《大学物理习题集》2012年事业单位考试 (1)
事业单位考试物理学基础知识题库及答案
事业单位考试物理学基础知识题库及答案
第一题
请问什么是物理学?
答案:物理学是研究物质的运动、变化以及与能量、力、力学
等相关规律的科学学科。
第二题
请列举一些物理学的基本分支领域。
答案:物理学的基本分支领域包括力学、热学、光学、电磁学、原子物理学、核物理学等。
第三题
请问力学是物理学的哪个分支?
答案:力学是物理学的基本分支之一,主要研究物体的运动规
律以及受力的影响。
第四题
请问什么是牛顿第一定律?
答案:牛顿第一定律,也称为惯性定律,指出一个物体如果没有外力作用,其状态将保持静止或匀速直线运动的状态。
第五题
请问什么是光学?
答案:光学是研究关于光的传播、干涉、衍射、折射等现象和性质的物理学分支。
第六题
请解释一下电磁学的基本原理。
答案:电磁学基于电荷之间的相互作用和电磁场的性质,研究电荷和电流的运动以及电磁波的传播。
第七题
请问核物理学研究的是什么?
答案:核物理学研究原子核的结构、性质以及核反应等现象。
这些题目和答案只是物理学基础知识的一小部分,供参考和复使用。
希望对您的事业单位考试物理学基础知识有所帮助。
---
以上答案只供参考和复习使用,对于确切的考试题目和答案,请以官方出题和参考资料为准。
《大学物理实验》习题集
《大学物理实验》习题集一、物理实验基本仪器的使用与训练4.1 长度测量仪器与训练实验1 在用米尺测量长方体的体积实验中,对长宽高分别测量了十次,将这些测量数据按测量序数和测量值的对应关系记入列表中,现问求体积时是否可以将测量序数相同时所对应的长宽高值相乘,共得到十组体积,然后对十个体积求平均来获得要求的体积值?2 一般常见的米尺精度为,游标卡尺精度为,千分尺精度为。
3 千分尺是精确读数仪器,能否估读?4 米尺测量时其起始位置选取在尺子的端头,试问这样测量对结果有影响吗?5 螺旋测微器为什么叫做千分尺?4.2 复摆的研究1 影响复摆周期大小的因素有哪些?2 复摆有哪些物理特性?3 如何理解回转半径RG?4 本实验是利用复摆的物理特性来测量重力加速度的?5 本实验在理论推导过程中作了哪些近似?近似以后对实验结果有何影响?4.4.1 电表的改装与校准1 一表头为1毫安,内阻为150欧姆,把它改装成10毫安的电流表,在表头上并联多大的分流电阻?2 一表头为1毫安,内阻为150欧姆,把它改装成5伏的电压表,在表头上串联多大的扩程电阻?3 在把电流表改装成电压表实验中,都需要哪些器材?4 欧姆表的标度尺与电流表和电压表有什么不同?5 为什么要做改装电流表和电压表的校正曲线?4.4.2示波器的调整和使用实验1 波器荧光屏上无光点出现,有几种可能,怎样调节使光点出现?2 示波器的主要功能是什么?示波器的组成?3 示波器为什么能显示周期信号的变化过程?4 如果锯齿信号周期是正弦信号周期的一半,屏上是什么图形?5 李萨如图形不稳定,怎么调节?4.4.6.1 单臂电桥测热敏电阻的温度系数1 半导体热敏电阻具有怎样的温度特性?2 平衡电桥和非平衡电桥有何异同点?3 电桥选择不同量程时,对结果的准确度(有效数字)有何影响?4 如何利用非平衡电桥测电阻?5 非平衡电桥测电阻应注意什么?4.4.6.2 直流双臂电桥测金属导体电阻率1 直流双臂电桥与惠斯登电桥有那些异同之处?2 实验中采用何种措施提高测量灵敏度?3 双臂电桥平衡的条件是什么?4 四端电阻器的电流端和电压端是如何区分的?5 在测量电阻过程中应尽量使通电时间短,为什么?4.5.1 分光仪的使用及三棱镜顶角的测定1 在望远镜调焦时,为什么当观察到反射回来的绿“十”字像清楚时,说明望远镜已聚焦于无穷远处?2 分光仪调节好的具体要求是什么?3 调节的原理是什么?怎样才能调节好?4 为什么分光仪要设两个游标?计算角度时,应注意什么?5 分光仪有哪几部分组成?各部分作用是什么?6 调整望远镜光轴垂直仪器转轴时,若观察到的现象是:平面镜A面反射的绿色十字像在上十字叉丝下方2mm处,而平面镜转过1800后至B面,绿色十字像在上十字叉丝下方10mm 处。
《大学物理习题集》(上)习题解答
)2(选择题(5)选择题单元一 质点运动学(一)一、选择题1. 下列两句话是否正确:(1) 质点作直线运动,位置矢量的方向一定不变;【 ⨯ 】(2) 质点作园周运动位置矢量大小一定不变。
【 ⨯ 】 2. 一物体在1秒内沿半径R=1m 的圆周上从A 点运动到B 点,如图所示,则物体的平均速度是: 【 A 】 (A) 大小为2m/s ,方向由A 指向B ; (B) 大小为2m/s ,方向由B 指向A ; (C) 大小为3.14m/s ,方向为A 点切线方向; (D) 大小为3.14m/s ,方向为B 点切线方向。
3. 某质点的运动方程为x=3t-5t 3+6(SI),则该质点作 【 D 】(A) 匀加速直线运动,加速度沿X 轴正方向; (B) 匀加速直线运动,加速度沿X 轴负方向;(C) 变加速直线运动,加速度沿X 轴正方向; (D)变加速直线运动,加速度沿X 轴负方向 4. 一质点作直线运动,某时刻的瞬时速度v=2 m/s ,瞬时加速率a=2 m/s 2则一秒钟后质点的速度:【 D 】(A) 等于零(B) 等于-2m/s (C) 等于2m/s (D) 不能确定。
5. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向边运动。
设该人以匀速度V 0收绳,绳不伸长、湖水静止,则小船的运动是 【 C 】(A)匀加速运动; (B) 匀减速运动; (C) 变加速运动; (D) 变减速运动; (E) 匀速直线运动。
6. 一质点沿x 轴作直线运动,其v-t 曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5s 时,(7)选择题质点在x 轴上的位置为 【 C 】(A) 0; (B) 5m ; (C) 2m ; (D) -2m ; (E) -5m*7. 某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数。
当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 【 C 】(A) 02v kt 21v += (B) 02v kt 21v +-= (C)2v 1kt 21v 1+= (D)2v 1kt 21v 1+-=二、填空题1. )t t (r )t (r ∆+ 与为某质点在不同时刻的位置矢量,)t (v 和)t t (v ∆+为不同时刻的速度矢量,试在两个图中分别画出s ,r ,r ∆∆∆ 和v ,v ∆∆。
大学物理习题集
大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。
大学物理习题集(全部)
⼤学物理习题集(全部)智能型远程作业系统使⽤须知⼀.系统下载1.作业⽹站的⽹址为:h t t p://58.40.126.79/h o me w o r k/。
2.下载“学⽣系统操作⽅法讲解视频”和“⽂本、公式和标注的输⼊⽅法讲解视频”了解作业系统的使⽤⽅法。
3.下载并安装“学⽣系统”,学⽣⼝令初始密码为123。
⼆.题解输⼊1.作业题中所有填空题的解题都只需写最后答案,不能写公式及过程。
2.公式编辑器中不要输⽂字,如“⽅向向上”等,也不能写题⽬中的序号(1),(2)等。
3.微分符号d、都要⽤公式编辑器中规定符号“d”或“”,不能⽤键盘输字母。
⽮量表⽰如的输⼊顺序:公式编辑器中输符号d键盘输。
4.所有公式的积分形式都⽤⼀重积分符号表⽰,且不要写下⾓标。
如课本中,作业输⼊为。
5.除点乘表⽰(如),式⼦中字母间、数字间、字母数字间相乘都不能写“”,如不能写,应写。
6.每题题解输⼊的物理量形式须参看“可⽤符号”中规定的表达形式。
如最⼤速率⽤表⽰等。
字母写错没有分数。
7.单位的输⼊要通过按公式编辑器中的“m2”键后再输字母,显⽰为蓝⾊。
三.提交须知1.所有题⽬做完提交后都能再次进⼊“答题”进⾏修改。
直到满分。
2.每题题解的正确率达到30%以上才给予批改,才会显⽰本题的评讲(正确解题过程及答案),否则需重做。
3.解题过程中的基本公式、积分表达式、答案等都是有分数的关键步骤,关键步骤缺少,即使答案正确,也不能得满分。
第1章质点运动学运动的描述例题1.已知质点的运动⽅程(S I制)求:(1)质点的轨迹;(2)t=0及t=2s时,质点的位置⽮量。
2.已知⼀质点的运动⽅程。
求质点的速度和加速度。
3.已知质点的运动⽅程为(S I制)求:(1)轨道⽅程;(2)t=2秒时质点的位置、速度以及加速度;(3)什么时候位⽮恰好与速度⽮量垂直?4.设某⼀质点以初速度作直线运动,其加速度为。
问:质点在停⽌前运动的路程有多长?5.路灯距地⾯⾼度为h,⾝⾼为的⼈以速度在路上匀速⾏⾛。
(完整版)大学物理习题集.doc
