热力学与统计物理答案第四章

合集下载

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。

问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。

如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。

解:假设在图中两条绝热线交于点,如图所示。

设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案

第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。

”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。

我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。

”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。

A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。

A.对B.错7【判断题】(1分)温度和热是一个概念。

A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。

A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。

A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。

热力学_统计物理学答案第四章

热力学_统计物理学答案第四章

习题 4.4 理想溶液中各组元的化学势为:
答 案
其中 g 1 ' 是蒸汽的摩尔吉布斯函数,g1 是纯溶剂的摩尔吉布斯函数,x 是溶质在溶 液中的摩尔分数。 (2) 求证:在一定温度下,溶剂的饱和蒸汽压随溶液浓度的变化率为
(3) 将上式积分,得
w.
(2) 由 ∂g =v⇒ ∂p
ww
其中 p0 是该温度下溶剂的饱和蒸汽压, px 是溶质浓度为 x 时的饱和蒸汽压。该 公式称为拉乌定律。 解:(1) 设“1”为溶剂, g '1 = µ 1 = g1 (T , P ) + RT ln( 1 − x)
当发生化学变化时, 原来有 n0v1 mol 的气体 A1, 反应 了 n0v1ε mol , 未反 应 (1- ε) n0v1 mol, n0v2 mol 的气体 A2,反应了 εn0 v2 mol ,未反应 (1- ε) n0v2 mol, 生成 εn0 v3 mol A3 和εn0v4 mol A4,有
ww
习题 4.9 试证明,在 NH3 分解为 N2 和 H2 的反应中 1 3 N 2 + H 2 − NH3 = 0 2 2
w.
∆S = S 2 − S1 ∆S = ( n1 + n 2 ) R ln
(3)如果两种气体是相同的,混合后的熵变
S1 = ( n1 + n2 )CV ln T + n1 R ln V1 + n2 R ln V2 − n1 R ln n1 − n2 R ln n2 + ( n1 + n2 ) S 0
kh da

∑n
j
µ1 = g 1 (T , p ) + RT ln x1 µ 2 = g 2 (T , p ) + RT ln x2

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学统计物理第四版汪志诚答案

热力学统计物理第四版汪志诚答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.p VC T = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

第4章 热学 习题参考答案

第4章 热学 习题参考答案

Q1 W1 E1 950 J
B 到 C:
W2 0 E2 vCV ,m (TC TB ) 3( p CVC pBVB ) / 2 600 J Q2 W2 E2 600 J
C 到 A:
W3 p A (VA VC ) 100 J E3 vCV ,m (TA TC ) 3( p AVA pCVC ) / 2 150 J Q3 W3 E3 250 J
ca QT vRTc ln ca WTca QT
Va 3456 J Vb
(2) W WPab WVbc WTca 963J (3)
W 963 13.4% Q吸 3739.5 3456
W ( pa pc )(Vc Va ) 1.013 102 J
(4)
Pa Pd Ta Td
Pa Pb , Pc Pd ,Vb Vc
v RT v RT b c Ta Td

PbVb PcVc Ta Td
又 PV vRT
TaTc TbTd来自4-10 a 到 b 绝热
Q1 0
W1 E vCv,m (Ta Tb )
第 4 章 热力学基础 4-1(1) dW pdV (a 2 / V 2 )dV
W dW (a 2 / V 2 )dV a 2 (1 / V1 1 / V2 )
V1
V2
(2) p1V1 / T1 p2V2 / T2
T1 / T2 p1V1 / p2V2 V2 / V1
4-6(1)等体过程,V=常量,W=0
Q E W E M C p ,m (T2 T1 ) 623J M mol

