钠湿法脱硫工艺设计计算副本
(完整版)脱硫相关工艺了解及计算公式详解
脱硫相关工艺了解及计算公式详解钠碱法脱硫工艺:采用氢氧化钠(NaOH,又名烧碱,片碱)或碳酸钠(Na2CO3又名纯碱,块碱)。
1.1.NaOH 反应方程式:2NaOH+SO2=Na2SO3(亚硫酸钠)+H2O (PH 值大于9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5当PH 值在5-9 时,亚硫酸钠和SO2反应生成亚硫酸氢钠。
>>>>1.2.Na2CO3反应方程式:Na2CO3+SO2=Na2SO3(亚硫酸钠)+CO2↑(PH 值大于9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠) (5当PH 值在5-9 时,亚硫酸钠和SO2反应生成亚硫酸氢钠。
2双碱法脱硫工艺:>>>>2.1.脱硫过程:Na2CO3+SO2=Na2SO3+CO2↑2NaOH+SO2=Na2SO3+H2O用碳酸钠启动用氢氧化钠启动2 种碱和SO2反应都生成亚硫酸钠Na2SO3+SO2+H2O=2NaHSO3 (5当PH 值在5-9 时,亚硫酸钠和SO2反应生成亚硫酸氢钠。
>>>>2.2.再生过程:CaO(生石灰)+H2O=Ca(OH)2(氢氧化钙)Ca(OH)2+2NaHSO3(亚硫酸氢钠)=Na2SO3+CaSO3↓ (亚硫酸钙)+2H2OCa(OH)2+Na2SO3=2NaOH+CaSO3↓氢氧化钙和亚硫酸钠反应生成氢氧化钠。
3煤初始排放浓度:按耗煤量按500kg/h,煤含硫量按1%,煤灰份按20%,锅炉出口烟气温度按150℃。
>>>>3.1.烟气量:按1kg 煤产生16~20m3/h 烟气量,=500×20= 10000m3/h>>>>3.2.SO2初始排放量:=耗煤量t/h×煤含硫量%×1600(系数)=0.5×0.01×1600= 8kg/h也可以计算:= 2×含硫量×耗煤量×硫转化率80%= 2×0.01×500×0.8=8kg/h>>>>3.3.计算标态烟气量:=工况烟气量×【273÷(273+150 烟气温度)】=10000×0.645=6450Nm3/h已知标况烟气量和烟气温度,计算其工况烟气量:=标况烟气量×【(273+150 烟气温度)÷273】=6450×1.55=10000 m3/h>>>>3.4.SO2初始排放浓度:=SO2初始排放量×106÷标态烟气量=8×106÷6450=8000000÷6450=1240mg/Nm3>>>>3.5.粉尘初始排放量:=耗煤量t/h×煤灰份%×膛系数20%=500×0.2×0.2=20kg/h>>>>3.6.粉尘初始排放浓度:=粉尘初始排放量×106÷标态烟气量= 20×106÷6450=20000000÷6450=3100mg/Nm34运行成本计算:需先计算出SO2初始排放量kg/h,然后按化学方程式计算。
脱硫工艺计算
精心整理相关工艺了解及计算公式相关工艺了解及计算公式↑生成物为气体,↓生成物为固体。
1.钠碱法脱硫工艺:采用氢氧化钠(NaOH,又名烧碱,片碱)或碳酸钠(Na2CO3又名纯碱,块碱)。
2NaOH+SO2=Na2SO3(亚硫酸钠)+H2O (PH值大于9)Na2SO3+H2O+SO2=2NaHSO3(亚硫酸氢钠)(5<PH<9)当PH值在5-9时,亚硫酸钠和SO2反应生成亚硫酸氢钠。
按耗煤量按500kg/h,煤含硫量按1%,煤灰份按20%,锅炉出口烟气温度按150℃。
3.1.烟气量:按1kg煤产生16~20m3/h烟气量,=500×20=10000m3/h=耗煤量t/h×煤含硫量%×1600(系数)=0.5×0.01×1600=8kg/h也可以计算:=2×含硫量×耗煤量×硫转化率80%=2×0.01×500×0.8=8kg/h3.3.计算标态烟气量:精心整理=工况烟气量×【273÷(273+150烟气温度)】=10000×0.645=6450Nm3/h已知标况烟气量和烟气温度,计算其工况烟气量:=标况烟气量×【(273+150烟气温度)÷273】=6450×1.55=10000m3/h=SO2初始排放量×106÷标态烟气量=8×106÷6450=8000000÷6450=1240mg/Nm33.5.粉尘初始排放量:=耗煤量t/h×煤灰份%×膛系数20%=500×0.2×0.2=20kg/h2)、水膜除尘器V为流速:4~5m/s3)、脱硫喷淋塔V为流速:3~3.5m/s6.除尘效率和脱硫效率除尘效率=(除尘器捕集量÷进入除尘粉尘量)×100%=〔(进入除尘粉尘量-除尘器出口排出的粉尘量)÷进入除尘粉尘量〕÷100%脱硫效率按上述计算。
湿法脱硫液气比计算及脱硫塔整体设计计算
2 2 L 烟气脱硫工艺主要设备吸收塔设计和选型4.1 吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫 气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算, 包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、 吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。
