有导体和电介质存在时的静电场(精)
大学物理,静电场中的导体和电介质8-5 静电场的能量
2
R1
r
dr
Q R2 dWe wedV dr 2 8 π εr 2 2 R Q Q 1 1 2 dr We dWe ( ) 2 8 π ε R1 r 8 π ε R1 R2 9
8.5 静电场的能量
2
第8章 静电场中的导体和电介质
第8章 静电场中的导体和电介质
例:同轴电缆由内径为 R1、外径为 R2的两无限长金属圆柱 面构成,单位长度带电量分别为 +、 -,其间充有 r 电介 质。求: 1)两柱面间的场强 E;2)电势差 U;3)单位长 度电容 ;4)单位长度贮存能量。
介质中高斯定理: D dS q 0
5
8.5 静电场的能量
第8章 静电场中的导体和电介质
二、静电场的能量 能量密度 以平行板电容器为例,将电能用电场的量表示。
1 1 1 1 εS 2 2 2 2 ( Ed ) εE Sd εE V We CU 2 2 2 d 2
电场中单位体积的能量 称为电场能量密度:
d
S
εr
We we V
8.5 静电场的能量
第8章 静电场中的导体和电介质
静电场的能量 ( Electrostatic Energy ) 一个带电系统包含许多的电荷。电荷之间 存在着相互作用的电场力。 任何一个带电系统在形成的过程中,外力 必须克服电场力做功,即要消耗外界的能量。 外界对系统所做的功,应该等于系统能量 的增加。 因此,带电系统具有能量。
第8章 静电场中的导体和电介质
1 We QU 2
R1
1 λ R2 λh ln 2 2πε0 εr R1 2 λh R2 ln 4πε0 εr R1
大学物理 导体和电介质中的静电场
x
(1 2)S q (3 4)S q
1
2
3
4
q S
q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1
2 2 0
3 2 0
2 2 0
3 2 0
4 2 0
2 0
q1 q2
2 0 S
E3
1 2 0
2 2 0
3 2 0
4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.
第六章静电场中的导体与电介质
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -
第二章(静电场中的导体和介质)
§2.1导体
导体(conductor):存在大量的可自由移动的 电荷,包括金属、电解液、等离子体、超导体。 导体放入静电场后,二者产生相互作用:导体 中的自由电荷在静电场的作用下,会重新分布; 静电场会受到导体中自由电荷的影响而发生变化。 我们这里只讨论金属导体,所得结论有的也适 用于其它导体。
一、静电平衡
E
E0
二、导体空腔
静电平衡条件下,导体空腔除了具有一般导 体的基本性质外 ,还有一些特殊的性质,分两种 情况: 1、腔内无电荷: (1)空腔的内表面不存在电荷; (2)腔内无电场; (3)腔内电位为常数。 因外部电场、电荷对腔内无影响,因此具有保 护内部空间的作用。
2、腔内有电荷: (1)导体空腔的内表面上的电荷与腔内的电 荷等值异号; (2)腔内的电场与电位分布都由腔内电荷决 定; (3)腔内表面电荷分布与腔外情况无关,整 个空间的电场和电位分布都受腔内电荷 影响; (4)将空腔外壁接地,腔外电场及电位分布 不受腔内电荷影响。
P分子 V
V 0
(2)电极化强度矢量通量 由于电介质发生极化后,在电介质的内 部或边界表面上出现极化电荷,所以电极化 强度矢量与极化电荷之间存在相互联系。 可以证明:闭合曲面的电极化强度矢量 通量等于该闭合曲面内的极化电荷的负值。
即: P dS q
S 内