热力学与统计物理答案第四章

热力学与统计物理答案第四章

第四章 多元系的复相平衡和化学平衡4.1 若将U 看作独立变量1,,,,k T V n n 的函数,试证明:(a );iii U UU n V n V∂∂=+∂∂∑ (b ).i i i U U u u n V∂∂=+∂∂ 解:(a )多元系的内能()1,,,,k U U T V n n =是变量1,,,k V n n 的一次齐函数. 根据欧勒定理(式(4.1.4)),有,,,ji i i T V n U UU n V n V ⎛⎫∂∂=+ ⎪∂∂⎝⎭∑ (1) 式中偏导数的下标i n 指全部k 个组元,j n 指除i 组元外的其他全部组元.(b )式(4.1.7)已给出v ,i i iV n =∑,i i iU n u =∑ (2)其中,,,,v ,j ji ii i T p n T p n V U u n n ⎛⎫⎛⎫∂∂==⎪ ⎪∂∂⎝⎭⎝⎭偏摩尔体积和偏摩尔内能. 将式(2)代入式(1),有,,,v i ji i i i i i i i T n i T V n U U n u n n V n ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭∑∑∑ (3) 上式对i n 的任意取值都成立,故有,,,v .i ji i T n i T V n U U u V n ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (4)4.2 证明()1,,,,i k T p n n μ是1,,k n n 的零次齐函数0.i i i i n n μ⎛⎫∂= ⎪∂⎝⎭∑ 解:根据式(4.1.9),化学势i μ是i 组元的偏摩尔吉布斯函数,,.ji i T p nG n μ⎛⎫∂=⎪∂⎝⎭ (1) G 是广延量,是1,,k n n 的一次齐函数,即()()11,,,,,,,,.k k G T p n n G T p n n λλλ= (2)将上式对λ求导,有()()()()()()111,,,,,,,,,,,,k k i i i ik ii G T p n n G T p n n n n n G T p n n n λλλλλλλλλλλ∂=∂∂∂=∂∂∂=∂∑∑左方()1,,,,,i i k in T p n n μλλ=∑ (3)()()11,,,,,,,,k k G T p n n G T p n n λλ∂=⎡⎤⎣⎦∂=右边()1,,,,.i i k in T p n n μ=∑ (4) 令式(3)与式(4)相等,比较可知()()11,,,,,,,,.i k i k T p n n T p n n μλλμ= (5)上式说明i μ是1,,k n n 的零次齐函数. 根据欧勒定理(式(4.1.4)),有0.i j j i n n μ⎛⎫∂= ⎪∂⎝⎭∑ (6)4.3 二元理想溶液具有下列形式的化学势:()()111222,ln ,,ln ,g T p RT x g T p RT x μμ=+=+其中(),i g T p 为纯i 组元的化学势,i x 是溶液中i 组元的摩尔分数. 当物质的量分别为12,n n 的两种纯液体在等温等压下合成理想溶液时,试证明混合前后(a )吉布斯函数的变化为()1122ln ln .G RT n x n x ∆=+(b )体积不变,即0.V ∆=(c )熵变()1122ln ln .S R n x n x ∆=-+ (d )焓变0,H ∆= 因而没有混合热. (e )内能变化为多少?解:(a )吉布斯函数是广延量,具有相加性. 混合前两纯液体的吉布斯函数为()()()01122,,,.G T p n g T p n g T p =+ (1)根据式(4.1.8),混合后理想溶液的吉布斯函数为()()()()()112211112222,,,,In ,In .G T p n T p n T p n g T p n RT x n g T p n RT x μμ=+=+++ (2)混合前后吉布斯函数的变化为()()0,,G G T p G T p ∆=-()1122ln ln ,RT n x n x =+ (3)其中12121212,n n x x n n n n ==++分别是溶液中组元1,2的摩尔分数. (b )根据式(4.1.10),混合前后体积的变化为12,,0.T n n V G p ⎛⎫∂∆=∆= ⎪∂⎝⎭ (4)(c )根据式(4.1.10),混合前后熵的变化为12,,p n n S G T ∂⎛⎫∆=-∆ ⎪∂⎝⎭()1122ln ln .R n x n x =-+ (5)注意1x 和2x 都小于1,故0,S ∆> 混合后熵增加了.(d )根据焓的定义,H G TS =+ 将式(3)和式(5)代入,知混合前后焓的变化为0.H G T S ∆=∆+∆= (6)混合是在恒温恒压下进行的.在等压过程中系统吸收的热量等于焓的增加值,式(6)表明混合过程没有混合热.(e )内能.U H pV =- 将式(6)和式(4)代入,知混合前后内能的变化为0.U H p V ∆=∆-∆= (7)4.4 理想溶液中各组元的化学势为(),ln .i i i g T p RT x μ=+(a )假设溶质是非挥发性的. 试证明,当溶液与溶剂的蒸气达到平衡时,相平衡条件为()11ln 1,g g RT x '=+-其中1g '是蒸气的摩尔吉布斯函数,1g 是纯溶剂的摩尔吉布斯函数,x 是溶质在溶液中的摩尔分数.(b )求证:在一定温度下,溶剂的饱和蒸气压随溶质浓度的变化率为.1Tp p x x ∂⎛⎫=- ⎪∂-⎝⎭ (c )将上式积分,得()01,x p p x =-其中0p 是该温度下纯溶剂的饱和蒸气压,x p 是溶质浓度为x 时的饱和蒸气压. 上式表明,溶剂饱和蒸气压的降低与溶质的摩尔分数成正比. 该公式称为拉乌定律.解:(a )溶液只含一种溶质. 以x 表示溶质在液相的摩尔分数,则溶剂在液相的摩尔分数为1.x - 根据式(4.6.17),溶剂在液相的化学势1μ为()()()11,,,ln 1.T p x g T p RT x μ=+- (1)在溶质是非挥发性的情形下,气相只含溶剂的蒸气,其化学势为 ()()11,,.T p g T p μ''= (2) 平衡时溶剂在气液两相的化学势应相等,即()()11,,,.T p x T p μμ'= (3)将式(1)和式(2)代入,得()()()11,ln 1,,g T p RT x g T p '+-= (4) 式中已根据热学平衡和力学平衡条件令两相具有相同的温度T 和压强p . 式(4)表明,在,,T p x 三个变量中只有两个独立变量,这是符合吉布斯相律的.(b )令T 保持不变,对式(4)求微分,得11.1T T g g RTdp dx dp p x p '⎛⎫⎛⎫∂∂-= ⎪ ⎪∂-∂⎝⎭⎝⎭ (5) 根据式(3.2.1),m Tg V p ⎛⎫∂=⎪∂⎝⎭,所以式(5)可以表示为(),1m m RTV V dp dx x'-=-- (6) 其中m V '和m V 分别是溶剂气相和液相的摩尔体积. 由于m m V V '>>,略去m V ,并假设溶剂蒸气是理想气体,,m pV RT '=可得().11T m p RT p x xx V ∂⎛⎫=-=- ⎪∂-'⎝⎭- (7) (c )将上式改写为.1dp dxp x=-- (8) 在固定温度下对上式积分,可得()01,x p p x =- (9)式中0p 是该温度下纯溶剂的饱和蒸气压,x p 是溶质浓度为x 时溶剂的饱和蒸气压. 式(9)表明,溶剂饱和蒸气压的降低与溶质浓度成正比.4.5 承4.4题:(a )试证明,在一定压强下溶剂沸点随溶质浓度的变化率为()2,1p T RT x L x ∂⎛⎫= ⎪∂-⎝⎭ 其中L 为纯溶剂的汽化热.(b )假设 1.x << 试证明,溶液沸点升高与溶质在溶液中的浓度成正比,即2.RT T x L∆=解:(a )习题4.4式(4)给出溶液与溶剂蒸气达到平衡的平衡条件()()()11,ln 1,,g T p RT x g T p '+-= (1)式中1g 和1g '是纯溶剂液相和气相的摩尔吉布斯函数,x 是溶质在溶液中的摩尔分数,令压强保持不变,对式(1)求微分,有()11ln 1.1ppg g RT dT R x dT dx dT T x T ⎛⎫'∂∂⎛⎫+--= ⎪ ⎪ ⎪∂-∂⎝⎭⎝⎭ (2) 根据(3.2.1),有,m pg S T ∂⎛⎫=- ⎪∂⎝⎭ 所以式(2)可以改写为()ln 1.1m m RTdx S S R x dT x⎡⎤'=-+-⎣⎦- (3)利用式(1)更可将上式表为()111m mg TS g TS RT dx dT x T ⎡⎤''+-+⎢⎥=-⎢⎥⎣⎦,m mH H dT T'-= (4)其中m m H g TS =+是摩尔焓. 由式(4)可得2211,11p m mT RT RT x x x L H H ∂⎛⎫=⋅=⋅ ⎪∂--'⎝⎭- (5) 式中m m L H H '=-是纯溶剂的汽化热.(b )将式(5)改写为()21.1d x dT R T L x--=- (6)在固定压强下对上式积分,可得()011ln 1,Rx T T L-=- (7) 式中T 是溶质浓度为x 时溶液的沸点,0T 是纯溶剂的沸点. 在稀溶液1x <<的情形下,有()()0200ln 1,11,x x T T T T T T T T-≈---∆-=≈ 式(7)可近似为2.RT T x L∆= (8)上式意味着,在固定压强下溶液的沸点高于纯溶剂的沸点,二者之差与溶质在溶液中的浓度成正比.4.6 如图所示,开口玻璃管底端有半透膜将管中的糖的水溶液与容器内的水隔开. 半透膜只让水透过,不让糖透过. 实验发现,糖水溶液的液面比容器内的水现上升一个高度h ,表明在同样温度下糖水溶液的压强p 与水的压 强0p 之差为0.p p gh ρ-=这一压强差称为渗透压. 从理想溶液化学势的表达式可知,如果糖的水溶液与纯水具有相同的压强和温度,糖水溶液的化学势将低于纯水的化学势. 因此水将从容器流入玻璃管,直到糖水的压强增为p ,两相的化学势相等而达到平衡. 平衡时有()()()110,ln 1,,g T p RT x g T p +-=其中1g 是纯水的摩尔吉布斯函数,x 是糖水中糖的摩尔分数,221211n nx n n n =≈<<+(12,n n 分别是糖水中水和糖的物质的量). 试据证明20,n RTp p V-=V 是糖水溶液的体积.解:这是一个膜平衡问题. 管中的糖水和容器内的水形成两相. 平衡时两相的温度必须相等. 