大学物理习题集一、选择题1.一运动质点在时刻t 位于矢径r (x ,y ) 的末端处,其速度大小为 (A )trd d (B)td d r (C)td d r(D)22)()(ty t x d d d d + 2.质点作半径为R 的匀速率圆周运动,每T 秒转一圈. 在3T 时间间隔内其平均速度与平均速率分别为(A )T R T R ππ2 , 2 (B) TRπ2 , 0 (C) 0 ,0 (D)0 , 2TRπ 3.下列运动中,a 保持不变的是(A )单摆的摆动 (B) 匀速率圆周运动 (C )行星的椭圆轨道运动 (D) 抛体运动4.质点作曲线运动,位置矢量r ,路程s ,a τ 为切向加速度,a 为加速度大小,v 为速率,则有 (A )tva d d =(B) trv d d =(C) tsv d d =(D) ta d d v=τ 5. 如图所示,两个质量相同的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,并处于静止状态. 在剪断绳子的瞬间,球1和球2的加速度分别为(A )g ,g (B )0 ,g (C )g ,0 (D )2g ,06. 如图所示,物体A 置于水平面上,滑动摩擦因数为 μ. 现有一恒力F 作用于物体A 上,欲使物体A 获得最大加速度,则力F 与水平方向的夹角θ应满足(A )μθ=sin (B )μθ=tan (C )μθ=cos (D )μθ=cot 7. 如图所示,两物体A 和B 的质量分别为m 1和m 2,相互接触放在光滑水平面上,物体受到水平推力F 的作用,则物体A 对物体B 的作用力等于(A )F m m m 211+ (B ) F (C )F m m m 212+ (D )F m m125图题6图 7图8. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处时,其增加的动能为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 9. 质量为m 的航天器关闭发动机返回地球时,可以认为仅在地球的引力场中运动. 地球质量为M ,引力常量为G . 则当航天器从距地球中心R 1 处下降到R 2 处引力做功为(A )21R Mm G(B )2121R R R GMm- (C )2221R R R GMm- (D )2121R R R R GMm- 10. 如图所示,倔强系数为k 的轻质弹簧竖直放置,下端系一质量为m 的小球,开始时弹簧处于原长状态而小球恰与地接触. 今将弹簧上端缓慢拉起,直到小球刚好脱离地面为止,在此过程中外力作功为(A )kg m 22(B )kg m 222(C )k g m 322(D )kg m 42210图11图11. 如图所示,A 、B 两弹簧的倔强系数分别为k A 和k B ,其质量均不计. 当系统静止时,两弹簧的弹性势能之比E pA / E pB 为(A )BA k k(B )AB k k(C )22BA k k (D )22AB k k12. 一质点在外力作用下运动时,下列说法哪个正确?(A )质点的动量改变时,质点的动能也一定改变. (B )质点的动能不变时,质点的动量也一定不变. (C )外力的功是零,外力的冲量一定是零. (D )外力的冲量是零,外力的功也一定是零. 13. 设速度为v 的子弹打穿一木板后速度降为v 21,子弹在运动中受到木板的阻力可看成是恒定的. 那么当子弹进入木块的深度是木块厚度的一半时,此时子弹的速度是(A )v 41 (B )v 43 (C )v 83(D )v 85 14. 一轻质弹簧竖直悬挂,下端系一小球,平衡时弹簧伸长量为d . 今托住小球,使弹簧处于自然长度状态,然后将其释放,不计一切阻力,则弹簧的最大伸长量为(A )d (B )2d (C )3d (D )d 2115. 下列关于功的说法中哪一种是正确的.(A )保守力作正功时,系统内相应的势能增加.(B )质点运动经一闭合路径,保守力对质点所作的功为零.(C )作用力与反作用力大小相等,方向相反,所以两者所作功的代数和必定为零. (D )质点系所受外力的矢量和为零,则外力作功的代数和也必定为零. 16. 质量为m 的小球,速度大小为v ,其方向与光滑壁面的夹角为30°. 小球与壁面发生完全弹性碰撞,则碰撞后小球的动量增量为(A )– mv i (B )mv i (C )– mv j (D )mv jm题16图 题17图 题18图17. 如图所示,质量为m 的小球用细绳系住,以速率v 在水平面上作半径为R 的圆周运动,当小球运动半周时,重力冲量的大小为(A )mv 2 (B )vm gRπ (C )0 (D )22)π()2(vmgR mv18. 如图所示,A 、B 两木块质量分别为m A 和m B =21m A ,两者用轻质弹簧相连接后置于光滑水平面上. 先用外力将两木块缓慢压近使弹簧压缩一段距离后再撤去外力,则以后两木块运动的动能之比kAkB E E 为(A )2 (B )21 (C )2 (D )119. 如图所示,光滑平面上放置质量相同的运动物体P 和静止物体Q ,Q 与弹簧和挡板M 相连,弹簧和挡板的质量忽略不计. P 与Q 碰撞后P 停止,而Q 以碰撞前P 的速度运动.则在碰撞过程中弹簧压缩量达到最大时,此时有(A )P 的速度正好变为零 (B )P 与Q 的速度相等(C )Q 正好开始运动 (D )Q 正好达到原来P 的速度题19图 题20图20. 如图所示,质量分别为m 1和m 2的小球用一轻质弹簧相连,置于光滑水平面上. 今以等值反向的力分别作用于两小球上,则由两小球与弹簧组成的系统(A )动量守恒,机械能守恒 (B )动量守恒,机械能不守恒 (C )动量不守恒,机械能守恒 (D )动量不守恒,机械能不守恒 20.当一质点作匀速率圆周运动时,以下说法正确的是 (A )它的动量不变,对圆心的角动量也不变(B )它的动量不变,但对圆心的角动量却不断变化 (C )它的动量不断改变,但对圆心的角动量却不变(D )它的动量不断改变,对圆心的角动量也不断改变21.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的二分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )02ω (D )02ω22.有一花样滑冰运动员,可绕通过自身的竖直轴转动. 开始时她的双臂伸直,此时的转动惯量为J 0,角速度为ω0 . 然后她将双臂收回,使其转动惯量变为原来的三分之一,这时她的转动角速度将变为(A )021ω(B )021ω(C )03ω (D )03ω23.如图所示,有一个小块物体置于光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔. 该物体以角速度ω 作匀速圆周运动,运动半径为R . 今将绳从小孔缓慢往下拉,则物体 ( )(A ) 动能不变,动量、角动量改变 (B )动量、角动量不变,动能改变 (C )角动量不变,动能、动量改变 (D )动能、动量、角动量都不变24.有一均匀直棒一端固定,另一端可绕通过其固定端的光滑水平轴在竖直平面内自由摆动. 开始时棒处于水平位置,今使棒由静止状态开始自由下落. 则在棒从水平位置摆到竖直位置的过程中,角速度ω和角加速度β 将会如何变化(A )ω和β 都将逐渐增大 (B )ω和β 都将逐渐减小 (C )ω逐渐增大、β 逐渐减小 (D )ω逐渐减小、β 逐渐增大 25.如果要将一带电体看作点电荷,则该带电体的 (A )线度很小 (B )电荷呈球形分布 (C )线度远小于其它有关长度 (D )电量很小.26.以下说法中哪一种是正确的?(A )电场中某点电场强度的方向,就是试验电荷在该点所受电场力的方向(B )电场中某点电场强度的方向可由E =F /q 0确定,其中q 0为试验电荷的电量,q 0可正、可负,F 为试验电荷所受的电场力(C )在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D )以上说法都不正确.27.一边长为b 的正方体,在其中心处放置一电量为q 的点电荷,则正方体顶点处电场强度的大小为(A )20π8b q ε (B )20π6b q ε (C )20π3b q ε (D )202πb q ε28. 某种球对称性静电场的场强大小E 随径向距离r 变化的关系如图所示,请指出该电场是由下列哪一种带电体产生的(A )点电荷 (B )半径为R 的均匀带电球面(C )半径为R 的均匀带电球体 (D )无限长均匀带电直线.29.由高斯定理的数学表达式⎰⋅SS E d =∑0/εi q 可知,下述各种说法中正确的是(A )高斯面内电荷的代数和为零时,高斯面上各点场强一定处处为零 (B )高斯面内的电荷代数和为零时,高斯面上各点场强不一定处处为零 (C )高斯面内的电荷代数和不为零时,高斯面上各点场强一定处处不为零 (D )高斯面内无电荷时,高斯面上各点场强一定为零.30. 如图所示,一均匀电场的电场强度为E . 另有一半径为R 的半球面,其底面与场强E 平行,则通过该半球面的电场强度通量为(A )0(B )E R 2π21(C ) E R 2π(D ) E R 2π223图题30图E题28图31.静电场中某点P 处电势的数值等于(A )试验电荷q 0置于P 点时具有的电势能 (B )单位试验电荷置于P 点时具有的电势能 (C )单位正电荷置于P 点时具有的电势能(D )把单位正电荷从P 点移到电势零点时外力所作的功. 32.在某一静电场中,任意两点P 1和P 2之间的电势差决定于 (A )P 1点的位置 (B )P 2点的位置(C )P 1和P 2两点的位置(D )P 1和P 2两点处的电场强度的大小和方向.33.半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则该带电体电场的电势U 随距球心的距离r 变化的曲线为(A ) (B ) (C ) (D ) 题33图34.一半径为R 的均匀带电球面的带电量为q . 设无穷远处为电势零点,则球内(外)距离球心为r 的P 点处的电场强度的大小和电势为(A )0=E ,rq U 0π4ε= (B ) 20π4r q E ε=,rq U 0π4ε= (C )0=E ,Rq U 0π4ε=(D ) 20π4r q E ε=,Rq U 0π4ε=35. 如图所示,边长为a 的正方形线圈中通有电流I ,此线圈在A 点产生的磁感应强度B 的大小为 (A )aIπ420μ (B )aIπ320μ (C )aIπ220μ (D )aIπ20μ 36. 如图所示,四条皆垂直于纸面的无限长载流细导线,每条中的电流强度都为I . 这四条导线被纸面截得的断面及电流流向如图所示,它们组成了边长为a 的正方形的四个顶角,则在图中正方形中点O 的磁感应强度的大小B 为(A )aIπ20μ (B )aIπ220μ (C )aIπ230μ (D )II题35图 题36图 题37图 题38图37、 如图所示,一载流导线在同一平面内弯曲成图示状,O 点是半径为R 1和R 2的两个半圆弧的共同圆心,导线在无穷远处连接到电源上. 设导线中的电流强度为I ,则O 点磁感应强度的大小是______.(A )102010π444R I R I R I μμμ-+ (B )102010π444R IR I R I μμμ--(C )102010π444R IR I R I μμμ++(D )102010π444R IR I R I μμμ+-38. 如图所示,在一圆电流所在的平面内,选取一个与圆电流相套嵌的闭合回路,则由安培环路定理可知 (A )⎰=⋅Ldl B 0,且环路上任意一点0=B (B )⎰=⋅Ldl B 0,但环路上任意一点0≠B(C )0⎰≠⋅Ldl B ,且环路上任意一点0≠B (D )⎰≠⋅Ldl B 0, 但环路上任意一点=B 常量36 一通有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个单位长度匝数相等的螺线管(R=2r ),两螺线管中的磁感应强度大小B R 和B r 应满足:(A )B R =B r (B )2B R =B r (C )B R =2B r (D )B R =4B r39.