(2)电极化类型: 当电介质受到外电场的作用时,要在电介质 的内部或电介质的边界上出现极化电荷,称 为电介质的极化,简称电极化。电极化有两 种类型:位移极化和取向极化。 无外场时:
有极分子 无极分子
有外场时: (a)有极分子电介质,主要是取向极化 ,也 有位移极化。 (b)无极分子介质,只有(电子)位移极化。
D o E o E o (1 )E
静电场中的导体和电介质
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
6 大学物理 第06章 静电场中的导体和电介质
E外
16
物理学
第五版
+ + + + + + + + + +
第六章 静电场中的导体和电介质 加上外电场后
E外
17
物理学
第五版
+ + + + + + + + + +
E外
加上外电场后 第六章 静电场中的导体和电介质
18
物理学
第五版
导体达到静平衡
+ + + + + + + + + +
介质电容率 ε ε0 εr
41
- - - - - - - σ
相对电容率 εr 1
第六章 静电场中的导体和电介质
物理学
第五版
+++++++
- - - - - - - σ
σ E0 ε0
ε0
σ
+++++++
- - - - - - - σ
σ E ε
ε
σ
第六章 静电场中的导体和电介质
②用导线连接A、B,再作计算
连接A、B,
Q q
q
( q )
中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
R3
E0
Qq uo Edr Edr 4 0 R3 0 R3
9.第十二章导体和电介质存在时的静电场2(电介质)
S
dq′ σ'= dS
则介质表面的束缚电荷面密度 则介质表面的束缚电荷面密度
问题: 问题:
面元的法 线方向是 电介质极化时产生的极化电荷的面密度, 即:电介质极化时产生的极化电荷的面密度, 如何规定 的? 等于电极化强度沿外法线的分量. 等于电极化强度沿外法线的分量
r r σ ′ = P cosθ=P ⋅ n
14
∑q
int
= ∑q0+ q′ ∑
r r P ⋅ dS
由前, 由前,高斯面包围的束缚电荷为 ∴∑q' =− ∫ S r r r r ∴ ∫ ε0 E ⋅ dS = ∑q0 − ∫ P ⋅ dS 于是
S S
r r r ∴ ∫ (ε0 E + P) ⋅ dS = ∑q0 S r r r 引入电位移矢量 电位移矢量(electric displacement) D = ε0 E + P 引入电位移矢量
电介质体内任一封闭面内的束缚电荷q′ 电介质体内任一封闭面内的束缚电荷 ′内为
r r ′= q内 − ∫ S P ⋅ dS
可以证明:对均匀电介质,若电介质体内无自由电荷, 可以证明:对均匀电介质,若电介质体内无自由电荷,则不管 电场是否均匀, 电场是否均匀,电介质体内都无束缚电荷 (我们只讨论均匀电 我们只讨论均匀电 介质,即以后只考虑下面所说的表面上的束缚电荷) 介质,即以后只考虑下面所说的表面上的束缚电荷 .
4
3.描述极化强弱的物理量— 3.描述极化强弱的物理量—极化强度 (electric polarization) 描述极化强弱的物理量 电偶极子排列的有序程度反映了介 质被极化的程度 排列愈有序说明极化愈烈
∆V
宏观上无限小微观 上无限大的体积元
2静电场中的导体和电介质(精)
V 实验证明,对于绝大多数各向同性的介质,极化强度 P与电场强度E成正比,即P = 0 E
V 0
P
lim
p
式中称为介质的电极化率,它与场强E无关,取决于电介质。
2.5.3
束缚电荷