4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区 高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计 算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔 吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0 为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总 传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为 NTU=(y 1-y 2)/ △y m ,即气相总的浓 度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程 度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=G m* y 1 - y 2 = G m * y 1 - y 2 k a ∆y k a ( y - y * ) - ( y - y * ) y m y 1 1 2 2 y - y * ln( 1 1 ) y - y * k y a = k Y a =9.81×10 -4 G 0.7W 0.25 [4]k a = ∂W 0.82 [4] (2)其中:y 1,y 2 为脱硫塔内烟气进塔出塔气体中 SO 2 组分的摩尔比,kmol (A)/kmol(B) * *y 1 , y 2 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3 h ﹒kp a )x2,x1 为喷淋塔石灰石浆液进出塔时的SO2 组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m2﹒h)W 液相空塔质量流速,kg/(m2﹒h)y1×=mx1, y2×=mx2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m2﹒h﹒kPa)k L a 为液体膜体积吸收系数,kg/(m2﹒h﹒kmol/m3)式(2)中∂ 为常数,其数值根据表2[4]表3 温度与∂ 值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
湿法脱硫系统物料平衡计算资料
1湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
脱硫工段工艺计算
三厂一、流程图二、各设备热量衡算进半脱冷却塔的气量为: 53000 m 3 气体成分物料衡算(1) H 2S 脱除量---G 1,kg/h 、G 1=G 0(C 1-C 2)=5.3*104*(1.5-0.06)/1.0*103=76.32 kg/h (2)溶液循环量L T ,m 3/h 、 L T =1200 m 3/h(3) 生成Na 2S 2O 3消耗的H 2S 的量 G 2, kg/h 、 取Na 2S 2O 3的生成率为H 2S 脱除量的8%计算 即G 2=76.32*8%=6.11 kg/h (4) Na 2S 2O 3DE 生成量,G 3, kg/hG3=6.11*158/2*32=14.20 kg/h(5) 理论回收硫量G4, kg/hG4=(76.32-6.11)*32/34=66.08 kg/h(6) 硫泡沫生成量G5 m3/hS1--------硫泡沫中的硫含量,kg/ m3此处取S1=30 kg/ m3G5=66.08/30=2.22 m3/h(7) 入熔硫釜硫膏量G6 kg /hG6= G4/S2S2-----硫膏含硫量,此处取S2=20%G6=66.08/0.2=330.4 kg /h1、冷却塔热量衡算(1)冷却塔热负荷,Q1,kJ/h半水煤气进冷凝塔的温度为:70℃,出口的温度为:35℃70℃水蒸汽的压力为31.2 KPa;35℃水蒸汽的压力为5.6KPa即70℃半水煤气含水量31.2*5.3*104/141=1.17*104 m3 35℃半水煤气含水量5.6*5.3*104/138=2.15 *103m3Q1= G0 [C P (t1-t2)+ W1i1- W2i2]C P-----半水煤气平均等压比热容kJ/(kmol.℃)W1. W2------------入.出冷却塔半水煤气含水量C P=43%*10.13*2+31.5%*0.754*28+6.8%*0.653*44+18%*0.745*28+0.7%*0.653*32=21.22 kJ/(kmol.℃)即Q1= G0 [C P (t1-t2)+ W1i1- W2i2]=5.3*104*21.22*(70-35)/22.4+1.17*104*0.1979*2624.3-2.15*103*0.03960*2559=7.62*106 kJ/h(2)冷却水消耗W3 kg /hW3= Q1/C△t △t=8℃即W3=7.62*106/8*4.183=2.28*105kg /h2、清洗热量衡算(1)清洗塔热负荷,Q1,kJ/h半水煤气进清洗的温度为:37℃,34.2KPa出口的温度为:29℃,34.2KPa37℃水蒸汽的压力为6.3 KPa;29℃水蒸汽的压力为4.0KPa即37℃半水煤气含水量6.3*5.3*104/134=2.49*103 m333℃半水煤气含水量4.0*5.3*104/134=1.58*103m3Q1= G0 [C P (t1-t2)+ W1i1- W2i2]C P-----半水煤气平均等压比热容kJ/(kmol.℃)W1. W2------------入.出冷却塔半水煤气含水量C P=43%*10.13*2+31.5%*0.754*28+6.8%*0.653*44+18%*0.745*28+0.7%*0.653*32=21.22 kJ/(kmol.