如图:金属棒ab 在均匀磁场B 中绕过c 点的轴OO ’转动,ac 的长度小于bc ,则:(A )a 点与b 点等电位 (B )a 点比b 点电位高(C )a 点比b 点电位低 (D )无法确定40.将导线折成半径为R 的43圆弧,然后放在垂直纸面向里的均匀磁场里,导线沿aoe 的角平分线方向以速度v 向右运动. 导线中产生的感应电动势为:(A )0(B )BRv 23(C )BRv (D )BRv 241.金属杆aoc 以速度v 在均匀磁场B 中作切割磁力线运动. 如果oa=oc=L ,如图放置,那么杆中动生电动势为:(A )BLv =ε (B )θεsin BLv = (C )θεcos BLv = (D ))cos 1(θε+=BLva题39图 题40图 题41图二、填空题1.一物体沿直线运动,运动方程为t A y ωsin =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .2.一物体沿直线运动,运动方程为t A x ωcos =,其中A 、ω均为常数,则(1)物体的速度与时间的函数关系式为 ;(2)物体的速度与坐标的函数关系式为 .3.一质点的直线运动方程为x = 8t – t 2(SI ),则在t=0秒到t=5秒的时间间隔内,质点的位移为 ,在这段时间间隔内质点走过的路程为 .4.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点运动轨道最高处的曲率半径为5 m ,则抛出时质点初速度的大小v 0 = . (g=10 m·s -2)5.一质点以45°仰角作斜上抛运动,不计空气阻力. 若质点抛出时质点初速度的大小v 0 = sm 10 .(g=10 m·s -2) 则质点运动轨道最高处的曲率半径为 m ,则抛出时质点初速度的大小v 0= . (g=10 m·s -2)6.在oxy 平面内运动的一质点,其运动方程为 r =5cos5t i + 5sin5t j ,则t 时刻其速度v = ,其切向加速度τa = ,法向加速度a n = .7. 如图,质量为m 的小球用轻绳AB 、AC 连接. 在剪断AB 前后的瞬间,绳AC 中的张力比值 T / T ′=.m题7图 题8图 题9图 题10图8. 如图,一圆锥摆摆长为l ,摆锤质量为m ,在水平面上作匀速圆周运动,摆线与竖直方向的夹角为θ. 则:(1)摆线中张力T = ;(2)摆锤的速率v = .9. 一小球套在半径R 的光滑圆环上,该圆环可绕通过其中心且与圆环共面的铅直轴转动. 若在旋转中小环能离开圆环的底部而停在环上某一点,则圆环的旋转角速度ω 值应大于 .10. 如图,质量为m 的木块用平行于斜面的细线拉着放置在光滑斜面上. 若斜面向右方作减速运动,当绳中张力为零时,木块的加速度大小为 ;若斜面向右方作加速运动,当木块刚脱离斜面时,木块的加速度大小为 .11. 已知两物体的质量分别为m 1、m 2,当它们的间距由a 变为b 时,万有引力所作的功为 .12. 如图所示,一质点沿半径为R 的圆周运动. 质点所受外力中有一个是恒力F =F 1 i +F 2 j ,当质点从A 点沿逆时针方向走过43圆周到达B 点时,F 所作的功A= . 13. 如图所示,质量为m 的小球系在倔强系数为k 的轻弹簧一端,弹簧的另一端固定在O 点. 开始时小球位于水平位置A 点,此时弹簧处于自然长度l 0 状态. 当小球由位置A 自由释放,下落到O 点正下方位置B 时,弹簧的伸长量为nl 0,则小球到达B 点时的速度大小为v B = . 14. 一颗速率为800 m·s -1的子弹打穿一块木板后,速度降为600 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .15. 一颗速率为600 m·s -1的子弹打穿一块木板后,速度降为500 m·s -1,若让该子弹继续穿过第二块完全相同的木板,则子弹的速率降为 .B题12图A题13图16. 某人拉住河中的船,使船相对于岸不动. 以地面为参照系,人对船所作的功 ;以流水为参照系,人对船所作的功 .(填 >0 ,=0,或 <0)17. 地球半径为R ,质量为M . 现有一质量为m 的物体,位于离地面高度为2R 处,以地球和物体为系统,若取地面为势能零点,则系统的引力势能为 ;若取无限远处为势能零点,则系统的引力势能为 . (万有引力常数为G )18. 质量为m 的小球自高度为h 处沿水平方向以速率u 抛出,与地面碰撞后跳起的最大高度为h 21,水平方向速度为u 21. 不计空气阻力,则碰撞过程中,(1)地面对小球的垂直冲量为 ; (2)地面对小球的水平冲量为 .题18图m题20图19. 一物体质量为20 kg ,受到外力F = 20 i +10t j (SI) 的作用,则在开始的两秒内物体受到的冲量为 ;若物体的初速度为v 0 =10i (单位为m ⋅s -1),则在2 s 末物体的速度为 .20. 如图所示,质量为m 的小球在水平面内以角速度ω 匀速转动. 在转动一周的过程中, (1)小球动量增量的大小是 ; (2)小球所受重力冲量的大小是 ; (3)小球所受绳中张力冲量的大小是 . 21. 质量为m 的质点,以不变速率v 越过一水平光滑轨道的120° 弯角时,轨道作用于质点的冲量大小I = .22.在光滑的水平面上有一质量为M =200 g 的静止木块,一质量为m =10.0 g 的子弹以速度v 0 = 400 m ⋅s -1沿水平方向射穿木块后,其动能减小为原来的1/16. 则(1)子弹射穿木块后,木块的动能为 ;(2)阻力对子弹所做的功为 ;(3)系统损失的机械能为 .23.如图所示有一匀质大圆盘,质量为M ,半径为R ,其绕过圆心O 点且垂直于盘面的转轴的转动惯量为221MR . 然后在大圆盘中挖去如图所示的一个小圆盘,小圆盘的质量为m ,半径为r ,该挖去的小圆盘对上述转轴的转动惯量为223mr ,则挖去小圆盘后大圆盘的剩余部分对原来转轴的转动惯量为 . 24、已知有一飞轮以角速度ω0绕某固定轴旋转,飞轮对该轴的转动惯量为J 1;现将另一个静止飞轮突然啮合到同一个转轴上,该飞轮对轴的转动惯量为J 2,且J 2=2 J 1. 则啮合后整个系统的转动角速度为 .25.如图所示,木块A 、B 和滑轮C 的质量分别为 m 1、m 2和m 3,滑轮C 的半径为R ,对轴的转动惯量为2321R m J =. 若桌面光滑,滑轮与轴承之间无摩擦,绳的质量不计且不易伸长,绳与滑轮之间无相对滑动,则木块B 的加速度大小为 .23图25图26.有一半径为R 的匀质圆形水平转台,可绕过中心O 且垂直于盘面的竖直固定轴旋转,转台对轴的转动惯量为J . 有一质量为m 的人站于台上,当他站在离转轴距离为r 处时(r <R ),转台和人一起以角速度ω0绕轴旋转. 若轴承处摩擦可以忽略,则当人走到转台边缘时,转台和人一起转动的角速度为 .27.如图所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其单位长度的带电量分别为1λ和2λ,则场强等于零的P 点与直线1的距离为______.28.方向如图,A 、B 为真空中两块“无限大”的均匀带电平行平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/2. 则A 、B 两平面上电荷面密度分别为=A σ________,=B σ________. 29.如图所示,两块“无限大”的带电平行平面,其电荷面密度分别为σ-(σ>0)及σ3.试写出各区域的电场强度E :Ⅰ区E 的大小______,方向______;Ⅱ区E 的大小______,方向______;Ⅲ区E 的大小______,方向______.30.真空中一半径为R 的均匀带电球面,总电量为Q (Q<0) . 今在球面上挖去一块非常小的面积S ∆(连同电荷),且假设不影响原来的电荷分布,则挖去S ∆后球心处电场强度的大小E=______,其方向为______.1λ2λ12A BⅡⅢ-σ3σⅠOR△S题27图 题28图 题29图 题30图31.在静电场中,任意作一闭合曲面,通过该闭合曲面的电通量⎰⋅SS E d 的值仅取决于______,而与______无关.32.在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合曲面S 1、S 2、S 3,则通过这些闭合曲面的电场强度通量分别为=1Φ______,=2Φ______,=3Φ______.题32图 题33图33.如图所示,半径为R 的半球面置于场强为E 的均匀电场中,若其对称轴与场强方向一致,则通过该半球面的电场强度通量为______,若其对称轴与场强方向垂直,则通过该半球面的电场强度通量为______.34.在电量为q 的点电荷的静电场中,与点电荷相距分别为r 1和r 2的A 、B 两点之间的电势差U A -U B =______.35.一个球形的橡皮膜气球,电荷q 均匀分布在其表面,在吹大此气球的过程中,半径由r 1变到r 2. 若选取无穷远处为电势零点,则半径为R (r 1<R <r 2)的高斯球面上任一点的场强大小E 由______变为______;电势U 由______变为______.36.如图所示,在电量为+Q 的点电荷产生的电场中,电量为q 的试验电荷沿半径为R 的圆弧由A 点移动3/4圆弧轨道到D 点,在此过程中,电场力作功为______;若从D 点移到无穷远处,此过程中电场力作功为______.题36图 题37图 题38图 题39图37. 如图所示,无限长直导线在P 处弯成半径为R 的圆,导线在P 点绝缘. 当通以电流I 时,则在圆心O 点的磁感应强度大小=B ________.38. 如图所示,用均匀细金属丝构成一半径为R 的圆环,电流I 由导线CA 流入圆环A 点,而后由圆环B 点流出,进入导线BD . 设导线CA 和导线BD 与圆环共面,则环心O 处的磁感应强度大小为________,方向________.39. 一同轴电缆由内圆柱体和外圆筒导体组成,其尺寸如图所示. 