电介质处于极化状态时,在电介质的端面或内部上产生极化 电荷。这些电荷不能离开电介质表面,称为束缚电荷。 如果介质不均匀,在介质内部也会由于极化而出现束缚电荷。 设单位体积分子数为n,
这类分子在外电场的作用下,分子中的正负电荷中心
将发生相对位移,形成一个电偶极子,它们的等效电偶极 矩 P 的方向都沿着电场的方向,导致介质表面上出现了电
荷。这种情况称为介质的极化。
无极性分子电介质的这种极化方式称为位移极化。
有极性分子的极化
有极性分子的正负电荷中心即使在无外电场存在时也是不 重合的,例如水分子等。由于分子热运动的无规则性 , 在物理 小体积内的平均电偶极矩为零,宏观上也不显电性。 当介质受到外电场作用时,每个分子的电偶极矩都受到一 个力矩的作用,使分子电矩转向外电场方向,这样分子固有电 矩的矢量和就不等于零了。 但由于分子的热运动,这种转向并不完全。外电场越强, 分子电矩沿着电场方向排列得越整齐。
2.4
静电场中的导体
2.4.1 导体的静电平衡
金属导体中存在大量的自由电子,它们时刻作无规则的
微观运动(“热运动”)。当自由电子受到电场力作用时,
会在热运动的基础上附加一种有规则的宏观运动,形成电流。 当导体中自由电子不作宏观运动(没有电流)时,我们说导 体达到了静电平衡的状态。
2.4.1 导体的静电平衡
D=E
2.5.5
静电场的边界条件
在两种介质的分界面上,电场强度矢量E的切线分量连续。
电场中的导体和电介质
二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
第章静电场中的导体和电介质PPT课件
q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。
第9章-静电场中的导体和电介质
E 加上外电场后 外 E外
把金属导体置于外电场 中,自由电子将产生宏 观定向运动,导体中电 荷按照外电场特性和导 体形状形成特定的分布
在外电场作用下,引起 导体中电荷重新分布而呈 现出的带电现象,称为
静电感应现象 Electrostatic Induction
问:这种静电感应的过程是否会一直进行下去?
辨析
0 一块无限大均匀带电导体薄板,电荷面密度为 0
问:在它附近一点的场强=?
解:由无限大带电均匀平面两侧的场强公式,得
二、导体处于静电平衡状态时的场强分布
导体外部近表面处场强 E
方向:与该处导体表面垂直
E
0
n
大小:与该处导体表面电荷面密度 成正比。 E(nˆ )
0
S
ES
S 0
ΔS
P
E
0
E内=0
讨论:导体表面附近的场强公式
E
0
指导体表面附近场点近旁的导体电荷面密度
一、静电感应 导体的静电平衡条件
无外电场时
无外电场时,导体中 自由电子在金属内作无 规则热运动,而没有宏 观定向运动,整个导体 呈现电中性
无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
E 外
+ + + + +
物理-导体电介质存在时静电场的计算
2 0
其余 电荷 在S面元处内、外侧产生场强为 E2则有:
E1 E2 0, (内侧)
E1
E2
0
n,
(外侧)
由此解得:
E2
2 0
n
一、有导体存在时静电场的计算
其余所有电荷在S面元处的场强,大小等于面元自己激发 的场强,方向在导体内侧与面元场相反,在导体外侧与面
元场同向。
电荷S受到的电场力 E2
q0内
(介质中的高斯定理)
介质方程
二、极化电介质中的静电场计算
利用介质中的高斯定理求电场、极化电荷分布:
条件:电荷及介质的分布具有一定对称性
球对称、柱对称 、镜面对称
自由电荷分布
D dS
S
q0内
( S )
D 0 r E
P 0( r 1)E
P
n
q S dS
二、极化电介质中的静电场计算
Qi const.