℃)即Q1= G0 [C P (t1-t2)+ W1i1- W2i2]=5.3*104*21.22*(37-29)/22.4 +2.49*103*0.05114*2401.0-1.58*103*0.03036*2423.7=5.91*105 kJ/h(2)冷却水消耗W3 kg /hW3= Q1/C△t △t=8℃即W3=5.91*105/8*4.183=2.32*104kg /h3、熔硫釜热量消耗(1)熔硫釜热负荷,Q3,kJ/h硫的比热容:0.71KJ/(kg.℃)硫的熔融热:1.72*103 kJ/kmol由前面物料衡算知道:硫泡沫生成量G5=2.22m3/h同时硫的理论回收量:G4=66.68 kg/h即硫的体积:V=66.08/(1.96*103)=0.034m3/h即清液的量为:G8=(2.22-0.034)m3/h= 2.19m3/hQ3=Q硫+Q清液Q硫=0.71*(120-40)*66.68+1.72*103*66.68/32=7.47*103 kJ/hQ清液=0.8834*4.1868*(135-40)*2.19*1.04626*103=0.81*106 kJ/h即Q3=Q硫+Q清液=7.47*103+0.812*106=0.819*106 kJ/h(2)蒸汽消耗量,W,kg/h进熔硫釜的蒸汽压力为:0.6MPa,温度为164℃,出口冷凝液的温度为:164℃,,压力为:0.5 MPa。
脱硫计算公式比较全
脱硫计算公式比较全湿法脱硫系统物料平衡一、计算基础数据(1)待处理烟气烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry)烟气温度:114℃烟气中SO2浓度:3600mg/Nm3烟气组成:石灰石浓度:96.05%二、平衡计算(1)原烟气组成计算(2)烟气量计算1、①→②(增压风机出口→ GGH出口):取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。
温度为70℃。
2、⑥→⑦(氧化空气):假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。
取O/S=4需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。
其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。
氧化空气进口温度为20℃,进塔温度为80℃。
3、②→③(GGH出口→脱硫塔出口):烟气蒸发水量计算:1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。
由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp =0.2520 kcal/kg.℃。
(40℃)Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。
脱硫设计计算
4.2废气处理工艺选择综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高 (>95%),吸收剂利用率高( >90%)、能适应高浓度SO2 烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。
4.2.2 工艺说明脱硫工艺原理:干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH 作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na z SQ溶液,Na2SO3溶液与石灰反应,生成CaSQ和NaOH,CaSQ经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。
工艺过程分为三个部分:1石灰熟化工艺:生石灰干粉由罐车直接运送到厂内,送入粉仓。
在粉仓下部经给料机直接供熟化池。
为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。
配制浆液和溶液量通过浓度计检测。
2吸收、再生工艺:脱硫塔内循环池中的NaOH 溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSQ浆液。
将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。
向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH 值后加入碱液,脱硫工艺要求的PH 值为9~11。
3废液处理系统:沉淀池的清液收集在上清池,沉渣通过板框压滤机压制成泥饼,压制后清液送入上清池,上清池清液返回脱硫塔/收集池重新利用,泥饼送至煤灰场。
10t脱硫技术方案(钠碱法脱硫)
――有限公司10t/h锅炉烟气脱硫工程技术方案――有限公司2015年03月10t/h锅炉烟气脱硫工程技术方案目录1. 工程概况 (2)2. 主要设计原则 (2)3. 设计依据 (2)3.2 设计基础资料 (3)4. 工作界限 (3)5. 技术要求 (3)5.1 脱硫系统总体性能要求 (3)5.2 工艺选择 (3)5.3 工艺流程 (5)5.4工艺组成 (6)5.5 电气控制部分 (10)6. 脱硫系统供货设备清单 (10)7.系统运行经济分析 (11)7.1运行经济分析表 (11)7.2效益评估分析 (12)8. 设计参数及性能指标 (13)8.1 系统设计基础数据 (13)8.2 统性能指标 (13)9. 工程投资概算 (14)10、安全生产、环境保护、节能 (14)10.1 安全生产 (14)10.2 环境保护 (15)10.3 消防 (16)10.4 节能 (16)11、脱硫工程技术规范 (17)12、质量保证 (22)附件:烟气脱硫系统工艺流程图烟气脱硫系统主体立面图1. 工程概况贵公司现新建1台10t/h燃煤锅炉,为确保烟气SO2排放浓度≤200mg/N m3,需安装脱硫设备,以确保烟气达标排放。
