小,第_________组的频率最大.(2)各小组的频率的和为_________.(3)如果第5组的频率为0.1,那么第4组的频率为_________.6.设计一个方案,估算从3个男生和4个女生中选一个人去参加座谈会是男生的概率是_________.7.一个口袋中有5粒糖,1粒红色,2色黄色,2粒白色,今从中任取一粒,是白色的概率为_________.8.有5个零件,已知其中混入了一个不合格产品现取其中一个,是正品的概率是_________.9.如图2,通过试验估算,指针落在阴影部分的概率是_________.(阴影部分的扇形圆心角为120°)图210.投掷两枚硬币,都是反面的概率为_________.11.在一个样本中,50个数据分别落在5个组内,第一、二、三、五组的数据个数分别为2, 8, 15, 5,则第四组的频数为_________,频率为_________.二、选择题12.下列哪些事件是必然事件()A.打开电视,它正播放动画片B.黑暗中从我的一大串钥匙中随便选出一把,用它打开了门C.气温低于零摄氏度,水会结冰D.今天下雨,小明上学迟到13.我们探究概率主要是针对()A.必然事件B.不可能事件C.不确定事件D.上述事件以外的其他事件14.某学校有320名学生,现对他们的生日进行统计(可以不同年)()A.至少有两人生日相同B.不可能有两人生日相同C.可能有两人生日相同,且可能性较大D.可能有两人生日相同,但可能性较小三、解答题15.一次数学竞赛,某校有400名学生参加,抽出20名学生的数学成绩如下:8575 89 90 85 78 94 88 83 6672 71 85 86 96 80 98 87 62 92(1)填写下面的频率分布表(2)根据上表估计:全校400名学生中,成绩在80分以上的人数约为多少?占多大比例?16.某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条鱼重2.5千克,第二网捞出25条,称得平均每条鱼重2.2千克,第三网捞出35条,称得平均每条鱼重2.8千克,试估计这塘中鱼的总重量.17.已知一个样本25, 21, 23, 25, 27, 29, 25, 28, 30, 29,26, 24, 25, 27, 26, 22, 24, 25, 26, 28,(1)列频率分布表,画频率分布直方图.(2)说明频率分布表中频率之和为什么等于1?(3)根据频率分布表指出样本数据落在哪个范围内最多,哪个范围内最少?(4)样本数据落在22.5~24.5范围内的约占总数据的百分之几.18.某班同学参加公民道德知识竞赛,将竞赛所得成绩(得分取整数)进行整理后分成五组,并绘制成频率分布直方图(如图3所示),请结合直方图提供的信息,解答下列问题:图3(1)该班共有多少名学生?(2)60.5~70.5这一分数段的频数、频率分别是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?(4)根据统计图,提出一个问题,并回答你所提供的问题.M24976 6190 憐23805 5CFD 峽31227 79FB 移~23190 5A96 媖28632 6FD8 濘a21404 539C 厜33459 82B3 芳27655 6C07 氇053。

100测评网_第十章 第3课时 生活中的概率问题(鲁教版)初二数学下学期

100测评网_第十章 第3课时 生活中的概率问题(鲁教版)初二数学下学期

一、单项选择题(每题10分,共100分)1、有两组扑克牌各三张,牌面数字均分别为1,2,3,随意从每组牌中各抽一张,数字和是奇数的概率是A、59B、29C、13D、49答案:D解析从每组牌中各抽一张,共有9种可能,其中数字和为奇数的有(1,2),(2,1),(2,3),(3,2),一共有4种,所以数字和是奇数的概率是49,答案选D。

2、福利奖券的特等奖的概率是100万分之一,这句话的意思是A、一定摸不到特等奖B、一定摸到特等奖C、摸到特等奖的机会很小D、很有可能摸到特等奖答案:C解析由题,福利奖券的特等奖的概率是100万分之一,概率比较小,有可能摸到特等奖,也可能摸不到特等奖,但摸到特等奖的机会很小,答案选C。

3、口袋里放有3个黄球和3个黑球,每个球除颜色外颜色都相同,从中任意摸出两个球,一个球是黄球一个球是黑球的概率是A、12B、35C、15D、25答案:B解析从口袋中的6个球中任意摸出两个球共有15种可能,其中一个球是白球一个是黑球有9种可能,所以概率为93155,答案选B。

4、有两组扑克牌各三张,牌面数字均分别为2,3,4,随意从每组牌中各抽一张,数字和等于6的概率是A 、59B 、29C 、13D 、49答案:C 解析从每组牌中各抽一张共有9种可能,其中数字和等于6的有(2,4),(4,2),(3,3),一共有3种,所以数字和等于6的概率是3193=,答案选C 。

5、用两个转盘设计一个“配紫色”的游戏(红,蓝配成紫色),则配成的概率是A 、12B 、13C 、14D 、23答案:C 解析转动两个转盘,有12种可能性,其中出现配成紫色的有(红,蓝1),(红,蓝2),(蓝,红),一共3种,所以配成的概率是31124=,答案选C 。

6、小红、小芳、小明在一起做游戏时需要确定做游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定,请问在一个回合中三个人都出“布”的概率是A 、14B 、13C 、127D 、19答案:C 解析小红、小芳、小明出的方式有27种,其中三个人均出布的只有1种,所以在一个回合中三个人都出“布”的概率是127,答案选C。

鲁教五四版八年级(下) 中考题同步试卷:10.2 用列举法计算概率(05)

鲁教五四版八年级(下) 中考题同步试卷:10.2 用列举法计算概率(05)

鲁教五四版八年级(下)中考题同步试卷:10.2 用列举法计算概率(05)一、选择题(共7小题)1.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.2.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A.B.C.D.3.从1、2、3、4中任取两个不同的数,其乘积大于4的概率是()A.B.C.D.4.一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机摸出一个小球,则两次摸出小球的号码之积为偶数的概率是()A.B.C.D.5.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.6.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.B.C.D.7.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.二、填空题(共13小题)8.若从长度分别为2,3,4,5的四条线段中任选取三条,能组成直角三角形的概率为.9.在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是.10.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.11.有三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐3号车的概率为.12.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.13.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.14.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为.15.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.16.一个不透明的袋子中装有仅颜色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,则第一个人摸到红球且第二个人摸到白球的概率是.17.在一个不透明的袋子中,装有大小、形状、质地等都相同的红色、黄色、白色小球各1个,从袋子中随机摸出一个小球,之后把小球放回袋子中并摇匀,再随机摸出一个小球,则两次摸出的小球颜色相同的概率是.18.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为.19.从2、3、4这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是.20.有正面分别写有数字1、2、3、4的四张卡片(卡片除数字不同外,其余均相同),背面朝上充分混合后,小明从中随机抽取一张,再从剩下的卡片中随机抽取另一张.若把第一张卡片上的数字作为个位数字,第二张卡片上的数字作为十位数字,组成一个两位数,则所组成的两位数是3的倍数的概率是.三、解答题(共10小题)21.某市教育系统在开展党的群众路线教育实践活动中,号召党员教师于贫困学生“手拉手”结成帮扶对子,市教育局从全市360所学校中随机抽取A、B、C、D、E、F六所学校,对活动中各校的先进党员教师人数进行了分析统计,制订了如下两幅不完整的统计图.(1)市教育局采取的调查方式是(填“普查”或“抽样普查”),市教育局所调查的六所学校先进党员教师共有人.请把图2补充完整,请估计全市360所学校此次活动中共先进党员教师的额人.(2)市教育局决定从A、B两所学校先进党员教师中任意抽两人参加总结座谈会,用树状图或列表法求抽出两名先进党员教师恰好来自同一所学校的概率.22.小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.23.有三张质地均匀形状相同的卡片,正面分别写有数字﹣2、﹣3、3,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为m的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为n的值,两次结果记为(m,n).(1)用树状图或列表法表示(m,n)所有可能出现的结果;(2)化简分式﹣,并求使分式的值为自然数的(m,n)出现的概率.24.如图,是一个可以自由转动的转盘,转盘被平均分成四个相同的扇形,分别写有1、2、3、4四个数字,指针位置固定,转动转盘后任其自由停止(指针指向边界时重转),现转动转盘两次,请用画树形图法或列表法求出指针指向相同数字的概率.25.某演讲比赛中只有甲、乙、丙三位同学进行决赛,他们通过抽签决定演讲顺序,用列表法或画树状图法求:(1)第二个出场为甲的概率;(2)丙在乙前面出场的概率.26.在一个不透明的布袋中,装有三个小球,小球上分别标有数字“1”、“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从布袋中摸出一个小球,则摸出的球为“3”的概率是多少?(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y>3的概率.27.有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.28.在一个不透明的袋子里装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子里随机摸出1个乒乓球,记下标号后放回,再从袋子里随机摸出1个乒乓球记下标号,请用画树状图(或列表)的方法,求两次摸出的乒乓球标号乘积是偶数的概率.29.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.30.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.鲁教五四版八年级(下)中考题同步试卷:10.2 用列举法计算概率(05)参考答案一、选择题(共7小题)1.A;2.C;3.C;4.D;5.C;6.C;7.C;二、填空题(共13小题)8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;三、解答题(共10小题)21.抽样普查;20;1200;22.;23.;24.;25.;26.;27.;28.;29.;30.300;29.3%;24°;。