i
一、有导体存在时静电场的计算
例1 在无限大的带电平面的场中,平行放置一无限大金
属平板,求:金属板两侧面电荷面密度。
解: 设金属板面电荷密度 1, 2
由对称性和电量守恒 1 2
-1 +2
由场叠加原理及导体体内任一点P场强
为零的事实:
1 2 0 20 20 20
R2 Q r1
3. 两介质交界处的极化电荷
R1 R0
解:1. 场的分布
r2
r<R 0
导体内部
R 0<r<R1 E2
E1 0 P1
Qr
4 0 r1r 3
0
二、极化电介质中的静电场计算
RPrP>321<Rr2<R00E24rr12E14314Q 44r0Qr0Q0Qr30rrr1r2rrrP233r3 0
静电场中的导体和电介质
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
8.导体和介电质中的静电场大学物理习题答案
r R1 : E1
q 0 r ; 4 0 r 2 q 0 r 4 0 r 2
R1 r R2 : E 2 0 ;
3
2
1 q
R1 -q
r R2 : E 3
电势分布
q
r R1 : U E d l E1 d l E 3 d r
Q 1 1 1 1 1 1 [( ) ( ) ] 4 0 r R1 r R1 R2 R2
R1 r R2 : U 3 E d l E3 d r E 4 d r
r r R2
R2
Q 1 1 1 1 [ ( ) ] 4 0 r r R2 R2
3 B 球壳所带净电荷 Q ' q 'q Q q 4 3 (2)用导线将和相连,球上电荷与球壳内表面电荷相消。 Q" q' Q 4 2 8-3 两带有等量异号电荷的金属板 A 和 B, 相距 5.0mm,两板面积都是 150cm ,电量大小都是 2.66×l0 8C,
E dl
r
R0
r
E1 d l
R1
R0
E2 d r
R2
R2
R1
E3 d r
R2
E4 d r
R1
R0
Q dr 4 0 r 2
R2
R1
Q dr 4 0 r r 2
Q dr 4 0 r 2
大学物理13 静电场中的导体和电介质
不是都平行于E
;
有极分子也有位移极化,不过在静电场中主要是取向极化,
但在高频场中,位移极化反倒是主要的了。
34
均匀电介质在静电 场中
E0
–
–
E'
+– +–
E0
+ E' +
– 取向极化
+
P分
–
?
位移极化
+
电介质极化:在外电场作用下,电介质产生一附加电场或电
介质表面出现束缚电荷的现象。
B
上的电荷消失。两球的电势分别为
A
UA
q
4 0
1 R0
1 R1
q R0
U B U R1 U R2 0
R2 R1 q
两球电势差仍为:
UA
UB
q
4 0
1 R0
1 R1
由结果可以看出,不管外球壳接地与否,两球的电势 差恒保持不变。当q为正值时,小球的电势高于球壳;当q 为负值时,小球的电势低于球壳。
3
§1 导体的静电平衡
一. 导体的静电平衡
1. 静电感应现象:
电场一般利用带电导体形成。
有导体存在时电场的性质?
在静电场力作用下,导体中自由电子在电场力的作用下
作宏观定向运动,使电荷产生重新分布的现象。
Ε 0
-
Ε 0
- + -+
E内 0
-
-+
2. 静电平衡状态:
导体内部和表面无自由电荷的定向移动 —称电场和导体之间达到静电平衡
第9章导体和电介质中的静电场(精)
第第九九章章导导体体和和电电介介质质中中的的静静电电场场引言:一、导体、电介质、半导体导体:导电性能很好的材料;例如:各种金属、电解质溶液。
电介质(绝缘体):导电性能很差的材料;例如:云母、胶木等。
半导体:导电性能介于导体和绝缘体之间的材料;二、本章内容简介三、本章重点和难点1. 重点(1)导体的静电平衡性质;(2)空腔导体及静电屏蔽;(3)电容、电容器;2. 难点导体静电平衡下电场强度矢量、电势和电荷分布的计算;第一节静电场中的导体一、静电感应静电平衡1. 静电感应(1)金属导体的电结构从微观角度来看,金属导体是由带正电的晶格点阵和自由电子构成,晶格不动,相当于骨架,而自由电子可自由运动,充满整个导体,是公有化的。