2. 主要设计原则2.1采用合理的脱硫工艺,确保烟气SO2排放浓度≤200mg/Nm3。
2.2本着降低投资及运行成本的原则,本方案采用钠碱法脱硫工艺,脱硫系统主要由烟气系统、脱硫剂系统、SO2吸收系统组成。
2.3采用脱硫塔顶直排烟囱,烟囱采用304不锈钢制做。
2.4 根据现场条件,力求脱硫系统流程简单、布局合理。
3. 设计依据在设计、制造、安装及调试过程中,遵循以下(但不限于)技术标准和规范:《工业蒸汽锅炉参数系列》GB 1921-2004《钢制压力容器》GB150-1998《锅炉锅筒制造技术条件》JB/T 1609-93《锅炉大气污染物排放标准》(GB13271-2001)《工业锅炉水质》(GB1576-2001)《蒸汽锅炉安全技术监察规程》《工业锅炉安装工程施工及验收规范》GB 50273-1998《蒸汽锅炉安全技术监察规程》劳部发[1996]276号《工业蒸汽锅炉用离心引风机》JB-T 4357-19993.2 设计基础资料(1)锅炉出力10t/h(2)单台锅炉烟气量~30000m3/h(3)燃煤含硫量≤1%4. 工作界限4.1烟道接口:脱硫塔进口烟道至烟囱出口;4.2电气接口:由用户负责将配电系统引至现场所需地点;4.3 工艺用水接口:由用户负责将工艺用水引至现场所需地点。
脱硫工艺及其计算公式全解析
脱硫工艺及其计算公式全解析脱硫工艺是指将燃煤产生的二氧化硫(SO2)转化为无害的化合物或直接去除其SO2的工艺,主要应用于电力、冶金、化工等行业中。
常见的脱硫工艺包括湿法脱硫和干法脱硫。
湿法脱硫是通过将煤中的SO2与吸收剂接触反应,将SO2转化为硫酸或硫酸盐。
干法脱硫是通过使用吸附剂或催化剂直接吸附或催化氧化SO2,使其转化为硫酸或硫酸盐。
下面给出了湿法脱硫工艺中常见的石灰石-石膏脱硫工艺的计算公式:1.石灰石的消耗量计算公式:石灰石消耗量=SO2排放量/石灰石中CaO的质量分数*石灰石的可用率其中,SO2排放量为燃煤所产生的SO2排放量,石灰石中CaO的质量分数为石灰石中CaO的含量,石灰石的可用率为石灰石转化为CaO的效率。
2.石灰石浆液制备量计算公式:石灰石浆液制备量=SO2排放量/[石灰石中CaO的质量分数*石灰石的可用率*石灰石的浆液中CaO的浓度]其中,石灰石中CaO的质量分数、石灰石的可用率同上述公式,石灰石的浆液中CaO的浓度为石灰石浆液中CaO的含量。
3.石灰石浆液的回收量计算公式:石灰石浆液的回收量=石灰石浆液制备量-石灰石溶液中CaO的消耗量其中,石灰石溶液中CaO的消耗量为CaO在反应过程中的消耗量。
4.石膏产量计算公式:石膏产量=SO2排放量/[石膏中CaSO4的质量分数*石膏中CaSO4的可用率]其中,石膏中CaSO4的质量分数为石膏中CaSO4的含量,石膏中CaSO4的可用率为石膏转化为CaSO4的效率。
需要注意的是,以上公式中的各项参数需要实际运行的数据进行计算,并且不同的脱硫工艺可能存在不同的计算公式。
此外,脱硫工艺还涉及到反应温度、压力、吸收剂浓度等因素的影响,这些因素也需要考虑在内。
因此,在实际应用中,需要结合具体情况和工艺要求进行合理计算和调整。
双碱法脱硫工艺计算表
双碱法脱硫工艺计算表概述双碱法脱硫是一种经济、环保的烟气脱硫工艺。
该工艺通过在烟气中加入一定量的氢氧化钙和氢氧化钠,使烟气中的二氧化硫与氢氧化钙和氢氧化钠反应生成硫酸钙或硫酸钠,从而达到脱硫的目的。
本文将介绍双碱法脱硫的工艺计算表。
计算表数据输入项序号数据项单位1烟气流量Nm3/h2二氧化硫浓度mg/Nm33所需脱硫效率%4氢氧化钙纯度%5氢氧化钠纯度%6水的化学当量mol/kg7硫酸钙的产率系数%8硫酸钠的产率系数%数据输出项序号数据项单位序号数据项单位1所需氢氧化钙用量kg/h2所需氢氧化钠用量kg/h3硫酸钙产生量kg/h4硫酸钠产生量kg/h计算方法假设双碱法脱硫的化学反应方程式如下:Ca(OH)2 + SO2 → CaSO3 + H2O2NaOH + SO2 → Na2SO3 + H2O根据反应式,可以列出以下计算公式:1.计算氢氧化钙用量:氢氧化钙用量 = 烟气流量 × 二氧化硫浓度 × (1 - 所需脱硫效率) ÷ (2 × 水的化学当量 × 氢氧化钙纯度 × 硫酸钙的产率系数)2.计算氢氧化钠用量:氢氧化钠用量 = 烟气流量 × 二氧化硫浓度 × (1 - 所需脱硫效率) ÷ (2 × 水的化学当量 × 氢氧化钠纯度 × 硫酸钠的产率系数)3.计算硫酸钙产生量:硫酸钙产生量 = 烟气流量 × 二氧化硫浓度 × 所需脱硫效率 × 硫酸钙的产率系数 ÷ 1004.计算硫酸钠产生量:硫酸钠产生量 = 烟气流量 × 二氧化硫浓度 × 所需脱硫效率 × 硫酸钠的产率系数 ÷ 100注意事项1.氢氧化钙和氢氧化钠的纯度和硫酸钙、硫酸钠的产率系数是根据实际情况而定,需要根据实际脱硫设备的情况进行确定。
湿法脱硫工艺计算书
8 水平衡
项目名称
烟台
设计阶段
投标
代号 单位
日
审核
期
烟气脱硫工程设计
日
计算书
校核
期日
计算
期
计算公式或依据
计算结果 取 值
w3
kg/h
w4
kg/h
w3=wv2*ρ水蒸气,ρ水蒸汽取0.793 w4=w3-W
9242.91 3434.91
DSW DSM
Qr
kg/h mol/h kJ/h
DSM=DSW*1000/64 按SO2计算生成石膏的反应热为339KJ/mol
9 其它
需升温的水量
w12 Kg/h
w12=w6+w7+w11
#REF!