它的内外两导体中的电流均为I ,且在横截面上均匀分布,但二者电流的流向相反,则(1)在r <R 1处磁感应强度大小为________;(2)在r >R 3处磁感应强度大小为________.40.如图所示,在一根通有电流I 的长直导线旁,与之共面地放着一个长宽各为a 和b 的矩形线框ABCD .线框AD 边与载流长直导线平行,且二者相距为2b . 在此情形中,线框内的磁通量=Φ________.41. 如图所示,两根长直导线通有电流I ,对图示环路1L 、2L 、3L 上B 的环流有:=⋅⎰1L dl B ________;=⋅⎰2L dl B ________;=⋅⎰L dl B ________.III题40图 题41图 题44图42. 一带电粒子平行磁感应线射入匀强磁场,则它作________运动;一带电粒子垂直磁感应线射入匀强磁场,则它作________运动;一带电粒子与磁感应线成任意角度射入匀强磁场,则它作_________运动.43. 在电场强度E 和磁场强度B 方向一致的匀强电场和匀强磁场中,有一运动着的电子质量为m 、电量为e ,某一时刻其速度v 的方向如图(a )和图(b )所示,则该时刻运动电子的法向和切向加速度的大小分别为:在图(a )所示情况下,=n a ______,=t a ______;在图(b )所示情况下,=n a ______,=t a ______. 44.两无限长直导线通相同的电流I ,且方向相同,平行地放在水平面上,相距为2l . 如果使长为l 的直导线AB 以匀速率v 从图中的位置向左移动t 秒时,(导线AB 仍在两电流之间),AB 两端的动生电动势大小为______. A 、B 两端,电势高的一端是______. 45.四根辐条的金属轮子在均匀磁场B 中转动,转轴与B 平行. 轮子和辐条都是导体. 辐条长为R ,轮子转速为n ,则轮子中心a 与轮边缘b 之间的感应电动势为______,电势最高点是在______处.BE BE题45图 题43图三、计算、问答1.有一质量为m 的物体悬挂在一根轻绳的一端,绳的另一端绕在一轮轴的轴上,如图所示. 轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的水平固定轴承之上,绳子不易伸长且与轴之间无相对滑动. 当物体由静止释放后,在时间t 内下降了一段距离s ,试求整个轮轴的转动惯量J (用m 、r 、t 和s 表示).mλxO2. 如图所示,质量M=2.0 kg 的沙箱,用一根长l=2.0 m 的细绳悬挂着. 今有一质量为m=20 g 的子弹以速度v 0 = 500 m ⋅s -1水平射入并穿出沙箱,射出沙箱时子弹的速度为v= 100 m ⋅s -1,设穿透时间极短. 求:(1)子弹刚穿出沙箱时绳中张力的大小;(2)子弹在穿透过程中受到的冲量大小.3. 有一均匀带电的半径为R 的球体,体密度为ρ,试用高斯定理求解其内外电场及电势分布。
大学物理1试题及答案
大学物理1试题及答案一、选择题(每题2分,共20分)1. 光在真空中传播的速度是()。
A. 3×10^8 m/sB. 3×10^5 m/sC. 3×10^6 m/sD. 3×10^7 m/s2. 牛顿第二定律的表达式是()。
A. F=maB. F=mvC. F=m/aD. F=ma^23. 以下哪个是电磁波谱中波长最长的()。
A. 无线电波B. 微波C. 红外线D. 可见光4. 根据热力学第一定律,一个系统吸收热量并对外做功,其内能()。
A. 增加B. 减少C. 不变D. 无法确定5. 一个物体从静止开始做匀加速直线运动,其位移与时间的关系是A. s = 1/2at^2B. s = at^2C. s = 2atD. s = at6. 以下哪种力不是保守力()。
A. 重力B. 弹力C. 摩擦力D. 电场力7. 理想气体状态方程是()。
A. PV = nRTB. PV = nTC. PV = RTD. PV = n8. 根据麦克斯韦方程组,变化的磁场会产生()。
A. 电场B. 磁场C. 电势D. 电流9. 一个物体的角动量守恒的条件是()。
A. 外力矩为零B. 外力为零C. 角速度不变D. 线速度不变10. 光的干涉现象说明光具有()。
B. 波动性C. 量子性D. 热效应二、填空题(每题2分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成反比,其表达式为 F = ________。
2. 光的折射定律,即斯涅尔定律,可以表达为n1sinθ1 = n2sinθ2,其中 n1 和 n2 分别代表光从介质1到介质2的折射率,θ1 和θ2是入射角和折射角。
3. 一个物体在水平面上受到恒定的摩擦力作用,如果摩擦力大于物体的重力,则物体将做 ________ 运动。
4. 根据能量守恒定律,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,其总量 ________。
大学物理练习题册答案
大学物理练习题册答案一、选择题1. 光在真空中的传播速度是:A. 299792458 m/sB. 299792458 km/sC. 299792458 cm/sD. 299792458 mm/s2. 根据牛顿第二定律,如果一个物体的质量为2 kg,受到的力为6 N,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 3 m/s²D. 6 m/s²3. 以下哪个不是电磁波的类型?A. 无线电波B. 微波C. 可见光D. 声波4. 一个物体从静止开始做匀加速直线运动,经过4秒后的速度为8m/s,那么它的加速度是:A. 1 m/s²B. 2 m/s²C. 4 m/s²D. 8 m/s²5. 根据能量守恒定律,如果一个物体的势能减少,那么它的:A. 动能增加B. 动能减少C. 总能量不变D. 温度增加二、填空题6. 根据热力学第一定律,能量______,它表明能量不能被创造或销毁,只能从一种形式转换为另一种形式。
7. 波长为600 nm的光的频率是______ Hz(光速为299792458 m/s)。
8. 一个物体在水平面上做匀速直线运动,其动摩擦系数为0.25,如果物体受到的摩擦力是10 N,那么物体的重力是______ N。
9. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的平方成______。
10. 理想气体状态方程是______,其中P代表压强,V代表体积,n代表摩尔数,R代表理想气体常数,T代表绝对温度。
三、简答题11. 简述牛顿第三定律的内容及其在日常生活中的应用。
12. 解释什么是相对论,并简述其对时间和空间概念的影响。
13. 描述麦克斯韦方程组,并解释它们在电磁学中的重要性。
14. 什么是量子力学?它与经典物理学有何不同?15. 描述什么是热力学第二定律,并解释它对能量转换的限制。
大学物理习题集加答案
大学物理习题集加答案大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10 练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14 练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量 G=6.67×10?11N·m2·kg?2 重力加速度 g=9.8m/s2阿伏伽德罗常量 NA=6.02×1023mol?1 摩尔气体常量 R=8.31J·mol?1·K?1 玻耳兹曼常量 k=1.38×10?23J·K?1斯特藩?玻尔兹曼常量 ? = 5.67×10-8 W·m?2·K?4 标准大气压 1atm=1.013×105Pa 真空中光速 c=3.00×108m/s 基本电荷 e=1.60×10?19C 电子静质量me=9.11×10?31kg 质子静质量 mn=1.67×10?27kg中子静质量 mp=1.67×10?27kg 真空介电常量 ?0= 8.85×10?12 F/m 真空磁导率 ?0=4?×10?7H/m=1.26×10?6H/m 普朗克常量 h = 6.63×10?34 J·s?3维恩常量 b=2.897×10m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是 (A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 ? ? 0 r3),以下说法正确的是 (A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用; (C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场. 3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统; (B) 一个正点电荷和一个负点电荷组成的系统; (C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统. (E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是 (A) E正比于f ; (B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定. 5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷 q2 的作用力为f12 ,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变; (B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化. 二.填空题1.如图1.1所示,一电荷线密度为? 的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a 的等边三角形,为了使P点处场强方向垂直于OP, 则?和Q的数量关系式为 ,且?与Q为号电荷 (填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1 ;将其撤走,改放一个等量的点电荷?q ,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为 .3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d。