由于水可以通过半透膜,水在两相中的化学势也必须相等. 半透膜可以承受两边的压强差,两相的压强不必相等. 以p 表示管内糖水的压强,0p 表示容器内纯水的压强. 根据式(4.6.17),管内糖水中水的化学势为()()()11,,ln 1.T p g T p RT x μ=+- (1)容器内纯水的化学势为()10,.g T p 相平衡条件要求()()()110,ln 1,.g T p RT x g T p +-= (2) 由于p 和0p 相差很小,可令()()()11100,,Tg g T p g T p p p p ⎛⎫∂-=- ⎪∂⎝⎭()10,m V p p =- (3) 其中用了(3.2.1)式,11m Tg V p ⎛⎫∂= ⎪∂⎝⎭是纯水的摩尔体积. 代入式(2),得()01In 1.mRTp p x V -=-- (4) 在1x <<的情形下,可以作近似()ln 1,x x -≈-且糖水溶液的体积11m V n V ≈,因此式(4)可近似为220111.m m n n RTRT RT p p x V V n V-=== (5)4.7实验测得碳燃烧为二氧化碳和一氧化碳燃烧为二氧化碳的燃烧热Q H =-∆,其数值分别如下:522CO C O 0, 3.951810J;H --=∆=-⨯ 5221CO CO O 0, 2.828810J.2H --=∆=-⨯试根据赫斯定律计算碳燃烧为一氧化碳的燃烧热.解:本题给出了两个实验数据,在291K 和1n p 下,有522CO C O 0, 3.951810J;H --=∆=-⨯ (1)5221CO CO O 0, 2.828810J.2H --=∆=-⨯ (2)式(1)的含义是,1mol 的C 与1mol 的2O 燃烧为1mol 的2CO ,放出燃烧热53.951810J.Q =⨯ 由于等压过程中系统吸收的热量等于焓的增量,所以燃烧热为11.Q H =-∆ 式(2)的含义是,1mol 的CO 与1mol 2的2O 燃烧为1mol 的2CO ,放出燃烧热52222.828810J,.Q Q H =⨯=-∆焓是态函数,在初态和终态给定后,焓的变化H ∆就有确定值,与中间经历的过程无关. 将式(1)减去式(2),得5221CO CO O 0,1.123010J.2H --=∆=-⨯ (3)式中312.H H H ∆=∆-∆ 式(3)意味着,1mol 的C 与1mol 2的2O 燃烧为1mol 的CO 将放出燃烧热51.123010J.C ⨯燃烧为CO 的燃烧热是不能直接测量的. 上面的计算表明,它可由C 燃烧为CO 2和CO 燃烧为CO 2的燃烧热计算出来. 这是应用赫斯定律的一个例子.4.8 绝热容器中有隔板隔开,两边分别装有物质的量为1n 和的理想气体,温度同为T ,压强分别为1p 和2p . 今将隔板抽去,(a )试求气体混合后的压强.(b )如果两种气体是不同的,计算混合后的熵增加值. (c )如果两种气体是相同的,计算混合后的熵增加值. 解:(a )容器是绝热的,过程中气体与外界不发生热量交换. 抽去隔板后气体体积没有变化,与外界也就没有功的交换. 由热力学第一定律知,过程前后气体的内能没有变化. 理想气体的内能只是温度的函数,故气体的温度也不变,仍为T.初态时两边气体分别满足111222,.pV n RT p V n RT == (1)式(1)确定两边气体初态的体积1V 和2V . 终态气体的压强p 由物态方程确定:()()1212,p V V n n RT +=+即1212.n n p RT V V +=+ (2) 上述结果与两气体是否为同类气体无关.(b )如果两气体是不同的. 根据式(1.15.8),混合前两气体的熵分别为111,11110,222,22220ln ln ln ln .p m m p m m S n C T n R p n S S n C T n R p n S =-+=-+ (3)由熵的相加性知混合前气体的总熵为12.S S S =+ (4)根据式(4.6.11),混合后气体的熵为111,111012ln lnp m m n S n C T n R p n S n n '=-+++222,222012ln ln.p m m n n C T n R p n S n n -++ (5) 两式相减得抽去隔板后熵的变化()b S ∆为()1212121122ln ln b n n p p S n R n R n n p n n p ⎛⎫⎛⎫∆=-⋅-⋅ ⎪ ⎪++⎝⎭⎝⎭12121212lnln ,V V V Vn R n R V V ++=+ (6) 第二步利用了式(1)和式(2). 式(6)与式(1.17.4)相当. 这表明,如果两气体是不同的,抽去隔板后两理想气体分别由体积1V 和2V 扩散到12.V V + 式(6)是扩散过程的熵增加值.(c )如果两气体是全同的,根据式(1.15.4)和(1.15.5),初态两气体的熵分别为111,1101222,2202ln ln,ln ln.V m m V m m V S n C T n R n S n V S n C T n R n S n =++=++ (7)气体初态的总熵为12.S S S =+ (8)在两气体是全同的情形下,抽去隔板气体的“混合”不构成扩散过程. 根据熵的广延性,抽去隔板后气体的熵仍应根据式(1.15.4)和(1.15.5)计算,即()()()1212,1212012ln ln.V m m V V S n n C T n n R n n S n n +'=++++++ (9) 两式相减得抽去隔板后气体的熵变()c S ∆为()()121212121212lnln ln .c V V V VS n n R n R n R n n n n +∆=+--+ (10) 值得注意,将式(6)减去式(10),得()()12121212lnln .b c n n S S n R n R n n n n ∆-∆=--++ (11) 式(11)正好是式(4.6.15)给出的混合熵.4.9 试证明,在3NH 分解为2N 和2H 的反应22313N H NH 022+-= 中,平衡常量可表为22,41p K p εε=- 其中ε是分解度. 如果将反应方程写作223N 3H 2NH 0,+-=平衡常量为何?解: 已知化学反应0i i iv A =∑ (1)的平衡常量p K 为.i iv v v p i i i i iiK p p x v v ⎛⎫=== ⎪⎝⎭∑∏∏ (2)对于3NH 分解为2N 和2H 的反应22313N H NH 0,22+-= (3)有 12313,,1,1,22v v v v ===-= 故平衡常量为1322123.p x xK p x ⋅=(4) 假设原有物质的量为0n 的3NH ,达到平衡后分解度为ε,则平衡混合物中有012n ε的203N ,2n ε的()20H ,1n ε-的3NH ,混合物物质的量为()01n ε+,因此()()12331,,.21211εεεx x x εεε-===+++ (5) 代入式(4),即得.p K p = (6)如果将方程写作223N 3H 2NH 0,+-= (7)与式(1)比较,知1231,3,2, 2.v v v v ===-=则根据式(2),平衡常量为321223.p x x K p x = (8)将式(5)代入式(8),将有()422227.161p εK p ε=- (9) 比较式(4)与式(8),式(6)与式(9)可知,化学反应方程的不同表达不影响平衡后反应度或各组元摩尔分数的确定.4.10 物质的量为01n v 的气体A 1和物质的量为02n v 的气体A 2的混合物在温度T 和压强p 下体积为0V ,当发生化学变化334411220,v A v A v A v A +--=并在同样的温度和压强下达到平衡时,其体积为.e V 证明反应度ε为01203412.e V V v v εV v v v v -+=⋅+-- 解:根据式(4.6.3),初始状态下混合理想气体的物态方程为()0012.pV n v v RT =+ (1)以ε表示发生化学变化达到平衡后的反应度,则达到平衡后各组元物质的量依次为()()010203041,1,,.n v εn v εn v εn v ε--总的物质的量为()0123412+++--,n v v εv v v v ⎡⎤⎣⎦其物态方程为()0123412.e pV n v v v v v v RT ε=+++--⎡⎤⎣⎦ (2)两式联立,有01203412.e V V v v V v v v v ε-+=⋅+-- (3) 因此,测量混合气体反应前后的体积即可测得气体反应的反应度.4.11 试根据热力学第三定律证明,在0T →时,表面张力系数与温度无关,即0.d dTσ→ 解: 根据式(1.14.7),如果在可逆过程中外界对系统所做的功为 đ,W Ydy =则系统的热力学基本方程为.dU TdS Ydy =+ (1)相应地,自由能F U TS =-的全微分为.dF SdT Ydy =-+ (2)由式(2)可得麦氏关系.y TY S T y ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 根据热力学第三定律,当温度趋于绝对零度时,物质的熵趋于一个与状态参量无关的绝对常量,即0lim 0.T TS y →⎛⎫∂= ⎪∂⎝⎭ 由式(3)知0lim 0.T yY T →∂⎛⎫= ⎪∂⎝⎭ (4) 对于表面系统,有đ,W dA σ=即,Y A y σ~~,所以0lim 0.T AdT σ→∂⎛⎫= ⎪⎝⎭ (5) 考虑到σ只是温度T 的函数,与面积A 无关(见§2.5),上式可表为0lim0.T dTσ→∂= (6)4.12 设在压强p 下,物质的熔点为0T ,相变潜热为L ,固相的定压热容量为p C ,液相的定压热容量为p C '. 试求液相的绝对熵的表达式.解: 式(4.8.12)给出,以,T p 为状态参量,简单系统的绝对熵的表达式为()()0,,.Tp C T p S T p dT T=⎰(1)积分中压强p 保持恒定. 一般来说,式(1)适用于固态物质,这是因为液态或气态一般只存在于较高的温度范围. 为求得液态的绝对熵,可以将式(1)给出的固态物质的绝对熵加上转变为液态后熵的增加值.如果在所考虑的压强下,物质的熔点为0T ,相变潜热为L ,固相和液相的定压热容量分别为p C 和p C ',则液相的绝对熵为()()()000,,,.T T p p C T p C T p L S T p dT dT TT T=++⎰⎰ (2)4.13 锡可以形成白锡(正方晶系)和灰锡(立方晶系)两种不同的结晶状态。