河南省濮阳市第六中学八年级数学下册10.3生活中的概率问题学案1(无答案)鲁教版五四制

河南省濮阳市第六中学八年级数学下册10.3生活中的概率问题学案1(无答案)鲁教版五四制

生活中的概率问题【学习目标】1.经历试验、统计等过程,在活动中进一步发展合作交流的意识和能力;2.能用试验的方法估计一些复杂的随机事件发生的概率【学习重点】用试验的方法估计一些复杂的随机事件发生的概率【学习过程】一、课前阅读:“聪明”的逻辑据说有个人很怕坐飞机.说是飞机上有恐怖分子放炸弹.他说他问过专家,每架飞机上有炸弹的可能性是百万分之一.百万分之一虽然很小,但还没小到可以忽略不计的程度,所以他从来不坐飞机.可是有一天有人在机场看见他,感到很奇怪.就问他,你不是说飞机上有炸弹吗?他说我又问过专家,每架飞机上有一棵炸弹的可能性是百万分之一,但每架飞机上同时有两棵炸弹的可能性只有百万的平方分之一,也就是说只有万亿分之一.这已经小到可以忽略不计了.朋友说这数字没错,但两棵炸弹与你坐不坐飞机有什么关系?他很得意的说:当然有关系啦.不是说同时有两棵炸弹的可能性很小吗,我现在自带一棵.如果飞机上另外再有一棵炸弹的话,这架飞机上就同时有两棵炸弹.而我们知道这几乎是不可能的,所以我可以放心地去坐飞机.聪明的你告诉我,他的逻辑有道理吗?二、预习检测:1、400个同学中,一定有2个同学的生日相同(可以他同年)吗?300个同学呢?为什么?2、可有人说:“50个同学中,就很可能有2个同学生日相同”这话正确吗?调查全班同学,看看有没有2个同学的生日相同。

3、如果你们班50个同学中有2个同学的生日相同,那么能说明50个同学中有2个同学生日相同的概率是1吗?如果你们班没有2个同学生日相同,那么能说明其相应概率是0吗?三、探究与交流:每个同学课外调查10个人的生日,从全班的调查结果中随机选取50个被调查人,看看他们中有没有2个人的生日相同。