2012年大学物理试题及答案
2012年大学物理试题及答案一、填空题1、质点运动学方程为j t i t r ?)14(?)42(2-+-=(SI 制),则质点的轨迹方程为,其速度=v,加速度=a。
2、设想有一光子火箭,相对于地球以速率0.8c =v 直线飞行,若以火箭为参考系测得火箭长度为15 m ,问以地球为参考系,此火箭的长度是。
3、狭义相对论的基本原理为、。
4、某质点在力?()()32F x i SI =+v v作用下,沿x 轴作直线运动,在从x=0移到x=10m 的过程中,力所作的功为。
5、质量为M ,半径为r 的均匀圆盘,绕中心轴的转动惯量为。
6,两个大小相同,质量相同的轮子。
A 的质量均匀分布,B 的质量主要集中在轮子边缘,两轮绕通过轮心且垂直于轮面的轴转动,问:如果作用在它们上面的外力矩相同,轮子转动的角加速度较大。
如果它们的角动量相等,轮子转动的快。
二、选择题1、如图所示,河中有一小船,当有人在离河面有一定高度的岸上以匀速v 0收绳子,小船即向岸边靠拢。
不考虑河水流速,则船在水中作()A 、匀速运动B 、减速运动C 、加速运动D 、无法确定2、当一列火车以10s m 的速率向东行驶时,若相对于地面竖直下落的雨滴在车窗上形成的雨迹偏离竖直方向030角,则雨滴相对于地面的速率为()s m A 、3310 B 、310 C 、20 D 、320 3、一人张开双臂,手握哑铃,坐在以一定的角速度ω转动的凳子上(不计摩擦)。
若人将两臂收拢,使系统的转动惯量减小二分之一,则其角速度变为( )A 、ω31B 、ω32C 、ω2D 、ω23 4、质量为m 的质点,以速度v 沿一直线运动,则它对直线外距直线垂直距离为d 的一点的角动量大小为()A 、 mvd 21B 、mvdC 、0D 、mvd 2 5、下列说法哪种正确:() (A)如果物体的动能不变,则动量也一定不变 (B)如果物体的动能变化,则动量不一定变化 (C)如果物体的动量变化,则动能也一定变化 (D)如果物体的动量不变,则动能也一定不变6、一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为-A/2 ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为()7、宇宙飞船相对于地面以速度作匀速直线运动,某时刻飞船头部的宇航员向尾部发出一个光信号,经过?t (飞船上的钟)后,被尾部的接收器收到,则由此可知飞船的固有长度为() A. 221/2(1/)?-c t c v B. 221/2(1/)υ?-t c v C. ?c t D. υ?t8,当质点以频率ν作简谐振动时,它的动能的变化率为()A. ν;B. 2ν;C. 4ν;D. /2ν 三、计算题1、在x 轴上作变速直线运动的质点,其加速度ct a =(其中c 为常数),当t=0时,其初速度为0v ,初始位置为0x ,求其运动学方程和速度。
2012大学物理考试题(A)
,考试作弊将带来严重后果!华南理工大学广州学院2011----2012 学年第 二 学期期末考试《大学物理I 》试卷A (2011级电类专业)年7月1. 考前请将密封线内容填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:(闭)卷;3分,共10小题30分) .(本题3分)S 为在静电场中所作的任意闭合曲面,12,q q 为两个量p 是半径为r 的球面上任意点。
若12,q q 的位置(A) 通过球面的电通量改变,p 点的电场强度改变.(B) 通过球面的电通量不变,p 点的电场强度改变.(C) 通过球面的电通量不变,p 点的电场强度不变. (D) 通过球面的电通量改变,p 点的电场强度不变.[ ].(本题3分)半径为R 和r 的两个金属球,相距很远。
用一根细长导线将两球连接在一起并使它们带RrQ Q 为: (A )Rr. (B )22R r .(C )22r R . (D) r R.[ ](本题3分) P291-7-11题如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点vvM IN(A) 02I R μπ. (B) 0.(C))11(20π-RI μ. (D) 01(1)4I R μ+π. [ ]4.(本题3分) 290页—7-4在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B , 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =. (C)=⎰⋅1d L l B ⎰⋅2d L l B, 21P P B B ≠.(D) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠. [ ]5.(本题3分)如图所示,MN 是一根无限长载流直导线,通有电流I 。
(完整版)《大学物理》练习题及参考答案.doc
卡 循 是由两个平衡的 程和两个平衡的等 程 成的
11.如 所示,在E的匀 中,有一个半径
R的半
球面,若E的方向与半球面的 称 平行, 通 个半球面
的 通量大小 ⋯⋯⋯⋯⋯⋯⋯(
)
参看 本P172-173
A .
R2E
B .2 R2E
C.
2 R2E
D. 0
12.一点 荷,放在球形高斯面的中心 ,下列情况中通 高斯面
的速度为200m/s,则子弹受到的冲量为_____________.参看课本P55-56
41.将电荷量为2.0×10-8C的点电荷, 从电场中A点移到B点,电场力做功6.0×10-6J.
则A、B两点的电势差
UAB=__________ __ .
参看课本P181
42.
如图所示,图中
O点的磁感应强度大小
34.一人从10 m深的井中提水,起始 ,桶中装有10 kg的水,桶的 量1 kg,由
于水桶漏水,每升高1m要漏去0. 1 kg的水, 水桶匀速地从井中提到井口,人所作的功
____________.参看 本P70 (2-14)
35.量m、半径R、自 运 周期T的月球,若月球是密度均匀分布的 球体, 其 自 的 量是__________,做自 运 的 能是__________.参看 本
24.下列关于机械振 和机械波的 法正确的是⋯⋯⋯()参看 本P306
A.点做机械振 ,一定 生机械波
B.波是指波源 点在介 的 播 程
C.波的 播速度也就是波源的振 速度
D.波在介 中的 播 率与波源的振 率相同,而与介 无关
25.在以下矢量 中,属保守力 的是⋯⋯⋯⋯⋯⋯⋯()
A.静B.旋参看 本P180,212,258
2012大学物理练习答案
2012年大学物理2测验习题参考答案一、选择题(共20分,每小题2分)1、C2、D3、C4、D5、A6、D7、B8、C9、A 10、D二、填空题(共20分,每题2分)1、BLv2、1级3、 靠近 ;4、05、bI πμ206、(n 1-n 2)e7、057arctan8、PQ ∆9 、dS 0ε 10、204rQ πε三、分析简答题(共20分,每题5分)1、答:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式2T π=2、答:缝加宽,由中央2x faλ∆=和x faλ∆=可知,条纹将变窄。
3、答:不能,在PV 图中,绝热线斜率笔等温线的大,应该要陡一些.。
4、两类;动生电动势和感生电动势; 导体运动和磁场变化。
四、计算题(共40分,每题10分)1. 解:sin '3d k θλλ==⋅ (4分)sin 0d h nh k θλλ+-==⋅ (4分)(2分)2. 解:由题知环中心O 点处的磁感应强度为大半圆中电流I 2产生的磁场与小半圆中电流I 1产生的磁场的叠加。
对I 1在O 点产生的磁感应强度,由毕—萨定律有 2100190sin 4Rdl I B R⋅=⎰θπμ,方向垂直纸面向里 (2分)θRd dl =θπμθπμθRI Rd I B 44101001=⋅=∴⎰(2分)对I 2在O 点产生的磁感应强度,由毕—萨定律有2)2(0290sin 4Rdl I B R⋅=⎰-θππμ,方向垂直纸面向外)2(442022002θππμθπμθπ-=⋅=⎰-RI Rd I B(2分)又由欧姆定律有: SRI SRI )2(21θπρθρ-⋅=⋅(2分)可知B 1=B 2,由于它们的方向相反,故O 点磁感应强度为:021=+=B B B(2分)3、解:由题有膨胀前: 14-R P P α=外内(3分)膨胀后: 24'-'R P P α=外内(2分)膨胀过程为等温变化有: 34'343231R P R P ππ内内=(3分) 有)(10269.14)4('4232311Pa R RR R P P ⨯≈-⋅+=αα外外(2分)4、解:(1)由归一化条件有1)(0=⎰∞dv v f 即1221=⋅⋅Na v p(2分)pv N a =(2分)(2)N vdv Nva Ndv v Nf N ppv pv 21)(0===∆⎰⎰(3分)(3)p v v pv pv v v v dv Na v Nvav vdv Nva v dv v vf dv v vf v pppppp=+-+=+=⎰⎰⎰⎰2020)2()()( (3分)。
大学物理习题集答案1-2
一、选择题1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? [ B ] (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.2.如图1.1所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为: [ D ](A)x q04πε. (B)204x qπε.(C) 302x qa πε (D) 30x qaπε.5.在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是[ C ] (A) f 12的大小不变,但方向改变, q 1所受的总电场力不变;(B) f 12的大小改变了,但方向没变, q 1受的总电场力不变;(C) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化; (D) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化.二、 填空题1.如图1.4所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a=211λλλ+d.2.如图1.5所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E场强最大值的位置在y = a 22± .3. 两块“无限大”的带电平行电板,其电荷面密度分别为σ (0>σ)及σ2-,如图1.6所示,试写出各区域的电场强度E。