水温升高
△T
℃
△T=Qs*2/3/(c3*w12),c3查表给定
#REF!
热损失约为余热的1/3
三 石灰石用量 1 吸收剂有效成分 2 石灰石粉用量 3 石灰石浆用量
ECa WCa w13
w% Kg/h Kg/h
ECa=Ca WCa=DSW*100/64*(Ca/s)/*100/ECa
80000 76000 155
0.6 0.03 2500 5.5 10.55 96
2 1 1.285 95 1.638 1.03 4 2.5 12 3.5
二 烟温和水平衡计算 1 原烟气(风机前)
专 业 工艺 版次
备注 11%O2 11%O2 收到基 干态 干态
设计值
标态 MET取3.5~5.3
第 1 页,共 7 页
CW=W-W'
120
96606 161426.83 128011.5 -122203.48
湿法脱硫的工艺设计
科学思维
工程思维
创新思维
湿法脱硫工艺
钠碱法 石膏法 双碱法 镁法 氨法 海水脱硫
试剂 价格(元/吨) 吸收SO2的成本
(元/mol)
烧碱 3000
0.24
生石灰 石灰石 450 200
0.0252 0.02
试剂
Na2SO4 Na2SO3
价格(元/吨)
900
3000
任务1:湿法脱硫的工艺比较
NaOH
任务2:石灰石/石灰—石膏法脱硫工艺分析
CaCO3
O2
SO2
吸收
吸收效率
氧化 CaSO4·2H2O
氧化效率
固体
气体
溶液
气体
粉碎矿石 调成浆液
气体流速 烟气温度
pH控制
增大O2浓度
充分混合 搅拌 气液逆流 循环吸收
脱硫率/%
任务2:石灰石/石灰—石膏法脱硫工艺分析
活动2:分析实验数据选择最佳的脱硫条件
H2SO3
电离平衡:H2SO3
H++HSO3−
HSO3−
H++SO32−
为促进SO2在水溶液中的吸收,可选择哪些 物质作为脱硫剂?
2014年火电厂已投运的烟气脱硫设施的分类和统计
任务2:石灰石/石灰—石膏法脱硫工艺分析
CaCO3
SO2
吸收
O2 氧化
CaSO4·2H2O
活动1:为提高吸收效率和氧化效率,应如何控制条件?