例如:金属铜中的自由电子密度为:nCu=8⨯1028(m-3)。
当没有外电场时,导体中的正负电荷等量均匀分布,宏观上呈电中性。
(2)静电感应当导体处于外电场E0中时,电子受力后作定向运动,引起导体中电荷的重新分布。
结果在导体一侧因电子的堆积而出现负电荷,在另一侧因相对缺少负电荷而出现正电荷。
这就是静电感应现象,出现的电荷叫感应电荷。
2. 静电平衡不管导体原来是否带电和有无外电场的作用,导体内部和表面都没有电荷的宏观定向运动的状态称为导体的静电平衡状态。
(a)自由电子定向运动(b)静电平衡状态3. 静电平衡条件(静电平衡态下导体的电性质)(1)导体内部任何一点处的电场强度为零;导体表面处电场强度的方向,都与导体表面垂直。
(2)在静电平衡时,导体内上的电势处处相等,导体是一个等势体。
E证明:假设导体表面电场强度有切向分量,即τ≠0,则自由电子将沿导体表面有宏观定向运动,导体未达到静电平衡状态,和命题条件矛盾。
dUdU =0,=0E内=0,Eτ=0dldτ因为,所以,即导体为等势体,导体表面为等势面。
二、静电平衡时导体上电荷的分布1. 实心导体(1)处于静电平衡态的实心导体,其内部各处净电荷为零,电荷只能分布于导体外表面。
导体和电介质中的静电场电磁学教案
如果导体A不孤立而近旁有另一导体A,则A上所带电量必会影响 A,A上的感应电荷又反过来会影响A,但若用一空腔导体B将A屏蔽起 来,腔内电场就不再受A的影响了。在导体A和B的大小形状及相对位 置确定后,导体A上所带电量q与A,B间的电势差的比值 就是一恒值, 这个由导体组成的系统叫电容器,电容器的电容
化是因电荷中心位移引起的,所以称作位移极化。
(2)对于有极分子,在外电场E 的作用下,将有一定数量的有极
分子电矩转向外电场方向,如图所示。同样在均匀介质内部正负电荷抵
消而在两端出现了极化电荷,因此,也会发生极化现象。不过这种极化
是因有极分子在外电场中的取向形成的,所以这种极化叫取向极化。
以上两种极化虽然微观机制不例题1:试求球形电容器电场中的能量。
例题2:空气介质平行板电容器板面积为S,间距为d,充电使两板带
电±Q,断电后将二板拉开为2d,试求最小的外力及其作的功。
3.静电场的应用举例 (1)静电喷漆 (2)静电除尘
思考题:1-9 作 业:1-10
第二节 电容和电容器
一、教学内容
(1)导体的电容 (2)电容器 (3)电容的计算
二、教学方式
讲授
三、讲课提纲
1.导体的电容 导体还有一个十分重要的性质,就是导体上可以储电。对于孤立不 受外界影响的导体,所带电Q越多,其电势越高,但其电量与电势的比 值却是一个只与导体的形状和尺寸有关而与所带电量无关的一个物理 量,称为孤立导体的电容,用C表示,
对于平行板电容器
2.能量密度
电场的能量W反映了电场空间V体积内的总能量,为了从能量角度比
大学物理第九章导体和介质中的静电场
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
有导体和电介质存在时的静电场
③ 由极板电量和两极板电势差计算电容
C
Q U
此时您正浏览在第37页,共72页。
1、平行板电容器的电容
设两板相对表面积为S,两板间距为d,两板间为真空。 ① 设两板相对表面分别带+Q和-Q的电荷,求场强
+ -
③ 计算电容
忽略边缘效应,认为两板间场强均匀。
QA
S
B
d
E
0
Q
0S
② 根据场强求电势差
U AB
导体空腔内若无带电体,则导 体空腔必有下列性质:
+面S
① 内表面上无净电荷,所有静电 荷均分布在外表面
+
+ 证明:作高斯面S仅包围内表面
+ + ++
F
S
E
dS
1
0
qint
静电平衡,导体内部 E=0
qint 0
此时您正浏览在第24页,共72页。
++
+
+
+ +
+
+
+
- +--q+2+
qint 0有两种情况:
(2)将B板接地,求电荷分布
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
此时您正浏览在第11页,共72页。