将全班同学的调查数据集中起来,设计一个方案,估计50个人中有2个人生日相同的概率。

四、达标练习:课外调查的10个人的生肖分别是什么?他们中有2个人的生肖相同吗?6个人中呢?利用全班的调查数据设计一个方案,估计6个人有2个人的生肖相同的概率。

【中学教材全解】2013-2014学年鲁教版八年级数学下(山东教育版)第十章频率与概率检测题及答案解析

【中学教材全解】2013-2014学年鲁教版八年级数学下(山东教育版)第十章频率与概率检测题及答案解析

第十章 频率与概率检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2013·哈尔滨中考)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( )A.116B.18C.14D.12 2.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14B.12C.34D.13.(2013·山东威海中考)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率 是( )A.310B.925C.920D.354.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A .21B .32C .43 D .545.下列说法正确的是( ) A .在一次抽奖活动中,“中奖的概率是1100”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大小王的扑克牌中任意抽一张,抽到的牌是6的概率是1136.某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( ) A.12 B.13C.14D.16 7.(2013·山东青岛中考)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口第4题图袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个. A.45 B.48 C.50 D.55 8.某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:如果花2元钱买1张彩票,那么所得奖金不少于50元的概率是( ) A.12 000 B.1200 C 1500 D.35009. 青青的袋中有仅颜色不同的红、黄、蓝、白球若干个,晓晓又放入5个除颜色外其他都相同的黑球,通过多次摸球试验,发现摸到红球、黄球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( ) A.5个 B.10个 C.15个 D.30个10.航空兵空投救灾物资到指定的区域(大圆)如图所示,若要使空投物资落在中心区域(小圆)的概率为14,则小圆与大圆的半径比值为( ) A.14B.4C. 12D.2二、填空题(每小题3分,共24分)11.(2013·河南中考)现有四张完全相同的卡片,上面分别标有数字-1,-2,3,4.把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是______. 12.从一副扑克牌(除去大、小王)中任抽一张,则抽到红心的概率为 ;抽到黑桃的概率为 ;抽到红心3的概率为______.13.(2013·乌鲁木齐中考)在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球n 只,若从袋中任取一个球,摸出白球的概率是34,则n =________. 14.在一个不透明的袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是 .15.图中所示的两个圆盘中,指针落在每一个区域内的机会均等,则两个指针同时落在偶数上的概率是.16.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在书架上,有____种摆法,其中恰好摆成“上、中、下”顺序的概率是 .17.(2013·长沙中考)在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是 .第15题图 第10题图18.那么该班共有 人,随机地抽取1人,恰好是获得30分的学生的概率是 .三、解答题(共46分)19.(6分)有两组卡片,第一组三张卡片上各写着A 、B 、B ,第二组五张卡片上各写着A 、B 、B 、D 、E .试用列表法求出从每组卡片中各抽取一张,两张都是B 的概率.20.(6分)一个桶里有60个除颜色外都相同的弹珠,一些是红色的,一些是蓝色的,一些是白色的.已知从中随机取出一个,是红色弹珠的概率是35%,是蓝色弹珠的概率是25%.则桶里每种颜色的弹珠各有多少?21.(6分)在一个布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,试求乙在游戏中能获胜的概率.22.(7分)(2013·武汉中考)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁. (1)请用列表或画树状图的方法表示出上述试验所有可能的结果; (2)求一次打开锁的概率.23.(7分)如图,有两个可以自由转动的转盘A 、B ,转盘A 被均匀分成4等份,每份标上1、2、3、4四个数字;转盘B 被均匀分成6等份,每份标上1、2、3、4、5、6六个数字.有人为甲乙两人设计了一个游戏,其规则如下: (1)同时转动转盘A 与B ;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的规则是否公平?请你说明理由;如果不公平,请你设计一个公平的规则,并说明理由.24.(7分)甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.第23题图25.(7分)(2013·成都中考)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:请根据上表提供的信息,解答下列问题:(1)表中x的值为_______,y的值为________;(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,…表示,现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.第十章频率与概率检测题参考答案一、选择题1.C 解析:画树状图如图所示.∵共有16种等可能情况,两次都摸出白球的情况有4种,∴两次都摸出白球的概率为41= 164.2.B 解析:四个图案中是中心对称图形的有圆和矩形,故从中任意抽出一张,是中心对称图形的概率为1 2 .3.A 解析:列表分析出所有等可能结果如下:第1题答图从表中发现共有20种摸球结果,其中两次都摸到红球的结果有6种,根据概率计算公式可得P (两次都摸到红球)63==2010. 4.D 解析:设C 点对应的数为,则|x -(-1)|≤2,解得.此区域在数轴上对应的长度为4,AB 的长度为5,所以概率是54. 5.D6.D 解析:画出树状图可得.7.A 解析:本题考查了简单随机事件的概率计算,设口袋中有x 个红球,由题意得,P (摸到白球)510=5100x =+,解得x =45. 8.D 解析:10万张彩票中设置了10个1 000元,40个500元,150个100元,400个50元的奖项,所以所得奖金不少于50元的概率为10401504006003100 000100 000500+++==. 9.C 解析:由于知道有5个黑球,又黑球所占的比例为1-30%―15%―40%―10%=5%,所以袋中球的总数为5÷5%=100(个),从而黄球的数量为100×15%=15(个). 10.C 解析:由题意可知小圆的面积是大圆面积的14,从而小圆的半径是大圆半径的12.二、填空题11.23 解析:从标有数字-1,-2,3,4的卡片中随机抽取两张,所有等可能的情况有(-1,-2),(-1,3),(-1,4),(-2,3),(-2,4),(3,4),共6种,而数字之积为负数的情况有(-1,3),(-1,4),(-2,3),(-2,4),共4种,所以两张卡片上的数字之积为负数的概率是42=63.12.14 14 152 解析:一副扑克牌共有54张,除去大、小王共有52张,其中红心有13张,黑桃有13张.13.9 解析:根据概率的计算公式列出方程:334n n =+,解得n =9.14.13解析:画出树状图如下:可知两次都摸到黄色球的概率是13.15.62516.6 1617.10 解析:由题意可得20.2n,解得n =10.18.65213解析:=(人),1026513=. 三、解答题19.解:列出表格如下:所有可能出现的情况有15种,其中两张都是B 的情况有4种,故从每组卡片中各抽取一张,两张都是B 的概率为415. 20.解:由题意可知取出白色弹珠的概率是1-35%-25%=40%. 则红色弹珠有60×35%=21(个),蓝色弹珠有60×25%=15(个),白色弹珠有60×40%=24(个).21.解:(1)树状图如下图所示:(2)由树状图可知所有可能情况共有9种,其中乙摸到与甲相同颜色的球的情况有(白,白),(红,红),(黑,黑)三种,故乙在游戏中能获胜的概率为13.22.分析:(1)每把锁都对应着4把钥匙,有4种等可能情况,两把锁共有8种等可能情况;(2)直接利用概率计算公式求解即可. 解:(1)设两把不同的锁分别为A ,B ,能把A ,B 两锁打开的钥匙分别为a ,b ,其余两把钥匙分别为m ,n .根据题意,可以画出树状图,如图所示:黄球2 第一次 第二次开始红球 黄球1 黄球2红球红球 黄球1黄球1黄球2 第14题答图甲 乙开始 黑红 白 黑红 红白黑红白 白 黑第21题答图由图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴ P (一次打开锁)=28=14. 23.解:游戏不公平.列出表格如下:所有可能结果共24种,其中积为奇数的结果有6种,积为偶数的结果有18种,所以P (奇)=14;P (偶)=34,所以P (偶)>P (奇),所以不公平. 新规则:⑴同时自由转动转盘A 和B ;⑵转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜. 理由:因为P (奇)=12;P (偶)=12,所以P (偶)=P (奇),所以公平. 24.解:(1)设乙盒中有x 个蓝球,则从乙盒中任意摸取一球,摸到蓝球的概率13xP x =+; 从甲盒中任意摸取一球,摸到蓝球的概率214P =. 根据题意,得132x x =+, 解得3x =,所以乙盒中有3个蓝球. (2)方法一:列表如下:第22题答图由表格可以看出,可能的结果有24种,其中均为蓝球的有3种,因此从甲、乙两盒中各摸取一球,两球均为蓝球的概率31248P ==. (也可以用画树状图法或枚举法)方法二:从甲盒中任意摸取一球,摸到蓝球的概率为14,从乙盒中任意摸取一球,摸到蓝球的概率为12. 则从甲、乙两盒中各摸取一球,两球均为蓝球的概率为111428P =⨯=. 25.分析:(1)表中x 的值为50-35-11=4,y 的值为1-0.08-0.22=0.7.(2)先用树状图或列表法求出随机抽取两名学生的所有等可能结果数和恰好抽到学生A 1和A 2的结果数,再根据概率的计算公式求出所求事件的概率. 解:(1)4;0.7(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4, 画树状图,如图所示:所有等可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1), (A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3). 或列表如下:由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种.第25题答图∴ P (恰好抽到A 1,A 2两名学生)21126==.。

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(04)

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(04)

鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(04)一、选择题(共2小题)1.经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是()A.B.C.D.2.书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是()A.B.C.D.二、填空题(共2小题)3.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.4.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是.三、解答题(共26小题)5.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).6.课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B ﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.7.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.8.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.9.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”);(2)从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.10.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.11.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)12.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m=,n=.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?13.希望学校八年级共有4个班,在世界地球日来临之际,每班各选拔10名学生参加环境知识竞赛,评出了一、二、三等奖各若干名,校学生会将获奖情况绘制成如图所示的两幅不完整的统计图,请依据图中信息解答下列问题:(1)本次竞赛获奖总人数为人;获奖率为;(2)补全折线统计图;(3)已知获得一等奖的4人为每班各一人,学校采取随机抽签的方式在4人中选派2人参加上级团委组织的“爱护环境、保护地球”夏令营,请用列举法求出抽到的两人恰好来自二、三班的概率.14.某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图:(1)成绩x在什么范围的人数最多?是多少人?(2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少?(3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.15.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).16.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).17.在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.18.小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?19.在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.20.某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.请根据所给信息解答以下问题:(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.21.某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:(1)本次抽查的学生共人,a=,并将条形统计图补充完整;(2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人?(3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.22.为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.(1)抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;(2)抽查C厂家的合格零件为件,并将图1补充完整;(3)通过计算说明合格率排在前两名的是哪两个厂家;(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.23.电视节目“奔跑吧兄弟”播出后深受中小学生的喜爱,小刚想知道大家最喜欢哪位“兄弟”,于是在本校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的“兄弟”),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.(2)将两幅统计图补充完整.(3)若小刚所在学校有2000名学生,请根据图中信息,估计全校喜欢“Angelababy”的人数.(4)若从3名喜欢“李晨”的学生和2名喜欢“Angelababy”的学生中随机抽取两人参加文体活动,则两人都是喜欢“李晨”的学生的概率是.24.在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数y =的图象上.25.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲、乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购物满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.26.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.27.图1是某中学九年级一班全体学生对三种水果喜欢人数的频数分布统计图,根据图中信息回答下列问题:(1)九年级一班总人数是多少人?(2)喜欢哪种水果人数的频数最低?并求出该频率;(3)请根据频数分布统计图(图1)的数据,补全扇形统计图(图2);(4)某水果摊位上正好只摆放有这三种水果出售,王阿姨去购买时,随机购买其中两种水果,恰好买到樱桃和枇杷的概率是多少?用树状图或列表说明.28.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.29.钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.(1)该班学生选择“报刊”的有人.在扇形统计图中,“其它”所在扇形区域的圆心角是度.(直接填结果)(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有人.(直接填结果)(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)30.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(04)参考答案一、选择题(共2小题)1.C;2.A;二、填空题(共2小题)3.;4.;三、解答题(共26小题)5.;6.3;1;7.;8.;9.2;10.3;11.丙;甲;乙;;;12.120;48;15;13.20;50%;14.;15.200;16.;17.;18.25%;19.;20.;21.300;30%;22.500;90°;380;23.200;;24.;25.;26.50;72°;27.;28.30;144°;29.6;36;420;30.;。