湿法脱硫的工艺设计
双十中学 佘晓敏 2018.12.21
2011-2017年我国二氧化硫排放量分析
数据来源:国家统计局、国务院
国务院的《政府工作报告》:2017年全国SO2排放量 为1014.64万吨,下降8.0%。
脱硫设计计算方法
氧化曝气装置
• 循环氧化槽的容量 • 氧化空气的停留时间 • 氧化空气的过量系数 • 氧化空气的压力、温度 • 循环浆液的pH值 • CaSO3的结晶与CaSO4结晶 • 氧化曝气装置的防堵塞 • 氧化曝气装置的防腐蚀
浆液喷射装置
• 浆液流量的调节 • 喷嘴的特殊结构 • 浆液管道的防腐蚀 • 浆液管道的防堵、防垢
烟气进口
d2 接
e1-6 管
f1-32 表
g1-5
8000 × 4000 DN600 PN1.6 DN150 PN1.6
突面 突面
HG20593-97 HG20593-97
烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
干烟气量:
2×1149963 Nm3/h
烟气中 SO2 浓度: 1663 mg/ Nm3 湿烟气
确定关键参数
• 钙硫比 • 脱硫效率 • 液气比 • 石膏品质 • 石灰品质
2、建立工艺流程图
• 与物料平衡表同时
3、关键控制回路
• 烟气量、烟气中二氧化硫浓 度及钙硫比控制进浆量
烟气出口 循环浆液入口 除雾器冲洗水入口 人孔
h1-3 DN100 PN1.6 突面 HG20593-97 浆液回流口
j1-2 DN100 PN1.6 突面 HG20593-97 出料口
k1-n DN100 PN1.6 突面 HG20593-97 氧化风进口
m1-3 DN80 PN1.6 突面 HG20593-97 仪表接口
b1-3 DN900 PN1.6 突面 HG20593-97 循环浆液出口
湿法脱硫设备计算[1]
一、工艺流程二、设计计算定额1.煤气处理量7000Nm3/h2.脱硫塔前煤气硫化氢含量0.8g/Nm33.脱硫塔后煤气硫化氢含量20mg/Nm34.脱硫效率98%5.脱硫塔煤气进口温度35℃6.脱硫塔煤气进口压力11000Pa7.脱硫塔煤气出口压力10000Pa三、设备计算1.脱硫塔:(见图一)进脱硫塔湿煤气体积为V=7000×[(273+35)/273]×[(1.01325×105)/(1.01325×105+11000-5720)]=7506m3/h (式中5720为35℃时饱和水蒸气压力Pa)脱硫塔进口吸收推动力为△p1=*11000/101325+1+×0.8×(22.4/34)×(1/1000)×101325=59.2PαH2S物质的量脱硫塔出口吸收推动力为△p2=*10000/101325+1+×0.02×(22.4/34)×(1/1000)×101325=1.5Pα硫化氢的吸收量为G=7000×[(800-20)/(1000×1000)]=5.46kg/h脱硫塔的传质系数K取为17×10-5kg/(m2·h·Pa),则需用传质面积为F=5.46/(17×10-5×15.7)=2046m2选用多孔组合洗涤环ZHΦ240,比表面90m2/m3,空隙率0.75m3/m3,需填料体积V1=2046/90=22.73m3。
取每层填料层高1.8m,则共需N=22.73/(1.8×0.785×22)=4.02,共设四层。
取脱硫吸收液的硫容量为0.20kg/m3,则溶液循环量(即脱硫塔顶的喷淋量)为L=5.46/0.20=27.3m3/h 喷淋密度校核:脱硫塔的喷淋密度为l=27.3/(0.785×22)=8.69m3/(m2·h);按喷淋密度27.5m3/(m2·h)计算得到的喷淋量为27.5×0.785×22=86.4m3;脱硫塔的液气比为(86.4×1000)/7506=11.5L/m3,符合脱硫塔的液气比要求。
关于湿法脱硫过程中辅料碱消耗的分析与探讨
关于湿法脱硫过程中辅料碱消耗的分析与探讨任何产品的生产都要消耗一定的原材辅料,按照物质不灭定律,有产出就必有投入。
然而一个成品产品的产出到底需要消耗多少原材辅料为最佳,这是任何一个企业都在积极探索的问题。
二十世纪九十年代,邯钢的目标成本核算法在全国企业界引起强烈反响,许多企业因科学的学习邯钢的目标成本倒算,尝到了甜头,并使企业从困境中走出,从而发扬壮大。
然而细想起来,它的最终目的无非是要求严格控制过程产品的辅料消耗,科学合理地使用原材物料,使本企业的综合消耗在同行业占据领先水平,以期创造最佳的经济效益。
在今天的脱硫净化行业,特别是氮肥行业,虽然脱硫工序的辅料消耗并不象原料煤或水、电、汽的消耗那么引人注目。
但它作为产品过程控制的一个工序,它的辅料消耗又不能不引起企业领导的高度重视。
特别是在原料煤高度紧张,价格猛涨,而导致高硫煤在许多企业被迅速使用的今天,如何降低脱硫的辅料消耗这也是目前许多企业技术挖潜的重要目标。
今天,在这里我们从理论和实践两个方面着重探讨分析脱硫液中辅料碱的消耗与控制,以此共勉。
我们知道在湿式氧化法脱硫中,脱硫的外辅助消耗品种并不多,概括起来就是:碱源和脱硫剂。