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案
根据体胀系数

和等温压缩系数
T
的定义,可将上式改写为
dV dT T dp. V
上式是以
(2)
T, p
为自变量的完整微分,沿一任意的积分路线积分,有
lnV dT T dp .
(3)


1 1 , T T p
,式(3)可表为
1 1 lnV dT dp . p T
根据克劳修斯不等式式1134有是热机从温度为的热源吸取的热量吸热为正放热将热量重新定义可将式1改写为是热机从热源吸取的热量是热机在热源放出的热量假设热机从其中吸取热量的热源中热源的最高温度为在热机向其放出热量的热源中热源的最低温度为必有abcaab定义为热机在过程中吸取的总热量为热机放出的总热量则式4可表为根据热力学第一定律热机在循环过程中所做的功为热机的效率为116理想气体分别经等压过程和等容过程温度由升至假设是常数试证明前者的熵增加值为后者的在等压过程中温度由升到时熵增加值在等容过程中温度由升到时熵增加值117温度为的1kg水与温度为的恒温热源接触后水温达到
pn
,铜块的体积改变多少?
解:(a)根据1.2题式(2),有
dV dT T dp. V
上式给出,在邻近的两个平衡态,系统的体积差 体积不变,
(1)
dV
,温度差
dT
和压强差
dp
之间的关系。如果系统的
dp

dT
的关系为
dp
dT . T



T
(2)
可以看作常量的情形下,将式(2)积分可得
所以
L L2 L 2 L0 dL0 L3 0 b 2 bT 1 2 L0 L2 dT 1 L0 L 1 dL0 1 L3 0 . L L0 dT T L3 1 2 L2 0 2 bT 3 L3 0 L0 L

《热力学与统计物理》第四版(汪志诚)课后题答案

《热力学与统计物理》第四版(汪志诚)课后题答案



Y
是T 的函数,对J仅有微弱的依赖关系,如果温度变化范
围不大,可以看作常量,假设金属丝两端固定。试证明,当温度由
1
J YA T2 T1
降至
2
时,其张力的增加为
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T

如果 解:以
1 1 , T T p
,试求物态方程。
T, p
为自变量,物质的物态方程为
V V T , p ,
其全微分为
V V dV dp. dT T p p T
全式除以
(1)
V
,有
dV 1 V 1 V dp. dT V V T p V p T
(3)
T
1 V 1 nRT 1 . V p T V p 2 p
(4)
1.2 证明任何一种具有两个独立参量 系数
T, p
的物质,其物态方程可由实验测得的体胀系数