І区E 的大小 02εσ , 方向 右。
图1.1d 图1.2图1.3III IIIσ2-σΠ区E 的大小 023εσ ,方向 右 。
大学物理习题集
大学物理习题集第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t−=+,并由上述资料求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t−=+. 计算得加速度为:22(51)30(51)10a −=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ−+=,解得:0(sin t v g θ=±.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其它问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变数得2d d vk t v =−, 故 020d d v t v v k t v =−∫∫,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++积分0001d d(1)(1)xtx v kt k v kt =++∫∫.因此 01ln(1)x v kt k=+. 证毕. [讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变数得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=−, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k−=+−. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k −=.(2)如果n ≠1,则得d d n vk t v=−,积分得11n v kt C n −=−+−. 当t = 0时,v = v 0,所以101n v C n −=−,因此11011(1)n n n kt v v −−=+−. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k−−−−+−−=−,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = r ω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = r β = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =.由此得2r r ωβ=,即22(12)24t =,解得3/6t =. 所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得r β = r ω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =−+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=−⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由v 图1.7端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =Δ, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =−. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t == 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02lt v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =−;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+−− 022222/1/1/t l v u v u v==−−. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB方向的速度大小为V =22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?A ABv v + u v - uABvu uvv[解答]雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+°−,所以:12sin()cos v v θαα+= 2sin co s co s sin co s v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ·t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v r 运动,0v r 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F r拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力? [解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N), 这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为12212(2)/22F m m ga m m μ−+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=−+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数. 两个弹簧分别拉长x 1和x 2,产生的弹力分别为F 1 = k 1x 1,F 2 = k 2x 2.(1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2,因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a r 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角;(4)用与斜面平行的加速度1b r把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b r(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ;T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+, 因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大?(2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = R θ = l θ,所以速度为 d d d d s v lt t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ°=−∫∫,(2)图2.6得 02601cos 2B v gl θ°=,解得:B v =-1).由于:22B BB v v T mg m m mgR l −===, 所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =.切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==−.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d (d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =−(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =−==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =−,积分得212k mv C x =+. 利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =−,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2n x mv k x =−∫.(1)当n = 1时,可得21ln 2mv k x C =−+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =. (2)如果n ≠1,可得21121n k mv x C n −=−+−.利用初始条件x = x 0时,v = 0,所以101n k C x n −=−−,因此 2110111(21n n k mv n x x −−=−−, 即v =. 当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d v f mg kv mt =−−=,分离变数得d d()d v m mg kv t m mg kv k mg kv +=−=−++,积分得ln ()mt mg kv C k =−++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=−=−++, 小球速率随时间的变化关系为0(exp()mg kt mgv v k m k =+−−.