除了大多数焦化行业因工艺的要求仍使用氨水作为碱源外,在氮肥行业绝大多数厂家都在使用纯碱(有重质碱和轻质碱)作为碱源(也有极少数厂家以烧碱为碱源)。
现在就以纯碱为例,从理论上分析它在整个反应过程中是如何被消耗掉的,以及在实际生产中如何控制它的消耗,以期达到最佳目的。
1、脱硫反应的机理:1.1、脱硫过程化学反应在这里我们以Na2CO3碱源,888为脱硫剂为例。
但888脱硫剂特有的脱除有机硫的反应以及一些多硫化的反应,在这里不作讨论。
虽然它对辅料碱消耗有影响但忽略不计。
1.2.1、脱除H2S的化学吸收反应 (1) (2)1.2.2、催化氧化析硫及碱液再生反应 (3) (4)1.2.3、拌随的副反应 (5) (6) (7)若气体中含有HCN,则存在如下反应 (8) (9) (10)从脱硫整个反应机理上看,反应过程相当简单,但脱硫液的相系组成极其复杂,(而且这仅仅是针对888脱硫剂而言,如果是多组分脱硫剂在反应后形成的脱硫液成分更是纷繁复杂,这也给分析问题带来很大难度)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出
除雾器后烟气携带 明水 烟气带水 石膏结晶水 石膏浆排出水 冲洗水、补充水 除雾器出口携带水滴 小于75mg/Nm3
总水量
9 系统耗水量 其它 需升温的水量 水温升高
热损失约为余热的1/3
三 碳酸钠用量 第 4 页,共 18 页
项目名称 序 号 项 目 1 吸收剂有效成分 2 Na2CO3用量 3 碳酸钠溶液用量 四 1 2 3 4 5 副产品生成量 亚硫酸钠 其他 合计 排浆量 其中结晶水
2*220MW 投标 位 计 算
设计阶段 代 号 单 Q Q' T Sar VS C w1 wv1
η
烟气脱硫工程设计 计算书
公 式 或 依 据
设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 设计任务书给定 给定、计算或C=Sar*2500估算 给定或由燃料燃烧计算 结定或计算 给定,>=90% 给定,一般取k=1.5~2 给定或查表,一般取1% 给定 设计任务书给定 设计任务书给定 给定,一般取2~2.4 给定,一般取2.5~4 给定,一般取2~3 给定,一般取8~25 给定,一般取3~8
43.5 173381 173381 195599
风机压缩使温升2~5℃
标态 标态
绝热,压力增加约2802Pa
吸收塔入口的烟气状况 无GGH时
烟气体积流量(干) 干烟气质量流量 水蒸汽质量流量 有GGH时 吸收塔入口烟温 入口水蒸汽分压 干烟气质量流量 烟气中的含水量 水蒸汽质量流量 冷凝水的量
Q3 G W T'1 p1 G' wv' W' CW
201130 237829 221153 5.30
标态,含氧化空气 运行工况 按塔内平均压力、温度
5.50
2.59 5.63
根据具体情况取值
2
氧化槽 计算循环量 实际液气比
2774.10 16.00
标态
项目名称 序 号 项 目 实际液气比 氧化槽体积 氧化槽高度 吸收塔尺寸(如图)
吸收塔直径 液面到进口烟道底高 烟气进口烟道斜坡高 进口烟道高 进口烟道宽 烟气进口塔内段高 进口烟道顶到底层喷 淋层高 喷淋层数系数
专 业 版 次 备
工艺
注
碳酸钠含量为30%
w14 w15 w16 w17 w18
Kg/h Kg/h Kg/h Kg/h Kg/h
w14=DSW*172/64 w15=w14/90%*10%,按10%计 w16=w14+w15 w17=w16/(12%~18%) w18=w14*2*18/172
20.97 2.33 23.30 155.32 4.39
2*220MW 投标 计 算
设计阶段 代 号 单 位 ECa w% WCa Kg/h w13 Kg/h
烟气脱硫工程设计 计算书
公 式 或 依 据 ECa=Ca WCa=DSW*106/64*(Ca/s)/*100/ECa w13=WCa/(1-0.7)
审核 日期 校核 日期 计算 日期 计算结果 取 值 98 27.16 90.54
项目名称 序 号 项 目 一 设计参数 1 烟气量(标态、湿) 2 烟气量(标态、干) 3 烟气温度 4 燃煤含硫量 5 烟气中SO2体积含量 6 7 8 9 10 11 12 13 14 15 16 17
二氧化硫浓度 烟气中的水的含量 烟气中的水的含量 脱硫效率 氧化倍率 空气中水含量 空气密度 Na2CO3含量 MgCO3含量 钠硫比 塔内烟气流速 吸收区接触反应时间
审核 日期 校核 日期 计算 日期 计算结果 取 值 -3108008.8 2380.4
53077981.7 -56185990.5
专 业 版 次 备
工艺
注
7 8
进