及等温压缩

,根据下述积分求得:
lnV = αdT κT dp
L L0
0.5, 1.0, 1.5
A 1 106 m 2 , 0 5 104 K 1
,试计算当
分别为

2.0
时的
J, Y,
值,并画出
J, Y,

L L0
的曲线.
解:(a)根据题设,理想弹性物质的物态方程为
L L2 0 J bT 2 , L0 L

热力学与统计物理答案

热力学与统计物理答案

第一章热力学的基本规律习题试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ; 解:由得:nRT PV=V nRTP P nRT V ==; 所以,TP nR V T V V P 11)(1==∂∂=α习题试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα=1T p κ=,试求物态方程;解:因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=,因为T T p p VV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dVT T κακα-=-=,所以,⎰-=dp dT VT καln ,当p T T /1,/1==κα.习题测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C;问1压强要增加多少np才能使铜块体积不变 2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:所以,410*07.4,622-=∆=V p xn习题描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略;线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数;假设金属丝两端固定;试证明,当温度由1T 降2T 时,其张力的增加为)(12T T YA --=∆αη解:),(,0),,(T L L T L f ηη==所以,dT TLd L dL T ηηη)()(∂∂+∂∂= 因AY L L L L T T T =∂∂∂∂=∂∂)(;)(1)(ηηη所以,)(12T T YA --=∆αη习题在C ︒25下,压强在0至1000n p 之间,测得水的体积13263)10046.010715.0066.18(---⨯+⨯-=mol cm p p V 如果保持温度不变,将1mol 的水从1n p 加压至1000n p ,求外界所做的功;解:外界对水做功: 习题解:外界所作的功:习题抽成真空的小匣带有活门,打开活门让气体充入;当压强达到外界压强p 0时将活门关上;试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来大气中的0U 之差为000V p U U =-,其中0V 是它原来在大气中的体积;若气体是理想气体,求它的温度和体积;解:假设先前的气体状态是P 0,dV 0,T 0内能是u 0,当把这些气体充入一个盒子时,状态为P 0,dV,T 这时的内能为u,压缩气体所做的功为:00dV p ,依绝热过程的热力学第一定律,得()000000=+-⎰dV P U U V积分得000V p U U=-对于理想气体,上式变为()001vRT T T vc V=-故有()01T R c T c V V +=所以001V T c c T VPγ==对于等压过程0101V T T V V γ==习题热泵的作用是通过一个循环过程将热量从温度较低的环境传送扫温度较高的物体上去;如果以理想气体的逆卡诺循环作为热泵的循环过程,热泵的效率可以定义为传送到高温物体的热量与外界所作的功的比值;试求热泵的效率;如果将功直接转化为热量而令高温物体吸收,则“效率”为何解:A →B 等温过程B →C 绝热过程 C →D 等温吸热D →A 绝热,2111Q Q Q A Q -==η由绝热过程泊松方程:1211--=r Cr B V T V T ;1112--=r Ar DV T V T∴D AC B V V V V =;CDB A V V V V =∴212212212111T T T T T T T T T T T -+=-+-=-=η将功A 直接转化为热量1Q ,令高温物体吸收;有A=Q 1∴11==AQ η; 习题假设理想气体的C p 和C V 之比γ是温度的函数,试求在准静态绝热过程中T 和V 的关系;该关系试中要用到一个函数FT ,其表达式为: 解:准静态绝热过程中:0=dQ,∴pdV dU -=1对于理想气体,由焦耳定律知内能的全微分为dT C dU v =2物态方程VnRT P nRT pV =⇒=32,3代入1得:dV VnRTdTC V -=其中1-=γnR C V ()dTVdV⎰⎰-=-11γ关系式γ为T 的函数∴V -1为T 的函数;∴VT F 1)(=1)(=V T F ; 第二章均匀物质的热力学性质习题已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加; 解:由题意得:)()(V f T V k p +=;因V 不变,T 、p 升高,故kV >0T V S )(∂∂=V Tp)(∂∂=k VkV >0 由于kV >0,当V 升高时或V 0→V ,V >V 0,于是⇒T 不变时,S 随V 的升高而升高;设一物质的物态方程具有以下形式T V f P)(=,试证明其内能与体积无关;解:T V f P)(=,V T V U ∂∂),(T =T V T P)(∂∂-p =)()(V Tf V Tf -=0得证;习题求证:ⅰHP S )(∂∂<0ⅱU VS)(∂∂>0证VdP TdS dH +=等H 过程:H HVdP TdS )()(-=⇒PS ∂∂H=-TV <0V >0;T >0由基本方程:PdV TdS dU-=dV T pdU T dS +=⇒1;⇒VS ∂∂U =Tp>0.习题已知T VU)(∂∂=0,求证T p U )(∂∂=0;解T V U )(∂∂=T V T p )(∂∂-p ;⇒T V U )(∂∂=0;V TpT p )(∂∂= T VU )(∂∂=),(),(T V T U ∂∂=),(),(T p T U ∂∂),(),(T V T p ∂∂=0=T p U )(∂∂T Vp)(∂∂ ∵T Vp)(∂∂≠0;⇒T p U )(∂∂=0;习题试证明一个均匀物体在准静态等过程中熵随体积的增减取决于等压下温度随体积的增减;解:F =U-TS ,将自由能F 视为P ,V 的函数;F =Fp ,V=⎪⎭⎫⎝⎛∂∂p V S ()()p V p S ,,∂∂=()()⋅∂∂p T p S ,,()()p V p T ,,∂∂()()()()p T p V p T p S ,,,,∂∂∂∂==pp T V T S ⎪⎭⎫⎝⎛∂∂⎪⎭⎫⎝⎛∂∂由关系T C p=p T S ⎪⎭⎫ ⎝⎛∂∂;⇒=⎪⎭⎫⎝⎛∂∂pV S ⋅T C p pV T ⎪⎭⎫ ⎝⎛∂∂; 习题试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落;提示:证明S p T ⎪⎪⎭⎫⎝⎛∂∂-Hp T ⎪⎪⎭⎫⎝⎛∂∂>0证:()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==dS S H dp p H H T dp p T dH H T dp p T dT H p T T dS S T dp p T dT S p T T p S p H p Hp S),(1),(联立1,2式得:Sp T ⎪⎪⎭⎫⎝⎛∂∂-H p T ⎪⎪⎭⎫ ⎝⎛∂∂=p H T ⎪⎭⎫ ⎝⎛∂∂S p H ⎪⎪⎭⎫ ⎝⎛∂∂=pST H p H ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫⎝⎛∂∂=pS C p H ⎪⎪⎭⎫⎝⎛∂∂据:pdV TdS dU-=熵不变时,dS =0,pdV dU -=Vdp TdS dH +=Sp H ⎪⎪⎭⎫⎝⎛∂∂=V⇒S p T ⎪⎪⎭⎫ ⎝⎛∂∂-Hp T ⎪⎪⎭⎫ ⎝⎛∂∂=0>p C V;原题得证;习题一弹簧在恒温下的恢复力X 与其伸长x 成正比,即.X =-Ax ;今忽略弹簧的热膨胀,试证明弹簧的自由能F 、熵S 和内能U 的表达式分别为; 解:),();(,x T U U T A A Ax X==-==dU dT T U x ⎪⎭⎫ ⎝⎛∂∂+dx x U T⎪⎭⎫⎝⎛∂∂⇒+-=;)(xdx T A SdT dF S T F x -=⎪⎭⎫ ⎝⎛∂∂;=x T A )(Tx F ⎪⎭⎫ ⎝⎛∂∂-=⇒S XT F ⎪⎭⎫⎝⎛∂∂=dT T dB x dT T dA )()(212--由于TS U F-=,)(2 dS S T dp p H H T p T p S p H ⎪⎭⎫⎝⎛∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂⋅⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂==⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-dT dB T T B x dT T dA T T A )()()(212∵X =0时,U =0,即不考虑自身因温度而带来的能量;实际上,dT dB TT B -)(=0或dTdBT T B -)(=)0,(T U 即得:2)()(21)0,(),(x dT T dA T T A T U X T U ⎥⎦⎤⎢⎣⎡-=-221)0,(),(Ax T F T X F +=;dT dA x T S T X S 2)0,(),(2-= 进而求U ∆略;代入abd c V V V V V aT uV U=⇒==;4习题如下图所示,电介质的介电常数EDT =)(ε与温度有关,试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差;解:当电路闭合时,电容器电场恒定 当电路断开时,电容器电荷恒定D T TED S )()(∂∂-=∂∂,因而 习题已知顺磁物质的磁化强度为:H TCm =,若维持物质温度不变,使磁场由0增至H,求磁化热;解:;H TCm =mV M =;TH S ⎪⎭⎫ ⎝⎛∂∂⇒=0μV H T m ⎪⎭⎫ ⎝⎛∂∂=H T C ⎪⎭⎫⎝⎛-20μ等T 下:22000H T CV HdH T C V S T Q H μμ⋅-=-=∆=∆⎰习题已知超导体的磁感应强度()00=+=m H B μ;求证:ⅰC m 与m 无关,只是T 的函数,其中C m 是在磁化强度m 保持不变时的热容量;ⅱ0202U m dT C U m +-=⎰μ;ⅲ0S dT TC S m+=⎰解:超导体()m H m H M B-=⇒=+=00ⅰT C H=HT S ⎪⎭⎫ ⎝⎛∂∂∵m H-=;T C C m H ==⇒HT S ⎪⎭⎫⎝⎛∂∂ⅱHdM TdS dU0μ+=;mV M =代入m C 表达式,其中U 0 为0K 时的内能;ⅲ由ii 中已应用了dT C TdSm =⇒T C T S mm=⎪⎭⎫⎝⎛∂∂;⇒0S dT TC S m+=⎰〈忽略因体积变化带来的影响〉; 习题实验测得顺磁介质的磁化率)(T χ;如果忽略其体积的变化,试求特性函数fm,t,并导出内能和熵;解:显然χ只与T 有关;)(T χ=TH m ⎪⎭⎫⎝⎛;()T H m m ,=HdMTdS dU 0μ+=;TS U f -=;SdT TdS dU df --=⇒HdM SdT df 0μ+-=;⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=dT T m dH H m V dM H T()H T V H f χμ0=⎪⎭⎫⎝⎛∂∂;()()()T f m V T f H T V f 02002022+=+=⇒χμχμ f 既已知:-=S ()02202S dT T d m V T f m+⋅=⎪⎭⎫⎝⎛∂∂χχμ HdMTdS dU 0μ+=;TS U f -=第三章单元系的相变习题试由0>vC 及0)(<∂∂T V p 证明0>p C 及0)(<∂∂S Vp; 证T C C V p =-⇒VT p ⎪⎭⎫⎝⎛∂∂pT V ⎪⎭⎫ ⎝⎛∂∂ =P C p T H ⎪⎭⎫ ⎝⎛∂∂=pT S T ⎪⎭⎫⎝⎛∂∂;=V C V T U ⎪⎭⎫⎝⎛∂∂V T S T ⎪⎭⎫ ⎝⎛∂∂= ⇒=⎪⎭⎫ ⎝⎛∂∂T V p V S p ⎪⎭⎫ ⎝⎛∂∂T V S ⎪⎭⎫ ⎝⎛∂∂+SV p ⎪⎭⎫⎝⎛∂∂1=⎪⎭⎫ ⎝⎛∂∂V T p VS p ⎪⎭⎫ ⎝⎛∂∂TT S ⎪⎭⎫⎝⎛∂∂2 ⇒=⎪⎭⎫ ⎝⎛∂∂S V T -VS p ⎪⎭⎫⎝⎛∂∂⇒V C V T S T ⎪⎭⎫ ⎝⎛∂∂=;即0>=⎪⎭⎫⎝⎛∂∂VV C T S T . 