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [(exp(mg kt mg x v t k m k =+−−,即0(/)d dexp(d m v mg k kt mg x tk m k +=−−−,积分得0(/)exp(`m v mg k kt mgx t C k m k +=−−−+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp(m v mg k kt mg x tk m k +=−−−.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =−=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp(mg mg ktv v k k m =−−−.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=−=, 即 : 2d d k vt R v μ=−.积分得:1k t C Rv μ=+. 当t = 0时,v = v 0,所以01C v =−, 因此 011kt Rv v μ=−.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ. 珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = m ω2R sin θ,可得2cos mgR ωθ=,解得2arccosgR θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=−∫π,/20sin kAkAtωωωω=−=−π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -m ωA ,图2.11小球获得的冲量为I = p 2 – p 1 = -m ωA , 可以证明k =m ω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p Δ=−r r r 得:21p p p =+Δr r r,由此可作向量三角形,可得:p Δ==.因此向心力给予小球的的冲量大小为I p =Δ= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = m ωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得/4/4cos d sin T T x FI F t t tωωω==∫Fmvω==,/4/4sin d cos T T y FI F t t tωωω==−∫Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v == 14(m·s -1),其速度的增量为v Δ== 24.4(m·s -1).棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v x Δvv y2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得/2`cos 452mmv v =°,所以 v` = v/cos45° = 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s r 的大小为 d s = R d θ.重力G r的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+πr rsin d mgR θθ=−,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ°°=−=∫(12mgR =−−.摩擦力f r的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πr rcos d k u mg R θθ=−,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ°=−∫450sin 2k k mgR mgR μθμ°=−=−.要使雪橇缓慢地匀速移动,雪橇受的重力G r 、摩擦力f r 和马的拉力F r 就是平衡力,即 0F G f ++=rr r ,或者 ()F G f =−+r r r.拉力的功元为:d d (d d )W F s G s f s =⋅=−⋅+⋅r r r rr r 12(d d )WW =−+, 拉力所做的功为12()W W W =−+(1)22k mgR μ=−+.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=−=−∫.由于W = ΔE ,可得滑动摩擦因子为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理-2012年上半年习题册解答
1-T1一质点在Oxy 平面上运动,加速度j i t a352+=。
已知0=t 时,质点静止于坐标原点,求在任一时刻该质点的速度、位置矢量、运动方程和轨迹方程。
解: (1)j t i t v t a v t335d 300+=+⎰=; (2)j t i t r t v r t 240023125d +=+⎰= (3) 1254t x =,223t y =; (4)2275y x =1- T2一物体沿x 轴做直线原点,其加速度为2kv a-=,k 是大于零的常数,在0=t 时,0,0==x v v 。
求:(1)速率随坐标变化的规律;(2)坐标和速率随时间变化的规律。
解:(1)xv v kv x v v t x x v t v a d d d d d d d d d d 2=-→===⎰-=⎰x 0d d 0x k v vvv , kx e v x v -=0)((2)2d d kv t v a -== ⎰-=⎰t v v t k v v 02d d 0kt v v t v 001)(+= t x v d d = ⎰++=⎰+=⎰=t t t kt v kt v d k t ktv v t v x 00000001)1(1d 1d )1ln(10kt v kx +=1- T3一质点沿半径为2m =R 的圆周运动,其速率m/s 2kRt v =,k 为常数,已知第二秒的速率为m/s 32。
求s 5.0=t 时质点的速度和加速度的大小。
解:k kR v t 823222=⨯===4=→k 28t v =→m/s 25.0820.5t =⨯==v 22422220.5t 8.25m/s )32()16()()d d (=+=+==t t Rv t v a1- T4一架飞机在静止空气中的速率为km/h 1351=v 。
在刮风天气,飞机以km/h 1352=v 的速率向正北方向飞行,机头指向北偏东30°。
大学物理习题集
大学物理习题集(农科类)大学物理课部2009年9月1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄372部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量3练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。
大学基础教育《大学物理(一)》真题练习试卷 附答案
姓名班级学号………密……….…………封…………………线…………………内……..………………不…………………….准…………………答….…………题…大学基础教育《大学物理(一)》真题练习试卷附答案考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、两列简谐波发生干涉的条件是_______________,_______________,_______________。
2、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
3、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
4、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
5、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
6、均匀细棒质量为,长度为,则对于通过棒的一端与棒垂直的轴的转动惯量为_____,对于通过棒的中点与棒垂直的轴的转动惯量_____。
7、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
8、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
9、已知质点的运动方程为,式中r的单位为m,t的单位为s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理综合测试(十八)
一、选择题:(共21分)
1.(本题3分)
有一接地的金属球,用一弹簧吊起,金属球原来不带电,若在它的下方放置一电量为q 的点电荷,则
(A )只有当q>0时,金属球才下移。
(B )只有当q<0时,金属球才下移。
(C )无论q 是正是负金属球都下移。
(D )无论q 是正是负金属球都不动。
( )
2.(本题3分)
在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示。
当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强E 0相比较,应有
(A )E>E 0,两者方向相同。
(B )E=E 0,两者方向相同。
(C )E<E 0,两者方向相同。
(D )E<E 0,两者方向相反。
( )
3.(本题3分)
电流I 由长直导线l 沿垂直bc 边方向经a 点流入一电阻均匀分布的正三角形金属线框,再由b 点cb 方向流出,经长直导线2反回电源(如图所示)。
若载流导线1、2和三角形框在框中心O 点产生的磁感应强度分别用1B 、2B 和3B
表示,则O 点的磁感应强度大小
(A )B=0,因为B 1=B 2=B 3=0.