八年级数学下册 第十章《频率与概率》单元测试 鲁教版

八年级数学下册 第十章《频率与概率》单元测试 鲁教版

第十章《频率与概率》整章水平测试一、试试你的身手(每小题3分,共24分)1.现有30件产品,其中3件是次品,则该30件产品的正品率为.从中任选一件,它为次品的概率为.2.在投针试验中,若l=5cm,a=20cm,则针与平行线相交的概率约为.3.在用模拟试验估计50名同学中有两个是同一天生日的概率中,将小球每次搅匀的目的是.4.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.5.在100张奖券中,设头等奖1个,二等奖2个,三等奖3个.若从中任取一张奖券,则不中奖的概率是.6.某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是,在这2 000个灯泡中,估计有个为不合格产品.7.在一次摸球试验中,一个袋子中的球除了黄色、红色和白色三种颜色外,其它的都相同.若从中任意摸出一球,记下颜色后再放回去,再摸,若重复这样的试验400次,98次摸出了黄球,则我们可以估计从口袋中随机摸出一球它为黄球的概率约为.8.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼尾.二、相信你的选择(每小题3分,共24分)1.抛掷一个质地均匀的正方体玩具(它的每个面上分别标有数字1,2,3,4,5,6),它落地时向上的数是3的概率是()A.13B.1 C.12D.162.抛掷一枚质量分布均匀的硬币,出现“正面”和出现“反面”的机会均等,则下列说法正确的是()A.抛1 000次的话一定会有500次出现“正面”B.抛1 000次的话一定会有500次出现“反面”C.抛1 000次的话出现“正面”和出现“反面”的次数都可能接近500次D.抛1 000次的话,出现“正面”和出现“反面”的次数无法预测,没有规律可循3.一个家庭有两个小孩,则所有可能的基本事件有()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)4.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现正面的频数是6C.出现反面的频率是60% D.出现反面的频数是60%5.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为()A.750B.1100C.748D.151006.袋中有5个白球,有n个红球,从中任意取一个,恰为红球的机会是23,则n为()A.16 B.10 C.20 D.187.367个不同人之中,必有两个人生日相同的概率为()A.12B.366367C.0.99 D.18.①一副扑克牌(去掉大、小王),任意抽取一张,则抽到方块牌与抽到黑桃牌的概率一样大;②不透明的甲口袋装着大小、外形等一模一样的5个红球,3个蓝球,2个白球,乙口袋装着大小、外形等一模一样的4个红球,3个蓝球,3个白球,则两个口袋中摸着蓝球的概率一样大;③掷一个均匀的正方体,每个面上分别标有数字1,2,3,4,5,6,则朝上的数字小于5的概率比大于5的概率要大;④掷一枚质地均匀的普通六面体骰子,掷得的数不大于3的概率比掷得的数不小于2的概率要小.其中说法正确的有()A.1个B.2个C.3个D.4个三、挑战你的技能(本大题共56分)1.(本题10分)某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率约为多少?2.(本题10分)某个地区几年内的新生婴儿数及其中男婴数统计如下表:请回答下列问题:(1)填写上表各年的男婴出生频率mn.(结果都保留三个有效数字)(2)在大量重复进行同一试验时,事件A发生的频率mn总是接近于某个常数并在它的附近摆动,我们把这个常数叫做事件A的概率,记作P A.= mn.根据(1)填写的结果及以上说明,这一地区男婴出生的概率P(A)= .3.(本题10分)如图1是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.4.(本题12分)某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对选手参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?5.(本题14分)这是一个抛掷三个筹码的游戏.准备三个筹码,第一个一面画上×,另一面画上d;第二个一面画上d,另一面画上#;第三个一面画上#,另一面画上×.甲、乙两人中一人抛掷三个筹码,另一人记录每次游戏谁赢.游戏规则:掷出的三个筹码中有一对的(××或dd或##),甲方赢;否则,乙方赢.你认为这个游戏公平吗?若不公平,谁赢的机会大?试通过计算来说明.四、超越你的极限(本题16分)如图2,小明,小华用四张扑克牌玩游戏,他俩将扑克牌洗均匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.(1)若小明恰好抽到的是黑桃4.①请绘制这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜;反之,则小明负,你认为这个游戏是否公平?说明你的理由.参考答案一、1.910,1102.0.1593.使每个球出现的机会均等4.3,2,15.47506.0.1,200 7.148.2 700二、1.D 2.C 3.C 4.C 5.A 6.B 7.D 8.D三、1.(1)略(2)这名运动员射击一次,击中10环的概率约为0.9 2.(1)分别填入:0.509,0.510,0.512,0.510;(2)0.51.3.牌面数字之和等于5的概率为14.4.恰好选出小敏和小强参赛的概率是16.5.游戏不公平,甲方赢的机会较大.四、(1)略;(2)这个游戏不公平.。

数学解决实际生活中的概率问题

数学解决实际生活中的概率问题

数学解决实际生活中的概率问题概率是数学中的一个重要分支,它主要研究随机事件的发生可能性。

在我们的日常生活中,各种各样的决策都需要考虑到概率因素。

本文将通过几个实际生活中的例子,探讨数学如何解决这些概率问题。

一、购买彩票的概率计算彩票是人们常常参与的一项博彩活动,而中奖的概率成为人们购买彩票时必须要考虑的重要因素之一。

以某个彩票为例,该彩票号码是由6个数字组成,每个数字从1到49中选择。

那么,我们要如何计算中奖的概率呢?首先,我们需要确定总共有多少种可能的组合。

根据排列组合的知识,从49个数字中选择6个数字进行排列,共有C(49,6)种可能的组合。

接下来,我们需要计算中奖的可能性,即选择的6个数字与中奖号码一致的概率。

中奖的概率就是中奖号码所占的比例,即1/C(49,6)。

二、投资的风险评估投资是一种常见的财务决策,而投资的风险评估往往与概率息息相关。

假设某人打算将资金投资于某只股票,他可以通过计算该股票的历史回报率来评估投资的风险。

首先,我们需要选择一个合适的时间段,统计该股票在此期间的涨跌情况。

假设该股票在过去某一年中共有250个交易日,其中有100个交易日上涨,150个交易日下跌。

那么,该股票在任一交易日上涨的概率就是100/250=0.4,下跌的概率就是150/250=0.6。

通过计算得知该股票上涨和下跌的概率,投资者可以对其进行风险评估。

比如,如果该股票上涨的概率较高,那么投资者可能认为其风险较小,可能更愿意选择此股票作为投资对象。

三、赌场中的骰子概率在赌场中,骰子是一种常见的赌具。

许多赌博游戏都与骰子的点数密切相关。

因此,了解骰子点数的概率分布对于玩家能否制定出更好的策略具有重要意义。

一颗六面骰子是最常见的骰子,每个面上的点数从1到6不等。

在理想情况下,每个点数的概率应该是相等的,即1/6。

然而,在实际情况下,骰子的质量和形状可能会导致点数的分布不均匀。

通过进行多次的骰子实验,可以得到每个点数相对出现的频率,从而得出相应的概率。

生活中的数学概率问题

生活中的数学概率问题

生活中的数学概率问题有很多,以下是一些例子:
1. 蒙提霍尔问题(三门问题):假设你去参加一个电视综艺节目,台上准备了三扇门,其中一扇门后藏有轿车,另外两扇门后只有山羊。