烟气含水 石灰石浆含水 氧化空气含水 w5 w6 w7 wm w8 w9 w10 w11 wt wc w12 △T Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h Kg/h ℃ w5=W w6=w13*(1-0.3) w7=AW2-AW1 wm=75*10-6*Q4 w8=w3 w9=w18 w10=w17*(1-12%~18%) w11=wt-w5-w6-w7 wt=wm+w8+w9+w10 wc=w9+W16/0.9*0.1+ww+(w8-w5)-w7+wm w12=w6+w7+w11 △T=Qs*2/3/(c3*w12),c3查表给定 0.00 63.38 0.00 15.08 22297.93 4.39 132.02 22386.04 22449.42 28319.99 22449.42 -397.27 0
3
Q4=Q2+AW+w4/18*22.4 Q5=(P0/T0)*((273+T'')/(P0+1000))*Q4 Q6=Q2*(P0/P2')*(273+T''')/273 d=2*sqrt(Q5/3600/(Vg*3.14)) V'g=4*Q6/(3600*3.14*D'*D') t=(0.5I+J+M+N+O+P+0.5Q)/V'g Wsus=L/G*Q/1000 L/G'=Wsus*1000/Q2 第 5 页,共 18 页
2*220MW 投标 计 算
目
设计阶段 代 号 单 位 T ℃ Q1 Q1'
Q1''
烟气脱硫工程设计 计算书
公 式 或 依 据
审核 日期 校核 日期 计算 日期 计算结果 取 值 40 173381 173381 198785
专 业 版 次 备 标态
工艺
注
Nm3/h Nm /h
m /h
3
3
Q1'=Q1*(1-wv%)
审核 日期 校核 日期 计算 日期 计算结果 取 值
14.18 161.82 6.81
专 业 版 次
工艺
备 注 实际状态
氧化槽直径等于吸收塔直径
3
5.50 1.22 0.60 G=duct area/H,烟气流速取15.3~18.3 m/s H=(2/3~0.8)*A I=F+G 一般取1.83~2.74m 一般取1.52~2m M=K*L 一般取1.52~2m 一般取1.83~2m 一般取1m Q=duct area/R,烟气流速取15.3~18.3 m/s R=(2/3~0.8)*A 1.14 3.85 0.82 4.4 1.43 2.13 3 1.93 5.79 1.98 2.37 1.00
3
8.27%O2 9.42%O2 收到基 干态 干态
设计值
k w2
ρ
Na Mg Na/S Vg T1 L/G T2
18 液气比 19 浆池内浆液停留时间 二 烟温和水平衡计算 1 原烟气(风机前)
标态 MET取3.5~5.3
第 1 页,共 18 页
项目名称 序 号 项
烟气温度 烟气体积流量(湿) 烟气体积流量(干) 实际烟气流量(湿)
烟气流速取15m/s 取三层 三层 烟气流速取15m/s
考虑因强制氧化引起的液 面升高
喷淋层间距 喷淋段高
顶层喷淋层到一级除 雾器底高 除雾器段高(含两级 除务器间距离) 二级除雾器到出口烟 道底面高
出口烟道高 出口烟道宽
第 6 页,共 18 页
项目名称
2*220MW 投标
设计阶段 序 号 项 目 代 号 单 位 S m 吸收塔总高 T m 吸收塔入口段侧面长 U m 吸收塔出口段长 W 进口斜坡角度 ° X 塔顶倾斜角度 °
氧化喷枪到液面的最 小距离
烟气脱硫工程设计 计算书
计 算 公 式 或 依 据 S=Z+E+F+G+J+M+N+O+P+Q U=0.6*A 一般取10~15 x=atan(2*Q/(A-R))*180/3.14 取(0.75~0.9)*Z h=Z+E+F+G+J
审核 日期 校核 日期 计算 日期 计算结果 取 值 23.9 3.10 3.3 11 54.2 6.13 6.81 11.59
5
项目名称 序 号 6 项 目 吸收塔内放热 水蒸发吸收 水的汽化热 蒸发水吸收 余热 水平衡
2*220MW 投标 计 算
设计阶段 代 号 单 位 Qt KJ/h r Qa Qs KJ/Kg KJ/h KJ/h
烟气脱硫工程设计 计算书
公 式 或 Qt=Qr+Qc 给定,查表 Qa=r*w4 Qs=Qt-Qa 依 据
Nm3/h kg/h kg/h ℃ Pa kg/h Nm /h kg/h
3
Q3=Q2' G=Q3*ρ W=Q2*ρ
干烟气,ρ 干烟气取1.35kg/Nm 3 3 湿烟气*w1,ρ 湿烟气取1.32kg/Nm
173381 234064 0 40 71451 234064.35 391117.19 310155.9 -310155.93
标态
经GGH后烟气入塔温度为105℃~110℃ 查表
G=Q3*ρ
干烟气,ρ 干烟气取1.35kg/Nm
3
wv2=p1*Q3/(101325+1800-p1) W'=0.793*wv' CW=W-W' 第 2 页,共 18 页
无冷凝水
项目名称 序 号 2 项 氧化空气量
二氧化硫的含量 烟气中二氧化硫量 需脱除的二氧化硫量 需氧气的量 需氧化空气量(干) 需氧化空气量(湿) 氧化空气的量(湿)
Q1''=Q1*(273+T)/273