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
分析:可利用静电平衡条件(Eint =0, ES⊥表面)、电荷守恒和静 电场的基本规律(场强叠加原理、
高斯定律等)进行求解。
r R3
此时您正浏览在第18页,共72页。
第九章 静电场中的导体与电介质 小结讲解
第二章静电场中的导体与电介质总结基本要求一理解静电场中导体处于静电平衡时的条件,并能从静电平衡条件来分析导体在静电场中的电荷分布和电场分布。
二了解电介质的极化及其微观机理,理解电位移矢量D 的概念,以及在各向同性介质中电位移矢量D和电场强度E 的关系。
理解电介质中高斯定理,并会用它来计算电介质中电场的电场强度。
三理解电容的定义,能计算常见电容器的电容四了解电场能量密度的概念。
思路与联系上一章我们讨论了真空中静电场,即空间中只有确定的红分布,无其他物体物体情况。
实际上,电场中总会存在其他物质的。
根据其导电能力我们把这种物质分为导体和电介质俩类。
首先,我们讨论导体在静电场中的静电感应现象,研究静电场中导体处于静电平衡时的条件和导体上的电荷分布,在此基础上讨论导体对静电场的影响,计算静电场中存在导体时的电场强度和电势分布。
接着,我们讨论电介质在静电场中的极化现象,研究电介质极化过程极化电荷的产生,在此基础上讨论电介质对静电场的影响,分析电介质中电场强度,并通过引入点位移矢量,得出电介质中的高斯定理。
利用静电场对导体和电介质的作用,可制成各种电容器。
这里对一些简单的电容器进行讨论,最后讨论了电场的能量。
对上述内容的讨论,要用到上一章的概念和定律,这一章是以上一章为基础的,是上一章的基本知识应用和推广。
内容一静电场中的导体把导体放在静电场中,导体内的自由电子由于受到电场力的作用而发生宏观运动,从而使导体上的电荷重新分布,这个过程一直持续到自由电子受到的电场力为零时为止。
这是导体处于静电平衡状态。
显然在导体处于静电平衡状态时,由于导体中的电荷所受的电场力为零,导体内任意点的电场强度必为零,因此,导体内各点的电场强度为零时导体处于静电平衡状态的必要条件。
从静电平衡时导体内部的电场强度为零这一点出发,可得到如下结果(1)导体为一等势体。
由于导体内部E=0, 所以由电势差定义V-V=⎰E⋅dl可知,导体内部任意俩点间的电势差为零,即导体为一等势体,导体表面为一等势面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
(C)E 不再成立,但 不变;
0
(D)E 不再成立,且 改变。
0
3、导体表面各处的面电荷密度与各处表面的曲率 有关,曲率越大的地方,面电荷密度也越大。
1
R
R1
l R1
导线
R2
Q1
证明: 用导线连接两导体球
R2
Q2
则
R1 R2
13.1导体的静电平衡条件
一 、 导 体 的 静 电 平 衡
无外电场时
导体的静电感应过程
E 外
加上外电场后
导体的静电感应过程
E 外
+
加上外电场后
导体的静电感应过程
E 外
+
+
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+
+
+
加上外电场后
导体的静电感应过程
a
b
p 等势面
Q
导体表面
Q Q
P Q E dl E cos 900 dl 0
P
P
13.2 静电平衡的导体上的电荷分布
1、导体内部各处净电荷为零,电荷只分布在导体的 表面上。 2、导体表面上各处的面电荷密度与当地表面紧邻处 的电场强的大小成正比。
3、导体表面各处的面电荷密度与各处表面的曲率有关, 曲率越大的地方,面电荷密度也越大。
当一个导体带电时,下列陈述中正确的是:
(A)导体表面电荷密度较大处电势较高; (B)导体表面曲率较大处电势较高; (C)导体表面上每一点的电势均相等; (D)以上陈述均不正确。
13.3、有导体存在时场强和 电势的计算
+++++++
E
电荷守恒定律 静电平衡条件
电荷分布
Eu
例1.已知:一块大金属平板A,面积为S、带电量Q,
•由电荷守恒定律
1 2 3
b
1
2