你选择了一扇门,然后主持人告诉你,你选的那扇门后面是山羊,问你要不要换一扇门?这是一个著名的数学概率问题,其实生活中有很多类似的情境,比如赌博、抽奖等。

2. 扔硬币问题:假设你有一个公正的硬币(即正面和反面的出现概率均等),你扔这个硬币,出现正面的概率是1/2,出现反面的概率也是1/2。

这个概率问题在现实生活中也有很多应用,比如赌博、决策等。

3. 扑克牌问题:在玩扑克牌的时候,不同的牌型出现的概率是不同的。

比如,出现一个特定花色的牌的概率是多少?出现一个特定牌型的概率又是多少?这些概率问题可以帮助我们更好地理解赌博的风险和策略。

4. 生日悖论:假设在一个房间里有23个人,那么至少有两个人在同一天出生的概率是多少?这个概率问题虽然看起来简单,但是背后隐藏着深刻的数学原理。

5. 赌博问题:在赌博中,经常涉及到概率和期望值的问题。

比如,掷骰子掷出6点的概率是多少?买彩票中奖的概率又是多少?这些问题的答案都涉及到概率的计算和应用。

总之,生活中的数学概率问题非常多,它们在我们的日常生活中都有应用。

通过学习和理解这些概率问题,我们可以更好地理解风险和决策,做出更明智的选择。

河南省濮阳市第六中学八年级数学下册 10.3 生活中的概率问题学案2(无答案) 鲁教版五四制

河南省濮阳市第六中学八年级数学下册 10.3 生活中的概率问题学案2(无答案) 鲁教版五四制

生活中的概率问题
【学习目标】
能利用计算器或计算机等进行模拟试验,估计一些复杂的随机事件发生的
概率
【学习重点】
用计算器等进行模拟试验,估计一些复杂的随机事件发生的概率
【学习过程】
一、课堂引入:
上节课,通过调查,我们估计了6个人中有2个人生肖相同的概率,要想
使这种估计尽可能精确,就需要尽可能多地增加调查对象。

这样做既费时又费
力,能不能不用调查即可估计出这一概率呢?这就是我们这节课所要探讨的
“模拟试验”
试验方案1:用12个编有号码的、大小相同的球代替12种不同的生肖,这
样每个人的生肖都对应着一个球。

6个人中有2个人生肖相同,就意味着6个
球中有2个球的号码相同。

你能完成这个方案吗?
思考:在这个试验方案中,有哪些注意事项?
二、探究与交流:
除了用大小相同的12个球进行模拟外,你还能想出其他方法吗?
方案2:用计算器产生的随机数进行模拟:
两人组成一个小组,利用计算器产生1-12之间的随机整数,并记录下来。

每产生6个随机整数为一次试验。

每组做10次试验,看看有几次试验中存在2个相同的整数。

将全班的数据集中起来,估计6个1-12之间的整数中有2个数相同的概率。

三、达标练习:
用计算器模拟试验估计50个人中有2个人生日相同的概率:
方案:
结果:
四、应用拓展:
老师有5张电影票,现在要将它们随机分给班上的5个同学,为了保证公正,你能利用计算器帮老师作出决定吗?
【课后反思】。

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(01)

鲁教五四版八年级(下) 中考题单元试卷:第10章 频率与概率(01)

鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(01)一、选择题(共3小题)1.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.12.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.3.一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A.B.C.D.二、填空题(共4小题)4.把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是.5.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.6.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.7.现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.三、解答题(共23小题)8.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共调查了名学生;(2)请补全两幅统计图;(3)若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.9.某学校初三年级男生共200名,随机抽取10名测量他们的身高(单位:cm)为:181,176,169,155,163,175,173,167,165,166.(1)求这10名男生的平均身高和上面这组数据的中位数;(2)估计该校初三年级男生身高高于170cm的人数;(3)从身高为181,176,175,173的男生中任选2名,求身高为181cm的男生被抽中的概率.10.有三张卡片(形状、大小、颜色、质地都相等),正面分别写上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图或列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.11.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.12.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?13.某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.14.质地均匀的小正方体,六个面分别有数字“1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.(1)求数字“1”出现的概率;(2)求两个数字之和为偶数的概率.15.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.16.为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.17.”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率.18.“2015扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程马拉松”、B.“10公里”、C.“迷你马拉松”.小明和小刚参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)求小明和小刚被分配到不同项目组的概率.19.甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.20.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.21.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.22.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)23.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a=,b=;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.24.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.25.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?26.某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.27.商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形.各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?28.某班开展安全知识竞赛活动,班长将所有同学的成绩分成四类,并制作了如下的统计图表:根据图表信息,回答下列问题:(1)该班共有学生人;表中a=;(2)将丁类的五名学生分别记为A、B、C、D、E,现从中随机挑选两名学生参加学校的决赛,请借助树状图、列表或其他方式求B一定能参加决赛的概率.29.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.30.今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:(1)抽取的部分同学的人数是多少?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去打扫街道的人数.(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)鲁教五四版八年级(下)中考题单元试卷:第10章频率与概率(01)参考答案一、选择题(共3小题)1.B;2.A;3.D;二、填空题(共4小题)4.;5.;6.;7.;三、解答题(共23小题)8.200;9.;10.;11.;12.;13.;14.;15.;16.;17.200;108°;18.;19.;20.;21.20;22.;23.8;7.5;24.48;105;25.;26.;27.;28.40;20;29.;30.;。

鲁教版生活中的概率问题课件

鲁教版生活中的概率问题课件

33757
•11
33930
练一练
2、据统计,2004年浙江省交通事故死亡人数为7549人,
其中属于机动车驾驶人的交通违法行为原因造成死亡的
人数为6457。
(1)由此估计交通事故死亡1人,属于机动车驾驶人的
交通违法行为原因的概率是多少(结果保留3个有效数
字)?
P=
6457 7549

0.855
(2)估计交通事故死亡2000人中,属于机动车驾驶人
的交通违法行为原因的有多少人?
2000×0.855=1710人
•鲁教版生活中的概率问题
•12
练一练
3、垃圾可以分为有机垃圾、无机垃圾与有害垃圾三类。 为了有效地保护环境,某居委会倡议居民将日常生活中 产生的垃圾进行分类投放。一天,小林把垃圾分装在三 个袋中,可他在投放时不小心把三个袋子都放错了位置。 你能确定小林是怎样投放的吗?如果一个人任意投放, 把三个袋子都放错位置的概率是多少?
•鲁教版生活中的概率问题
•13
•鲁教版生活中的概率问题
•14
4、假设每天某一时段开往温州有三辆专车(票价相同),有两 人相约来温州游玩,但是他们不知道这些车的舒适程度,也不 知道专车开过来的顺序,两人采用了不同的乘车方案:
如果把这三辆车的舒适程度分为上、中、下三等,请尝试着 解决下面的问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
表,(1990-1993年)的部分摘录,根据表格估算下列概率(结果保留4
个有效数字)
年龄x
(1)某人今年61岁,他当年死亡的概率. 0
1
P
10853
867685≈0.01251
30 31
(2)某人今年31岁,他当年死亡的概率. 61

鲁教五四版八年级(下) 中考题同步试卷:10.2 用列举法计算概率(02)

鲁教五四版八年级(下) 中考题同步试卷:10.2 用列举法计算概率(02)