于是:0>=⎪⎭⎫⎝⎛∂∂T V p +⎪⎭⎫⎝⎛∂∂SV p 正数 于是:SV p ⎪⎭⎫⎝⎛∂∂<0 0>V C ;因而0>P C习题求证:1-=⎪⎭⎫⎝⎛∂∂n V T ,μV T n S ,⎪⎭⎫ ⎝⎛∂∂;2-=⎪⎪⎭⎫ ⎝⎛∂∂nT p ,μp T n V ,⎪⎭⎫⎝⎛∂∂ 证:1开系吉布斯自由能dn Vdp SdT dG μ++-=,),(T V p p =⇒VS T G n V +-=⎪⎭⎫⎝⎛∂∂,VT p ⎪⎭⎫⎝⎛∂∂① V V G nT =⎪⎭⎫⎝⎛∂∂,T V p ⎪⎭⎫⎝⎛∂∂② μ=⎪⎭⎫⎝⎛∂∂VT n G ,③ 由式①⇒n V n V T G T p V S ,⎪⎭⎫ ⎝⎛∂∂-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂=V T n S ,⎪⎭⎫ ⎝⎛∂∂nV T ,⎪⎭⎫ ⎝⎛∂∂-=μ第1式得证;习题试证明在相变中物质摩尔内能的变化为:⎪⎪⎭⎫⎝⎛⋅-=∆dp dT T p L u1如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简; 解V p S T U∆-∆=∆VT L dT dp ∆=;S T L ∆=;dp dT T p L L U ⋅⋅-=∆⇒⎪⎪⎭⎫⎝⎛⋅-=dp dT T p L 1 习题在三相点附近,固态氨的蒸气压单位为a P 方程为:Tp 375492.27ln -= 液态氨的蒸气压方程为:Tp 306338.24ln -=,试求氨三相点的温度和压强,氨的汽化热、升华热及在三相点的熔解热;解:1固态氨的饱和蒸气压方程决定了固态-气态的相平衡曲线;液态氨的饱和蒸气压方程决定了氨的液态-气态的相平衡曲线;三相点是两曲线的交点,故三相点温度3T 满足方程:TT 306338.24375492.27-=-;由此方程可解出3T ,计算略; 2相变潜热可由RTLA p -=ln与前面实验公式相比较得到: 3754=RL S,从而求出S L ;类似可求出Q L ;计算略; 3在三相点,有r Q SL L L +=,可求得r L ,计算略;习题蒸汽与液相达到平衡;以dTdv 表在维持两相平衡的条件下,蒸汽体积随温度的变化率;试证明蒸汽的两相平衡膨胀系数为⎪⎭⎫ ⎝⎛-=⋅RT L T dT dv v 111; 解αV ~0.方程近似为:TVLT p ≈∆∆,V —气相摩尔比容;Vp T L T V V 11⋅∆=∆⋅⇒①气相作理想气体,pV=RT ②T R V p pV ∆=∆+∆⇒③联立①②③式,并消去△p 、P 得:TL TV VVP T R ∆=⋅∆-∆21RT LRT T V V -=⎪⎭⎫ ⎝⎛∆∆⇒;⎪⎭⎫ ⎝⎛-=-=⎪⎭⎫ ⎝⎛∂∂=⇒RT L T RT T T V V P 111112α 习题证明爱伦费斯公式:()()()()1212k k dT dp --=αα;()()()())(1212αα--=Tv c c dT dpp p 证:对二级相变0)(=∆dS ;即()2dS -()1dS =00)(=∆dV ;即()2dV -()1dV =0()2dS()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=2()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1;()1dS ()dT T S ⎪⎪⎭⎫ ⎝⎛∂∂=1()dp p S ⎪⎪⎭⎫ ⎝⎛∂∂+1 )(0dS ∆=()2dS=-()1dS⇒()()=⎥⎦⎤⎢⎣⎡∂∂-∂∂dT T S TS 12()()dp p S p S ⎥⎦⎤⎢⎣⎡∂∂-∂∂-12 ()()()()⎥⎦⎤⎢⎣⎡∂∂-∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂-=⇒p S p S T S T S dT dp 1212;将pp T S T C ⎪⎭⎫ ⎝⎛∂∂=代入得;()()[]()()pS p S C C T dT dppP ∂∂-∂∂--=12121①即为:()-∂∂p S 2()()()()121αα--=∂∂V pS ;代入①得:()()()()1212αα--=TV C C dT dp p P类似地,利用0)(=∆dV 可证第二式;略第四章多元系的复相平衡和化学平衡习题若将U 看作独立变数T ,V ,n 1,…n k 的函数,试证明:1VUV n U n Ui ii∂∂+∂∂=∑;2VUv n U u i i i∂∂+∂∂=证:1),,,(),,,(11k k n n V T U n n V T U λλλλ=根据欧勒定理,f x fx iii=∂∂∑,可得 2i ii i i i i i iiu n V Uv n U n V U V n U n U∑∑∑=∂∂+∂∂=∂∂+∂∂=)( 习题证明),,,(1k i n n p T μ是k n n ,1的零次齐函数,0=⎪⎪⎭⎫⎝⎛∂∂∑j ij j n n μ; 证:),,,(),,,(11k m k n n p T n n p T μλλλμ=,化学势是强度量,必有m =0,习题二元理想溶液具有下列形式的化学势:其中g i T ,P 为纯i 组元的化学势,x i 是溶液中i 组元的摩尔分数;当物质的量分别为n 1、n 2的两种纯液体在等温等压下合成理想溶液时,试证明混合前后 1吉布斯函数的变化为)ln ln (2211x n x n RT G+=∆2体积不变0=∆V3熵变)ln ln (2211x n x n R S +-=∆4焓变0=∆H ,因而没有混合热;5内能变化如何解: 1222211112211ln ),(ln ),( x RT n p T g n x RT n p T g n n n n G i ii +++=+==∑μμμ所以22110ln ln x RT n x RT n G G G+=-=∆2p G V ∂∂=;0)(=∂∆∂=∆∴pG V ; 3T G S ∂∂-= ;2211ln ln )(x R n x R n TG S --=∂∆∂-=∆∴ 4TSH G -=50=∆-∆=∆V p H U习题理想溶液中各组元的化学势为:i i ix RT P T g ln ),(+=μ;(1) 假设溶质是非挥发性的;试证明,当溶液与溶剂蒸发达到平衡时,相平衡条件为其中'1g 是蒸汽的摩尔吉布斯函数,g 1是纯溶剂的摩尔吉布斯函数,x 是溶质在溶液中的摩尔分数; (2) 求证:在一定温度下,溶剂的饱和蒸汽压随溶液浓度的变化率为 (3) 将上式积分,得)1(0x p p x -=其中p 0是该温度下溶剂的饱和蒸汽压,p x 是溶质浓度为x 时的饱和蒸汽压;该公式称为拉乌定律; 解:1设“1”为溶剂,())1ln(,'111x RT P T g g -+==μ2由⇒=∂∂v p g Tp x x RT p g p g ⎪⎪⎭⎫⎝⎛∂∂--⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂)1(1'1Tp x ⎪⎪⎭⎫⎝⎛∂∂ -=⇒v v ')1(x RT-Tp x ⎪⎪⎭⎫ ⎝⎛∂∂;v’—蒸汽相摩尔热容 v —凝聚相摩尔热容故有v’-v ≈v’,又有pv’=RT 代入⇒ Tx p ⎪⎭⎫⎝⎛∂∂x p --=1 3积分2式得拉乌定律习题的气体A 1和n 0v 2mol 的气体A 2的混合物在温度T 和压强p 下所占体积为V 0,当发生化学变化,0A A A A 22114433=--+νννν;并在同样的温度和压强下达到平衡时,其体积为V e ;试证明反应度为 证:未发生化学变化时,有当发生化学变化时,原来有n 0v 1mol 的气体A 1,反应了n 0v 1εmol,未反应1-εn 0v 1mol,n 0v 2mol 的气体A 2,反应了εn 0v 2mol,未反应1-εn 0v 2mol,生成εn 0v 3molA 3和εn 0v 4molA 4,有习题根据第三定律证明,在T →0时;表面张力系数与温度无关;即0→dTd σ; 证:表面膜系统,dA SdT Fσ+-=S T F A -=⎪⎭⎫ ⎝⎛∂∂⇒;σ=⎪⎭⎫⎝⎛∂∂T A F=⎪⎭⎫ ⎝⎛∂∂T A S AT ⎪⎭⎫⎝⎛∂∂-σ;而实际上σ与A 无关,即=⎪⎭⎫⎝⎛∂∂TA S dT d σ-T →0时,根据热力学第三定律;()0lim 0=∆→TT S于是得:dT d σ0=⎪⎭⎫⎝⎛∂∂-=TA S ;原式得证; 习题试根据第三定律证明,在T →0时,一级相变两平衡曲线的斜率dTdp为零;证:VS dT dp ∆∆=;T →0;000=⎪⎭⎫⎝⎛∆∆=⎪⎭⎫⎝⎛→→T T V S dT dp ()0lim 0=∆→TT S ;原式得证;习题设在压强p 下,物质的熔点为T 0,相变潜热为L ,固相的定压热容量为C p ,液相的定压热容量为C p ’.试求液体的绝对熵表达式;解:为计算T 温度,p 压强下,液体绝对熵,可假想如下图过程;p液相 ABC 固相T 0T①A →B,等压过程:⎰=∆→0T p BA TdT C S②B 点相变过程.0T L S B =∆相变③B →C,等压过程:⎰=∆→TT p CB TdT C S 0'于是∑=∆+=S S S)0(⎰T p TdT C 0T L+⎰+TT p T dT C 0'习题试根据第三定律讨论图ab 两图中哪一个是正确的 图上画出的是顺磁性固体在H =0和H=H i 时的S-T 曲线;解:图b 正确;拒热力学第三定律;T →0;S 0=0;且T →0,0=⎪⎭⎫⎝⎛∂∂Tx S ; 即0K 附近,S 在等温过程中的变化与任何其它参量无关;第五章不可逆过程热力学简介习题带有小孔的隔板将容器分为两半,容器与外界隔绝,其中盛有理想气体,两侧气体存在小的温差ΔT 和压强差Δp 而各自处于局域平衡;以dt dn J n=和dtdUJ u =表示单位时间内通过小孔从一侧转移到另一侧的气体的物质的量和内能;试导出熵产生率公式,从而确定相应的动力; 解:根据热力学基本方程∑-=iii dn dU Tdsμ得dtdn T dt dU T dt ds i i i ∑-=μ11设温度为T +ΔT 的一侧熵为s 1;温度为T 的一侧熵为s 2,则 因为0 ;0='+='+n d dn U d dU所以dn n d dU U d -='-=';,dtdnT dt dU T dt ds μ+-=12熵产生率 dt ds dt ds dt s d i 21+==dtdnT dt dU T dt dn T T dt dU T T μμμ+-∆+∆+-∆+11 =dtdn T T T dt dU T T T ⎪⎭⎫ ⎝⎛-∆+∆+-⎪⎭⎫⎝⎛-∆+μμμ11=⎪⎭⎫ ⎝⎛∆-⎪⎭⎫⎝⎛∆T J T J n u μ1 相应的动力22 ,1T T T T X T T T X n u μμμ∆-∆=⎪⎭⎫ ⎝⎛∆-=∆-=⎪⎭⎫ ⎝⎛∆=第六章近独立粒子的最概然分布习题试证明,对子一维自由粒子,再长度L 内,在ε到εεd +的能量范围内,量子态数为:证:一维自由粒子,x P 附近的量子态为x dP hLdn =;x x x x x dP m dP m m m dP P d m P εεεε21222+=⋅+==⇒= 于是;()εεεεd mh Ld D2+=而±P x对应同一能量ε,于是:()mh L m h L D εεε2222=⎪⎪⎭⎫ ⎝⎛⨯=习题试证明,对于二维自由粒子,在长度L 2内,在ε到εεd +的能量范围内,量子态数为证:二维;在P x ,P y 附近dP x dP y 区间上内的粒子数;ϕPdPd hSdP dP h S dn y x 22==s -面积 因mP 22=ε只与P 有关P >0,故对ϕ积分可得:()⎪⎪⎭⎫ ⎝⎛==m P h S PdP h S d D 222222ππεε,επd h mSm 22= ()22hmS D πε=⇒s=L 2习题在极端相对论情形下,粒子的能量动量关系为cp =ε;试求在体积V 内,在ε到εεd +的能量范围内能量范围内三维粒子的量子态数; 解:φθθd dpd p hV dp dp dp h V dn z y x sin 233==由于cp =ε只与p 有关,与θ、φ无关,于是以上已经代入了cdp d cp =⇒=εε于是,32)(4)(hc V D επε=习题设系统含有两种粒子,其粒子数分别为N 和N ’.