(B )B=0,因为虽然,0B ,0B 21≠≠但0B ,0B B 321==+。
(C )0B ≠,因为虽然B 3=0,B 1=0,但0B 2≠。
(D )0B ≠,因为虽然,0B B 21=+
但0B 3≠。
( )
4.(本题3分)
图示一测定水平方向匀强磁场的磁感应强度B (方向见图)的实验装置。
位于竖直面内且横边水平的矩形线框是一个多匝的线圈。
线框挂在天平的右盘下,框的下端横边位于待测磁场中,线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡。
若待测磁场的磁感应强度增为原来的3倍,而通过线圈的电流减为原来的
2
1
,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为
(A )6m (B )3m/2 (C )2m/3
(D )m/6 (E )9m/2 ( )
5.(本题3分) 如图,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO ′转动(角速度 与B
同方向),BC 的长度为棒长的
3
1。
则 (A )A 点比B 点电势高。
(B )A 点与B 点电势相等。
(C )A 点比B 点电势低。
(D )有稳恒电流从A 点流向B 点。
( )
6.(本题3分)
在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示。
B
的大小以速率dB/dt
变化。
在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线B A
,则
(A )电动势只在AB 导线中产生。
(B )电动势只在B A
导线中产生。
(C )电动势在AB 和B A
中都产生,且两者大小相等。
(D )AB 导线中的电动势小于B A
导线中的电动势。
( )
7.(本题3分)
波长
A 5000=λ的光沿X 轴正向传播,若光的波长的不确定量
A 103
-=λ∆,则利用
不确定关系式h p x x ≥∆∆可得光子的x 坐标的不确定量至少为
(A )25cm (B )50cm
(C )250cm (D )500cm ( )
二、填空题:(共34分) 1.(本题3分)
如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布。
导体外在导体片中线附近处的磁感应强度B 的大小为 。
2.(本题5分)
图中A 1A 2的距离为0.1m ,A 1端有一电子,其初速度v=1.0×107m·s -1,若它所处的空间为均匀磁场,它在磁场力作用下沿圆形轨道运动到A 2端,则磁场各点的磁感应强度
B= , B
的方向为 ,电子通过这段路程所需时间t= 。
(电子m e =9.11×10-31kg ,电子电荷e=1.60×10-19C )
3.(本题5分)
一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R 。
若此导线放在均强磁场B 中,B 的方向垂直图面向内。
导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势i ε= ,电势最高的点是 。
4.(本题5分)
面积为S 的平面线圈置于磁感应强度为B 的均匀磁场中,若线圈以匀角速度ω绕位于线圈平面内且垂直于B 方向的固定轴旋转,在时刻t=0时B 与线圈平面垂直,则任意时刻t 时通过线圈的磁通量 ,线圈中的感应电动势 。
若均匀磁场B 是由通有电流I 的线圈所产生,且B=kI (k 为常量),则旋转线圈相对于产生磁场的线圈最大互感系数为 。
5.(本题3分)
无限长密绕直螺线管通以电流I ,内部充满均匀、各向同性的磁介质,磁导率为μ,管上单位长度绕有n 匝导线,则管内部的磁感应强度为 ,内部的磁能密度为 。
6.(本题3分)
反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为
∑⎰==⋅1
i i s
q S d D
, ①
dt d l d E m L
/Φ-=⋅⎰ , ② 0S d B s
=⋅⎰
, ③
dt /d I l d H e 1
i i L
Φ∑⎰=+=⋅ 。
④
试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。
将你确定的方程式用代号填在相应结论后的空白处。
(1)变化的磁场一定伴随有电场; 。
(2)磁感应线是无头无尾的; 。
(3)电荷总伴随有电场。
。
7.(本题5分)
图示为一圆柱体的横截面,圆柱体内有一均匀电场E ,其方向垂直纸面向内,E 的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则
(1)P 点的位移电流密度的方向为 。
(2)P 点感生磁场的方向为 。
8.(本题5分)
设大量氢原子处于n=4的激发态,它们跃迁时发射出一簇光谱线。
这簇光谱线最多可能有 条,其中最短的波长是
A
(普朗克常量h=6.63×10-34J·s ) 三、计算题:(共45分) 1.(本题10分)
电量q 均匀分布在长为2l 的细杆上,求杆的中垂线上与杆中心距离为a 的P 点的电势(设无穷远处为电势零点)。
2.(本题10分)
一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t(<d)的金属片。
试求:
(1)电容C 等于多少?
(2)金属片放在两极板间的位置对电容值有无影响?
3.(本题10分)
如图所示,在马蹄形磁铁的中间A 点处放置一半径r=1cm ,匝数N=10匝的线圈,且线圈平面法线平行于A 点磁感应强度,今将此线圈移到足够远处,在这期间若线圈中流过的总电量为C Q 610-⨯=π,试求A 点处磁感应强度是多少?(已知线圈的电阻R=10Ω,线圈的自感忽略不计)
4.(本题10分)
波长为λ的单色光照射某金属M 表面发生光电效应,发射的光电子(电量绝对值为e ,质量为m )经狭缝S 后垂直进入磁感应强度为B 的均匀磁场(如图示),今已测出电子在该磁场中作圆运动的最大半径为R 。
求
(1)金属材料的逸出功; (2)遏止电势差。
5.(本题5分)
已知玻尔氢原子理论中的电子第一轨道半径r1,试计算当氢原子中电子沿第n轨道运动时,其相应的德布罗意波长是多少?
五、问答题(本题5分)
根据泡利不相容原理,在主量子数n=2的电子壳层上最多可能有多少个电子?试写出每个电子所具有的四个量子数n,l,m1,m s之值。