鲁教五四版八年级(下)中考题同步试卷:10.2 用列举法计算概率(02)一、选择题(共5小题)1.某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.2.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是()A.B.C.D.3.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.4.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.B.C.D.5.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.二、填空题(共4小题)6.在m2□6m□9的“□”中任意填上“+”或“﹣”号,所得的代数式为完全平方式的概率为.7.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为.8.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.9.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是.三、解答题(共21小题)10.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图请根据图表提供的信息,解答下列问题:(1)表中的a=,b=;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是;(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为.11.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.12.一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,摸出红球的概率为;(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球.求两次摸到的球颜色不相同的概率.13.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A 组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.14.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.15.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:(1)求全班学生人数和m的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.16.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图①和图②两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A、B、C、D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A、B两班的概率.17.为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.18.为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C 跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.19.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.21.国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B 两所学校的概率.22.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.有甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.24.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.25.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?26.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出2名去参加市中学生演讲比赛,已知A等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.27.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.28.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.29.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.30.育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.鲁教五四版八年级(下)中考题同步试卷:10.2 用列举法计算概率(02)参考答案一、选择题(共5小题)1.A;2.D;3.C;4.B;5.D;二、填空题(共4小题)6.;7.;8.;9.;三、解答题(共21小题)10.12;40;108°;;11.100;25;108;12.;13.;14.;15.;16.;17.;18.;19.;20.4;21.;22.;23.;24.;25.;26.20;72;40;27.;28.;29.25;72;30.;第11页(共11页)。

八年级数学暑假专题 频率与概率同步练习 鲁教版

八年级数学暑假专题 频率与概率同步练习 鲁教版

初三数学某某教育版暑假专题:频率与概率同步练习(答题时间:60分钟)一、选择题1、下列事件发生的概率为0的是()A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上;B 、今年冬天某某会下雪;C 、随意掷两个均匀的骰子,朝上面的点数之和为1;D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。

2、下列说法正确的是 ( )A 、一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点;B 、某种彩票中奖的概率是1%,因此买100X 该种彩票一定会中奖;C 、天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨;D 、抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等。

*3、从A 地到C 地,可供选择的方案是走水路、走陆路、走空中。

从A 地到B 地有2条水路、2条陆路,从B 地到C 地有3条陆路可供选择,走空中从A 地不经B 地直接到C 地。

则从A 地到C 地可供选择的方案有( )A 、20种B 、8种C 、5种D 、13种4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154B 、31C 、51D 、1525、某商店举办有奖销售活动,购货满100元者发兑奖券一X ,在10000X 奖券中,设特等奖1个,一等奖10个,二等奖100个。

若某人购物满100元,那么他中一等奖的概率是 ( )A 、1100B 、11000C 、110000D 、11110000二、填空题6、口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.7、一个小妹妹将10盒蔬菜的标签全部撕掉了。

现在每个盒子看上去都一样.但是她知道有三盒玉米,两盒菠菜,四盒豆角,一盒土豆.她随机地拿出一盒并打开它.则盒子里面是玉米的概率是_______*8、四X 扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。

鲁教五四版八年级(下) 中考题同步试卷:10.3 生活中的概率问题(01)

鲁教五四版八年级(下) 中考题同步试卷:10.3 生活中的概率问题(01)

鲁教五四版八年级(下)中考题同步试卷:10.3 生活中的概率问题(01)一、解答题(共30小题)1.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?2.甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,甲胜;若指针所指两个区域的数字之和为4的倍数时,乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.3.现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.4.在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.5.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.6.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.7.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.8.学习概率知识以后,小庆和小丽设计了一个游戏.在一个不透明的布袋A里面装有三个分别标有数字5,6,7的小球(小球除数字不同外,其余都相同);同时制作了一个可以自由转动的转盘B,转盘B被平均分成2部分,在每一部分内分别标上数字3,4.现在其中一人从布袋A中随机摸取一个小球,记下数字为x;另一人转动转盘B,转盘停止后,指针指向的数字记为y(若指针指在边界线上时视为无效,重新转动),从而确定点P的坐标为P(x,y).(1)请用树状图或列表的方法写出所有可能得到的点P的坐标;(2)若S=xy,当S为奇数时小庆获胜,否则小丽获胜,你认为这个游戏公平吗?对谁更有利呢?9.为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?10.四张形状相同的卡片如图所示.将卡片洗匀后背面朝上放置在桌面上,小明先随机抽一张卡片,记下数字为x;小亮再随机抽一张卡片,记下数字为y.两人在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小亮获胜(1)若小明抽出的卡片不放回,求小明获胜的概率;(2)若小明抽出的卡片放回后小亮再随机抽取,问他们制定的游戏规则公平吗?请说明理由.11.甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.12.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.13.今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.对雾霾了解程度的统计表:请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全图1示数的条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.14.在一个不透明的布袋中有2个红色和3个黑色小球,它们只有颜色上的区别.(1)从布袋中随机摸出一个小球,求摸出红色小球的概率.(2)现从袋中取出1个红色和1个黑色小球,放入另一个不透明的空布袋中,甲乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能结果,并用概率知识说明这个游戏是否公平.15.某中学举行“中国梦•我的梦”演讲比赛.志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张.如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽.这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明.16.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘指针指向的数字之积为奇数时,小明获胜;数字之积为偶数时,小刚获胜(若指针恰好指在等分线上时重新转动转盘).(1)分别求出小明和小刚获胜的概率(用列表法或树形图);(2)这个游戏规则是否公平?说明理由.17.某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.18.小明和小刚做摸纸牌游戏.如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.19.某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同)打乱顺序重新排列,从中任意抽取1张卡片.(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.20.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.21.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)22.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)23.第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.24.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.25.如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.26.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.27.某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.28.甲、乙两位同学玩摸球游戏,准备了甲、乙两个口袋,其中甲口袋中放有标号为1,2,3,4,5的5个球,乙口袋中放有标号为1,2,3,4的4个球.游戏规则:甲从甲口袋摸一球,乙从乙口袋摸一球,摸出的两球所标数字之差(甲数字﹣乙数字)大于0时甲胜,小于0时乙胜,等于0时平局.你认为这个游戏规则对双方公平吗?请说明理由.若不公平,请你对本游戏设计一个对双方都公平的游戏规则.29.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.30.小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.鲁教五四版八年级(下)中考题同步试卷:10.3 生活中的概率问题(01)参考答案一、解答题(共30小题)1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.400;15%;35%;126;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