Q S
•由高斯定律
AB
电荷分布
2 3 0
1 0
•根据电场叠加原理
1 0
2
3
Q S
4 0
1 0 4 0
2
3
Q S
场 两板之间 强 分 布 两板之外
E Q
0S
E0
1 A 2 3 B
2
Q 2S
4
Q 2S
AB
1 2 3 4
EE E
场强分布
A 板左侧
两板之间
B 板右侧
E 1 Q 0 2 0 S
E 2 3 Q 0 0 20S
E 4 Q 0 2 0 S
(2)将B板接地,求电荷及场强分布
解:接地时 4 0
在其旁边放置第二块金属平板B,此板原来不带电。
求:(1)静电平衡时A、B上的电荷分布及空间的电场分布
解:由电荷守恒定律
A板
1S
2S
Q
1
2
Q S
B板 3S
由高斯定律
E
S
4S
dS
0 3
q
0
4
0
0
1
S
A
2
B
3
4
q 2S 3S 2 3 0
E
例13.2.已知R1 R2 R3 A B
求 ①电荷及场强分布
解:
A
q1
4 0 R1
q2
4 0 R2
+ + + +
加上外电场后
导体的静电感应过程
E 外
+ + + + + +
+ + + +
加上外电场后
感应电荷
导体达到静平衡
E感
1.E内 E外 E感 0
+ + + + +
+ E外
+ + + +
感应电荷
金属球放入前电场为一均匀场
E
金属球放入后电力线发生弯曲 电场为一非均匀场
dS
E
S
cos 00
S
0
S
E
0
注:E是所有电荷(包括该导体上的全部电 荷以及导体外现有的其他电荷)产生的。
一带电导体表面上某点的面电荷密度为 ,该点
外侧附近的场强为 E 。如果将另一带电体
移近,则:
0
(A)E 仍成立,但 将改变;
0
即
Q1 Q2
4 0 R1 4 0 R2
1 4R12 2 4R22 4 0 R1 4 0 R2
1 R2 2 R1
半径分别为R和r的两个球形导体(R>r),用一根很 长的细导线将它们连接起来(即两球相距很远)。使 两荷面个密导度体的带比电值,电势Rr为为U(,则这)两个球形导体表面电
E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
ห้องสมุดไป่ตู้E 外
+ +
+
+ +
加上外电场后
导体的静电感应过程
E 外
+ + +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ +
+
+ + +
加上外电场后
导体的静电感应过程
E 外
+ + + + +
+ + +
加上外电场后
导体的静电感应过程
E 外
+ + + + + +
(A) R ;
r
(B) r ;
R
(C)
R2 r2
;
(D) r 2
R2
< 电风实验 >
++ +++
+ +
+++
尖端放电 尖端场强特别强,足以使周围空气分子电离
而使空气被击穿,导致“尖端放电”。
——形成“电风”
在一个孤立的绝缘导体球壳内放置一点电荷q,则球 壳上的感应电荷分布应为( )
(A)内、外表面上都均匀分布; (B)内、外表面上都不均匀分布; (C)内表面均匀分布,外表面不均匀分布; (D)外表面均匀分布,内表面不均匀分布
+++++++
E
2.导体表面附近的场强方向处处与表面垂直。
静电平衡 条件
⑴导体内部任意点的场强为零。 ⑵导体表面附近的场强方向处处与表面 垂直。
处于静电平衡状态的导体,整个导体是 个等势体,表面是等势面。
导体内
b
a b E dl
a
E内 0 a b
等势体
详细说明如下
1、导体内部各处净电荷为零,电荷只分布在导体的 表面上。
E dS
V edV
内部 E 0
S
0
++ +
+
+
+
S+
+
+
+ + +
+ + ++
e 0
2、导体表面上各处的面电荷密度与当地表面紧邻处
的电场强的大小成正比。 表面附近作圆柱形高斯面
E
E
S Q
根据电场叠加原理
Eb E1 E2 E3 E4
1 2 3 4
b
1 4
AB
1
2
Q S
3 4 0
2 3 0
1 4 0
1
Q 2S
2
Q 2S
3
Q 2S
4
Q 2S
1
Q 2S
3
Q 2S