粒子间的相互作用很弱,可 看作是近独立的;假设粒子可分辨,处在一个个体量子态的粒子数不受限制;试证明, 在平衡态下两种粒子的最概然分布分别为:le a l lβεαω--=和'--'='l e a l lβεαω;其中l ε和'l ε是两种粒子的能级,l ω和'l ω是能级简并度;证:粒子A 能级,粒子数分布:l ε——{a l }——简并度l ω 粒子B 能级,粒子数分布:'l ε——{a ’l }——简并度'l ω由21Ω⋅Ω=Ω21ln ln ln Ω+Ω=Ω即使Ω最大,()11ln ΩΩ,()22ln ΩΩ达到最大;l e a l l εβαω''-'-'='注:'l a δ与l a δ在此情况下独立讨论,若将一系作为子系统,意味总能守恒,于是参照教材玻尔兹曼分布证明……0ln ln =⎪⎭⎫ ⎝⎛''+-''-'⎪⎪⎭⎫ ⎝⎛''+-⎪⎪⎭⎫ ⎝⎛⇒∑∑∑∑∑∑l l l l l l l l l llla a a a a a a a δεδεβδαδωδαδω同一0β,原题得证;这也是满足热平衡的要求;第七章玻耳兹曼统计习题根据公式∑∂∂-=lllVa Pε证明,对于非相对论粒子:)()2(21222222z y x n n n Lm m p s ++== π,z y x n n n ,,=0,±1,±2,…有VU p 32=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=lllVa Pε=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(212222z y x lln n n L m V a π=⎥⎦⎤⎢⎣⎡++∂∂-∑)()2(222223z y x l l n n n L m L V a π 其中Va ul l ε∑=;V ~3L 对同一l ,222zy x n n n ++=m a ll21∑-2)2( π)(222z y x n n n ++)32(35--V =m a ll21∑-22222)()2(L n n n z y x ++ π)32(3532--V V =V U32习题试根据公式∑∂∂-=lllVa Pε证明,对于极端相对论粒子:21222)(2z y x n n n L c cp ++== πε,z y x n n n ,,=0,±1,±2,…有VU p 31=,上述结论对玻耳兹曼分布、玻色分布和费米分布都成立;证:∑∂∂-=ll lVa Pε;对极端相对论粒子21222)(2z y x n n n Lc cp ++== πε类似得31212)()2(-∑∂∂-=∑V n V a P i ll π=VUVV a ll l 31)31(3431-=---∑ε 习题当选择不同的能量零点时,粒子第l 个能级的能量可以取为ll *εε或,以∆表示二者之差=∆l l εε-*;试证明相应的配分函数存在以下关系11Z e Z ∆-*=β,并讨论由配分函数Z 1和Z 1求得的热力学函数有何差别; 证:配分函数∑-=le Z l βεω1以内能U 为例,对Z 1:1ln Z NUβ∂∂-=对Z 1:()U N e N Z NU Z +∆=∂∂-=∂∂-=-1ln ln 1**βββ习题试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为式中P s是总粒子处于量子态s 的概率,1Z e N e P ss s βεβεα---==,∑s对粒子的所有量子态求和;证法一:出现某状态s ψ几率为P s设S 1,S 2,……S k 状态对应的能级s 'ε;设S k+1,S k+2,……S w 状态对应的能级s 'ε;类似………………………………;则出现某微观状态的几率可作如下计算:根据玻尔兹曼统计Ne P sS βεα--=;显然NP s 代表粒子处于某量子态S 下的几率,Se NP Sβεα--=;于是Se βεα--∑代表处于S 状态下的粒子数;例如,对于s 'ε能级⎪⎪⎭⎫⎝⎛∑=--'K S S S S e 1βεα个粒子在s 'ε上的K 个微观状态的概率为: 类似写出:()⎪⎪⎭⎫ ⎝⎛''∑=''=''--k S S S s e S PS P1βεα ………………………………………………等等; 于是N 个粒子出现某一微观状态的概率; 一微观状态数P1=Ω,基于等概率原理将Se NP Sβεα--=带入S SS P P kN S ln ∑-=⇒;习题固体含有A 、B 两种原子;试证明由于原子在晶体格点的随机分布引起的混 合熵为k S=㏑[][][])1ln()1(ln !)1(!!x x x x N x N N N x --+-=-κ其中N 是总原子数,x 是A原子的百分比,1-x 是B 原子的百分比;注意x<1,上式给出的熵为正值; 证:显然[]!)1()!(!!!!21x N Nx N n n N -==ΩS=k ㏑Ω=-N k [])1ln()1(ln x x x x --+=)1()1(ln x x x x Nk ---;由于)1()1(x xx x--<1,故0〉S ;原题得证;习题气体以恒定的速度沿方向作整体运动;试证明,在平衡状态下分子动量的最 概然分布为证:设能级l ε这样构成:同一l ε中,P z 相同,而P x 与P y 在变化,于是有:∑==0p a p p l z参照教材玻耳兹曼分布证明;有E N βδαδδ--Ωln -z p γ,其中)(22221Z y x lp p p m++=ε 由1知:N dp dp dp ehV z y x p z=⎰---γβεα3 将l ε代入并配方得:=N dp dp dp e hV z y x m p mm z y x =⎰+-+---2)(2)()22(3βγβεεββγα其中mp m p y y xx 2,222==εε整个体积内,分布在z z z y y y x x x dp p p dp p p dp p p +→+→+→,,内分子数为:由条件3知⎰=0),,(Np dp dp dp p p p f pz y x z y x z计算得 =z m p my x dp em dp dp emkTz y x ⎰⎰+-+--2)(2)(23)()21(βγβεεββγπ=0p Ndp dp fdp m zy x =-⎰βγ0p m -=⇒βγ代入得出分布:[]3)(22022"hdp dp Vdp ezy x p p p p mz y x-++--βα其中βγαα22'm -=,0p m -=βγ习题试根据麦克斯韦速度分布率导出两分子的相对速度12v v v r-=和相对速率rr v v =的概率分布,并求相对速率的平均值r v ;解:两分子的相对速度r v在rz ry rx dv dv dv 内的几率2122111])()()()[(23211)()2()()()(2212121212121--∞∞-+++++++-===⎰⎰⎰⎰kTm edv dv dv e kT m v V v V v d v V rx rz z ry y rx x z y x v kT m zy x v v v v v v v v v kT mr r ππ 同理可求得z y v v 11,分量为2122)(2--kTm ery v kT m π和2122)(2--kTm er v kT m π引进2m=μ,速度分布变为r r v kT mdv v e kT r 22232)2(-πμ 利用球极坐标系可求得速率分布为:r r v kT m dv v e kTr22232)2(4-πμπ 相对速率平均值v kT dv v e v kT v r r v kT m r r r28)2(4220232===-∞⎰πμπμπ习题试证明,单位时间内碰到单位面积上,速率介于v 与dv v +之间的分子数为:dv v e kTm n d kTmv 322/32)2(-=Γππ证:在斜圆柱体内,分速度为z v 的v 方向的分子数为:对于:0,,积分得从对从+∞→+∞→∞-z y x v v vdt 时间碰撞到ds 面积上的分子数dv v v +→=dsdt d dvd v ekTm n kTmv ϕθθπππcos )2(2/032202\32⎰⎰-得到:若只计算介于dv v v +→分子数则为:只对φθ,积分习题分子从器壁小孔射出,求在射出的分子束中,分子平均速度和方均根速度;解:dvv e kT m n dvv e kT m n v kT nv v kT m3022/30422/322)2()2(⎰⎰∞+-+∞-=ππππ;变量代换⇒==dx mkTdv x n kT m2;2 习题已知粒子遵从经典玻耳兹曼分布,其能量表达式为:bx ax p p p mz y x ++++=2222)(21ε其中b a ,是常数,求粒子的平均能量; 解:ab a b a bx x a m p 4)4(222222-+++=ε习题气柱的高度为H ,截面为S ,在重力场中;试求解此气柱的内能和热容量;解:配分函数⎰-++-=z y x mgz p p p mdp dp dxdydzdp ehZ z y x ββ)(232221 设⎥⎦⎤⎢⎣⎡=mg m hS A 1)2(2/33π;[]mgH e A Z ββ--+-=1ln ln )2/5(ln ln习题试求双原子理想气体的振动熵;解:振动配分函数ωβωβ ---=e e Z V 12/1代入式)1ln(2/ln 1ωβωβ ----=⇒e Z代入熵计算式V V k T Nk Nk S θωθ=+=⇒其中)./ln(;习题对于双原子分子,常温下kT 远大于转动的能级间距;试求双原子分子理 想气体的转动熵; 解转动配分函数212 βI Z r=);/ln(;/1ln ;2ln ln 121r T Nk Nk S Z I Z θβββ+=⇒-=∂∂=其中r k I h θ=22习题气体分子具有固有电偶极矩0d ,在电场ε下转动能量的经典表达式为:θεθεφθcos )sin 1(210222d p p I r -+=,证明在经典近似下转动配分函数: 解:经典近似下,rε视为准连续能量配分函数⎰⎰⎰⎰⎰⋅==∞∞-+⋅---πφθεβθβθβφθβεφθφθθ20cos sin 21222102211d dp d edp ehd d dp dpe hZ d I p Ir利用π=⎰∞∞--dx ex 2习题同19题,试证在高温10≤εβd 极限下,单位体积电偶极矩电极化强度为:εξkT d 320=; 解:电极化强度)1(1ln 0000001εβββεβξεβεβεβεβ--+=∂∂=--d d d d ee e d e d Z N 高温极限下,0→β,保留至20)(εβd εεβkTnd d 222020=⇒;其中VN n =习题试求爱因斯坦固体的熵;解:将ωβωβh h eeZ ---=121,代入至S 表达式即得,注意N 取3N;略第九章系综理论习题证明在正则分布中熵可表为∑-=ss s k S ρρln 其中sE s e Zβρ-=1是系统处在s 态的概率; 证:)ln (ln ββ∂∂-=Z Z k S多粒子配分函数)1(1ss E s E e Z e Z ββρ--=⇒=∑由1知[]s s s s s E Z E Z E Z esρβρβρβln ln 1;ln ln +=-+=-⇒=-代至2得[]∑∑+=+=∂∂ssss s s Z Z Z ρρββρρββln 1ln 1ln ln 1ln ;于是∑-=⎪⎪⎭⎫⎝⎛∂∂-=s ss k Z Z k Sρρββln ln ln习题试用正则分布求单原子分子理想气体的物态方程,内能和熵 证:()222121;iziy ix Ni s sE p p p mE eZs++==∑∑=-β符号∏=i iz iy ix dp dp dp dp符号∏=i ii i dz dy dx dq 利用式V NTk V Z Z Z P =∂∂=∂∂=⇒βββ1ln 1类似求S U ,;习题体积内盛有两种组元的单原子混合理想气体,其摩尔数为1n 和2n ,温度为T ; 试由正则分布导出混合理想气体的物态方程,内能和熵;解:习题利用范氏气体的配分函数,求内能和熵;解:Q m N Z N 2/32!1⎪⎪⎭⎫ ⎝⎛=βπ()⎰⎰⎰-----++=-=∂∂⇒dr f V N V dr e V N NTk U dr e V N Q N N N N 12121212122/3;22βφβφφφβ一般认为dr f VN 1222较小; 习题利用德拜频谱求固体在高温和低温下配分函数对数Z ln ,从而求内能和熵; 解:式 德拜频谱B ND 93=ω 对于振动())(1ln 1ln ln ln 2020020x d e e B d D e e e Z D D =⎪⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎪⎭⎫ ⎝⎛-+=⎰⎰-----ωβωωβφωωωωβωβωωβωββφ 代换 S 计算略高温近似,∞→T ,0→ωβ()N N +--=ωββφ ln 30计算略习题用巨正则分布导出单原子分子理想气体的物态方程,内能,熵和化学势; 解:参照关于玻耳兹曼体系配分函数的处理过渡到连续能量分布得: 利用热力学式可求得kT N pV =,kT N U 23=等略 注:l ε--------单粒子处于l 能级的能量;习题利用巨正则分布导出玻耳兹曼分布; 解:∑∑--=ΞN S E N s eβα;由于玻耳兹曼系,粒子可分辨,从而为简单起见,考虑无简并有简并情况完全可类似处理 于是:(){}∏∞=+-=Ξ0ex p l a l l eβα即对无简并情况()l e a l βεα+-=对有简并者,类似处理可得()l e a l lβεαω+-=略 l ω——简并度。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第四章 多元系的复相平衡和化学平衡4.1 证明:若将U 看作独立变量T,V ,n 1,⋅⋅⋅,n k 的函数,试证明 (1) VUVn U n U i ii∂∂+∂∂=∑ (2) VUv n U u ii i ∂∂+∂∂=解:(1)多元系的内能()k n n V T U U 1,,=是变量V ,n 1,⋅⋅⋅,n k 的一次齐函数。