八年级数学下册 10.1《用频率估计概率》同步练习 鲁教版

八年级数学下册 10.1《用频率估计概率》同步练习 鲁教版

10.1 用频率估计概率第1题.有大小两个转盘,其中黑色区域都是中心角为90°的扇形,为了探究指针落在黑色区域的频率,甲乙两人分别转动两转盘,记录下表(A:指针落在大转盘的黑色区域频数;B:大转盘中的频率;C:指针落在小转盘的黑色区域频数;D:小转盘中相应频率)(1)将B、D两空格填写完整;(2)分别绘出指针落在大小转盘中黑色区域的频率折线图;(3)比较25次与50次的大小频率之差及200与225次之间大小转盘两频率之差;(4)从(3)中频率之差及折线统计图中的变化趋势,你能总结出什么规律?第2题. 任选一个不大于20的正整数,它恰好是3的整数倍数的概率是()A.320B.14C.310D.15第3题. 初一(1)班教室里有50人在开会,其中有3名老师,12名家长,35名学生,现有校长站在门外听到有人在发言,那么发言人是老师或学生的概率为()A.1925B.310C.4750D.12第4题. 晓刚用瓶盖设计了一个游戏:任意掷出一个盖,如果盖面朝上则甲胜,如果盖面朝下则乙胜,你认为这个游戏____(填“公平”或“不公平”)如果以硬币代替瓶盖,同样做上述游戏,你认为这个游戏_____(填“公平”或“不公平”).第5题. 从1到10这10个整数中任取一数,取到奇数的概率是______,取得偶数的概率是______.第6题. 一次抽奖活动中,印发奖券10000X,其中一等奖200X,二等奖800X,三等奖2000X,那么第一位抽奖者(仅买一X奖券)中奖的概率是多少?他得到一等奖、二等奖、三等奖的概率分别是多少?第7题. 在1000000X奖券中,设有2个一等奖,10个二等奖,20个三等奖.小明从中买了一X奖卷,求(1)分别中一等奖、二等奖、三等奖的概率;(2)中奖的概率.第8题. 从1,2,……,100中任取一数,它既能被4整除,又能被6整除的概率是多少?第9题. 在一副无大小王的扑克牌中,随意摸1X,摸到方块的频率()111A B C D41352....不确定第10题. 在盒子中有十个相同的小球,分别标号为1,2,…,10,从中任取一球队,那么此球的为偶数的概率为()A.1 B.16C.12D.0第11题.在一副(54X)扑克牌中,摸到“A”的频率()121A B C D42713....无法估计第12题. 某科室10个人用抽签的方法分配两X观看“心连心”现场演出的票,第一个抽签的人得到票的概率是()A.15B.25C.35D.45第13题. 全班50名学生,平均分成5组大扫除,某同学分在第2组的机会是______.第14题. 一副中国象棋分红黑两方,每方有16粒棋子,把它们分别放到一个不透明的口袋里,从中任意摸一粒,摸到“马”的概率是_____,摸到红“兵”的概率是________.第15题. 用实验的方法估计可能事件的频率,应是在____条件下进行实验,随着实验次数的____,隐含的规律会逐渐显现.答案:相同,增多.第16题. 从一副扑克牌(54X)中随便抽取一X牌,抽到大王的概率是______;抽到方块9的概率是______;抽到数字是6的概率是______.第17题. 在一次七巧板的拼图游戏中,老师要求在规定的时间内要拼A、B两种动物图案,下面是对甲乙两学校各学生统计图表:(1)对两校学生拼A、B图案的成功率做出结论;(2)结合两校所有参赛学生在A、B拼图成功率做出结论.(3)对比(1)、(2)两结论,是否一致?你认为哪个结论较为合理?为什么?第18题. 在两只口袋里分别放黑白球各一粒(它们仅颜色不同),在每一个口袋里摸一粒,记下颜色后,放到第2个口袋里,再在第2只口袋里摸一粒,两次摸到颜色相同的频率估计是().A.13B.12C.14D.23第19题. 两个转盘都被分成黑白相等的两部分,甲、乙两人用它们做游戏,如果两个指针所停区域的颜色不同,则乙获胜.在这个游戏中()A.甲获胜可能性大B.乙获胜可能性大C.两人可能性一样大 D.不能确定谁获胜可能性大第20题. 事件"随意掷两个均匀的骰子,朝上面的点数之和为1" 的概率是()A.1 B.16C.12D.0第21题. 同时抛掷完全相同的正方体骰子,两个正面朝上的数字的和是8的机会是______,数字之积是合数的机会是_____,数字之积是奇数的机会是______,数字之积是质数的机会是______第22题. 用实验的方法估计可能事件的频率,应是在____条件下进行实验,随着实验次数的____,隐含的规律会逐渐显现.第23题. 某同学抛出一枚硬币,结果正面朝上,他接着又抛了两次,又都是正面朝上,于是他得出一个结论:随便抛硬币若干次,正面朝上的概率等于1,他的结论是 _________的.(填"正确"或"不正确")第24题. 某射击手在一次射击中射中10环、9环的概率分别为和则此射击手在一次射击中,射中10环或9环的概率是.第25题. 从1,2,……,100中任取一数,它既能被4整除,又能被6整除的概率是多少?第26题. 一次抽奖活动中,印发奖券10000X,其中一等奖200X,二等奖800X,三等奖2000X,那么第一位抽奖者(仅买一X奖券)中奖的概率是多少?他得到一等奖、二等奖、三等奖的概率分别是多少?第27题. 在1000000X奖券中,设有2个一等奖,10个二等奖,20个三等奖.小明从中买了一X奖卷,求:(1)分别中一等奖、二等奖、三等奖的概率;(2)中奖的概率.第28题. 在一所有1200名学生的学校随机调查了200名学生,其中有125名学生在早餐时喝牛奶.在这所学校随便问一个人,早餐时喝牛奶的概率大约是.第29题. 从一幅扑克牌中拿出32X,牌面朝下,每次抽出一X记下花色再放回,洗牌后再抽,通过多次抽牌实验后,抽到红桃、黑桃、梅花、方块的频率依次为30%、25%、40%和5%.试估计这四种花色的扑克牌各有,,,X.第30题. 从一副扑克牌中分别挑出红桃牌面数为1~6和黑桃牌面数为1~6的两组牌,从两组牌中各抽出一X,则点数相同的概率是;点数和是偶数的概率是;点数和为7的概率是;点数和为12的概率是.参考答案1.(1)B:32%,30%,28%,26%,25.6%,24%,25.1%,25.5%,25.3%;C:32%,26%,28%,26%,25.6%,24.7%;24.6%,24.5%,24.4%;(2)略;(3)大转盘中25与50次之间频率差为2%,而第200与第225次之间频率差为0.2%,小转盘中第25与第50次之间频率差为6%,而第200与第225次间频率差为0.1%;(4)随着次数的增多大小转盘中频率都逐渐稳定在25%左右.2.C.3.A.4.不公平,公平.5.12,12.6.P(中奖概率)=200800200031000010++=P(获一等奖)=200 10000=150P(获二等奖)=800 10000=225P(获三等奖)=20001 100005=7.(1)1500000;1100000;150000;(2)P(中奖概率)=210201 100000031250 ++=.8.既能被4整除又能被6整除的数就是能被12整除。

生活中的概率问题

生活中的概率问题

生活中的概率问题摘要:本文着重探讨几个生活中的概率问题,比如买彩票等事件。

通过讨论这些问题来更具体,更深入地理解概率论的实用性和重要性,防止人们被概率欺骗。

关键词:概率生活统计正文:概率论这门学问最便是来自于生活。

由赌徒的问题引起,概率逐渐演变成一门严谨的科学。

1654年,一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。

梅勒赢了2局,他的朋友赢了1局。

这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。

他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。

然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。

在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。

赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。

帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。

他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。

前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得45个金币,乙15个。

虽然梅勒的计算方式不一样,但他的分配方法是对的。

三年后,也就是1657年,荷兰著名的天文、物理兼数学家惠更斯把这一问题置于更复杂的情形下,试图总结出更一般的规律,结果写成了《论掷骰子游戏中的计算》一书,这就是最早的概率论著作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.3生活中的概率问题一.选择题:(每题3分,共30分)1.下列数据中,不是近似数的是-------------------------------( ) A.通过第五次全国人口普查,我国人口总数为129533万人。

B.生物圈中已知的绿色植物,大约有30万种。

C.光明学校有1148人。

D.我国人均森林面积只有0.128公顷。

2.下列说法中,正确的是------------------------------------( ) A.近似数5.0与近似数5的精确度相同。

B.近似数3.197精确到十分位后,有两个有效数字。

C.近似数5千万和近似数5000万精确度相同。

D.近似数23.0与近似数23的有效数字都是2 ,3。

3.某种原子的半径为0.0000000002米,用科学记数法可表示为--( )。

A 、0.2×10-10米 B 、2×10-10米 C 、2×10-11米 D 、0.2×10-114.近似数12.05不能由哪个数四舍五入得到--------------------( ) A 、12.051 B 、12.052 C 、12.045 D 、12.0445.将2.4695精确到千分------------------------------------- ( ) A 、2.469 B 、2.460 C 、2..47 D 、2.470 6.如图所示的圆盘中三个扇形大小相同,则指针落在黄区域的概率是--------------------------------------( ) A 、21 B 、31 C 、41 D 、617.一个事件的概率不可能的是----------------------------------( )A 、 0B 、21 C 、 1 D 、328.一个囗袋里共有50个球其中白球20个、红球20个、蓝球10个,则摸到不是白球的概率是-----------------------------------------------------------( )A 、15 B 、25 C 、35 D 、45 9.从一副扑克牌(54张)中抽取一张牌,抽到牌“Q ”的概率是-----( )A 、154B 、127C 、118D 、22710.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌子不能再翻),某观众前两次翻牌黄 红白均获得若干奖金,那么他第三次翻牌获奖的概率是------------( )A、14B、15C、16D、320二.填空题:(每格1分,共30分)1、在生活中人们常用“细如发丝”来形容物体非常非常微小,自从扫描隧道显微镜发明以后,世界上便诞生了一门新学科,这就是“纳米技术”。

纳米是一种长度单位,它用来表示微小的长度,1纳米是1微米的千分之一,1纳米是1米的10亿分之一,1纳米相当于1根头发丝直径的六万分之一。

VCD光碟是一个圆形薄片,它的两面是用激光刻成的小凹坑,坑的宽度只有0.4微米。

阅读这段材料后回答问题:⑴1纳米=_____米;1微米=_____米;⑵这种小凹坑的宽度有_____纳米,1根头发丝直径约有____纳米。

2、中国是一个人口总数为1295330000人,国土面积为9596960千米2的大国。

梵帝冈是世界上最小的国家,它的面积仅有0.44千米2,相当于天安门广场的面积。

根据这段材料,回答:⑴9596960千米2是_____(精确数还是近似数),在报刊等媒体中常说:我国的国土是960万平方千米。

近似数960万平方千米是由9596960千米2精确到_____位得到的,它的有效数字是_____。

⑵把我国的人口数写成1.3×109,它精确到_____位,有_____个有效数字,若把中国的人口数用3个有效数字表示,可写成_____。

⑶梵帝冈那真是太小了?假若我们把梵帝冈的土地看成是一个正方形,平时我们做操时每人需占用2平方米,那梵帝冈能同时容纳_____人做操。

⑷梵帝冈国土面积的百万分之一有多大?相当于的面积。

A.一间教室 B.一块黑板 C.一本数学课本 D.一张讲桌3.一个小妹妹将10盒蔬菜的标签全部撕掉了。

现在每个盒子看上去都一样。

但是她知道有三盒玉米,两盒菠菜,四盒豆角,一盒土豆。

她随机地拿出一盒并打开它。

①盒子里面是玉米的概率是 .②盒子里面是豆角的概率是 .③盒子里面不是菠菜的概率是 .④盒子里面是豆角或土豆的概率是 .4. 在12瓶外观一样的饮料中,有2瓶过了保质期,从中任意抽取一瓶,恰好抽到已过保质期的饮料的概率是;5.掷一均匀的正方形骰子,骰子每个面分别标了数字1,2,3,4,5,6,则⑴P(掷得点数3)= 。

⑵P(掷得点数是奇数)= 。

⑶P(掷得点数是偶数)= 。

⑷P(掷得点数不大于5)= 。

⑸P(掷得点数不小于7)= 。

⑹P(掷得数是两位数)= 。

⑺P(掷得数是2的倍数)= 。

6.有两双纯黑、纯白的袜了(不分左右),小明在黑暗中穿袜子,穿得左脚是黑袜子,右脚是白袜子的概率是。

7.有黑、蓝、红三枝颜色的笔和白、绿两块橡皮,任意拿出一枝笔和一块橡皮,则取到红笔、蓝橡皮的概率是。

8.在一个不透明的口袋中装着大小、外形一模一样的5个红球、3个蓝球、2个白球,从中任意摸一球,则⑴P(摸到红球) 。

⑵P(摸到蓝球) 。

⑶P(摸到白球) 。

⑷P(摸到红球和白球) 。

三.解答题:1.地球表面平均1厘米2上的空气质量约为1千克,地球的表面面积大约是5×108千米2,地球表面全部空气的质量约为多少千克?已知地球的质量约为6×1024千克,它的质量大约是地球表面全部空气质量的多少倍?(6分)2。

学期结束前,学校想调查学生对七年级数学实验教材的意见,特向七年级300名学生作问卷调查,其结果如下:意见非常喜欢喜欢有一点喜欢不喜欢人数150 120 21 9(1)计算出每一种意见的人数占总调查人数的百分比;(2)请作出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说明你的理由。

(6分)3.下图是明明作的一周的零用钱开支的统计图(单位:元)24681012周一周二周三周四周五周六周日分析上图,试回答以下问题:(1)周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少? (2)哪几天他花的零用钱是一样的?分别为多少?(3)你能帮明明算一算他一周平均每天花的零用钱吗?(6分)4.飞镖随机地掷在下面的靶子上。

(1)在每一个靶子中,飞镖投到区域A 、B 、C 的概率是多少? (2)在靶子1中,飞镖投在区域A 或B 中的概率是多少? (3)在靶子2中,飞镖没有投在区域C 中的概率是多少?(6分)5.靶子被分成了A 、B 、C 、D 四个部分。

飞镖随机地落在 区域A 上的概率是40%,落在区域B 、C 、D 上的概率是相等的。

(1)飞镖不落在区域A 上的概率是多少? (2)制作一个符合条件的方形靶子。

(3)制作一个符合条件的圆形靶子。

(6分)6、将下面事件的字母写在最能代表它的概率的点上。

(2分)01AB CABCA.投掷硬币时,得到一个正面。

B.B.在一小时内,你步行可以走80千米。

C.给你一个骰子,你掷出一个3。

D.明天太阳会升起来。

7.某村2001年家庭主要劳动者文化素质与劳动效益关系统计资料如下表:文化程度出售产品金额(元/户)人均收入(元/户)文盲5915 4635小学6659 4840初中8255 5130高中11245 8135(1)收入最低的是哪种人?(2)出售产品金额最多的是哪种人?(3)人均收入最高与人均收入最低的差是多少?(4)谈谈你的感想。

(8分)问题答案一.选择题:(每题3分,共30分) 1 2 3 4 5 6 7 8 9 10 CBBDDBDCDC二.填空题:(每格1分,共30分) 1.⑴ 10-910-6 ⑵ 400 6×104.2.⑴ 近似数 万 9,6,0。

⑵ 亿 两 1.30×109⑶ 2.2×105⑷ D 3. ①310②25③45④12 4. 165.⑴16⑵12⑶12⑷56⑸ 0.⑹ 0.⑺12. 6. 14 7. 08.12.310.15.710三.解答题;(共40)1. 5×1018千克. 1.2×106倍.2. 非常喜欢50%,喜欢40%,有一点喜欢7%,不喜欢3%3.(1)周三,1元,10元(2)周一与周五一样多,周六与周日一样多,分别为6元、10元⑶6元4.(1).对第一个靶子:P(A)=P(B)=P(C)= 31;对第二个靶子:P(A)= 21,P(B)=P(C)= 41 (2).P=31+31=32 ⑶ P=1-41=435.(1)P=1-40%=60%b. ABCDc. ABCD6.B C A 1/67.1、(1)文盲(2)高中(3)3500元。

相关文档
最新文档