根据εular 定理,()k n n V T U U λλλλ 1,,'=⋅,mf x fx iii=∂∂∑ 有U V U V n U n x f x j jn V T n V T i i ii i=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=∂∂∑∑,,,, ------------------(1) 式子中偏导数的下标n i 指全部K 个组元,n j 指除i 组元外的其他全部组元。

(2)根据体积和内能为广延量,有iii v n V ∑=,iii u n U ∑= --------------------(2)根据(1)结论 VUVn U n U i ii∂∂+∂∂=∑------------------(1) 将(2)式代入(1)式,有i ii u n U ∑=V UV n U n i ii∂∂+∂∂=∑V U v n n U n ii i ii i ∂∂+∂∂=∑∑------------------(3) 上式对n i 的任意取值都成立,故有VUv n U u ii i ∂∂+∂∂=4.2证明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,0)(=∂∂∑jiii n n μ。

证明:根据式jnP T i i n G ,,⎪⎪⎭⎫⎝⎛∂∂=μ------------------(1) μi 是第i 个组元的化学势。

G 是广延量,是n 1,⋅⋅⋅,n k 的一次齐函数,即()()k k n n p T G n n p T G 11,,,,λλλ=------------------(2)将上式对λ求导,有 左式=()()λλλλλλλλ∂∂∂∂=∂∂∑)(,,)(,,11i k i k n n n p T n G n n p T G()k i in n p T n Gn λλλ 1,,)(∂∂=∑()k i i n n p T n λλμ 1,,∑=---------------(3)右式=()()k k n n p T G n n p T G 11,,],,[=∂∂λλ()k i i n n p T n 1,,μ∑=------(4) 令式(3)与式(4)相等,比较后可以知道()()k i k i n n p T n n p T 11,,,,μλλμ= --------------(5)上式说明μi (T,P,n 1,⋅⋅⋅,n k )是n 1,⋅⋅⋅,n k 的零次齐函数,根据欧勒定理有0)(=∂∂∑jiii n n μ 4.4理想溶液中各组元的化学势为i i x RT P T ln ),(g i +=μ(1)假设溶质是非挥发性的。

热学第四章习题参考答案[1]

热学第四章习题参考答案[1]

热学习题答案第四章:热力学第一定律(内容对应参考书的第五章)1. (P 192。

1)0.020Kg 的氦气温度由17C ︒升为27C ︒。

若在升温过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所做的功。

设氦气可看作理想气体,且R C m v 23,=。

解:已知=︒=C T 171290K ,K C T 300272=︒=,()mol molKg KgM5/104020.03=⨯==-μν(1)体积保持不变:外界对气体做功0=A ,内能的变化()()()cal R R T T C U m v 1507529030023512,≈=-⨯=-=∆ν,根据热力学第一定律,由0=A 有系统吸收热量()cal R U Q 15075≈=∆= (或者=623.55J );(2)压强保持不变:由P =常数,及理想气体状态方程RT PV ν=有 外界对气体做功()()()cal R T T R V V P PdV A V V 10050212121-≈-=-=-=-=⎰ν,内能的变化()()cal R T T C U m v 1507512,≈=-=∆ν, 由热力学第一定律,得系统吸收热量:()cal R A U Q 250125≈=-∆=;此问也可以先求A 和()12T T C Q P -=,而后再由第一定律得Q A U +=∆。

(3)不与外界交换热量:由于理想气体内能的变化只由温度决定,则 内能的变化仍然是()()cal R T T C U m v 1507512,≈=-=∆ν,但由0=Q ,根据热力学第一定律知此时外界对系统所做的功完全转化为系统内能的增加量,即外界对气体做功()()cal R T T C U A m v 1507512,≈=-=∆=ν。

注意:此题很简单,目的在于理解理想气体内能无论在什么样的准静态过程下都只由温度决定。

第04章统计热力学基本概念及定律习题及答案

第04章统计热力学基本概念及定律习题及答案

第四章 统计热力学基本概念及定律习题及答案4-1 一个系统中有四个可分辨的粒子,这些粒子许可的能级为ε0 = 0, ε1 =ω,ε2=2ω, ε3 = 3ω,其中ω为某种能量单位,当系统的总量为2ω时,试计算: (1)若各能级非简并,则系统可能的微观状态数为多少?(2)如果各能级的简并度分别为g 0 =1,g 1 =3,g 2 =3,则系统可能的微观状态数又为多少?解:(1) 许可的分布{2,2,0,0}{3,0,1,0},微观状态数为24C +14C =10(2) 微观状态数为g 02 g 1224C + g 03 g 2 14C =664-2 已知某分子的第一电子激发态的能量比基态高400kJ ⋅mo1-1,且基态和第一激发态都是非简并的,试计算:(1) 300K 时处于第一激发态的分子所占分数;(2)分配到此激发态的分子数占总分子数10%时温度应为多高? 解:(1) N 0→N , N 1/N =exp[-ε / (kT )]= 2.2×10-70(2)q ’≈1+ exp[-△ε / (kT )] , N 0: N 1=9 , exp[-ε / (kT )]=1/9, T =2.2×104K4-3 N 2分子在电弧中加热,根据所测定的光谱谱线的强度,求得处于不同振动激发态的分子数N v 与基态分子数N 0之比如下表所示:振动量子数υ1 2 3 N v / N 00.2610.0690.018请根据以上条件证明火焰中气体处于热平衡态。

解:气体处于热平衡N v / N 0=exp[-υhν/( kT )], N 1:N 2:N 3=0.261:0.261 2:0.261 34-4 N 个可别粒子在ε0 = 0, ε1 = kT , ε2 = 2kT 三个能级上分布,这三个能级均为非简并能级,系统达到平衡时的内能为1000kT ,求N 值。

解:q =1+exp(-1)+exp(-2)=1.503 , N 0= N exp(-0) / q , N 1= N exp(-1) / q ,N 2= N exp(-2) /q1000kT = N 0ε0+ N 1ε1+ N 2ε2 , N = 23544-5 HCl 分子的振动能级间隔为5.94×10-20 J ,试计算298.15K 某一能级与其较低一能级上的分子数的比值。

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年大学_热力学统计物理第五版(汪志诚著)课后答案下载

2023年热力学统计物理第五版(汪志诚著)课后答案下载热力学统计物理第五版(汪志诚著)内容简介导言第一章热力学的基本规律1.1 热力学系统的平衡状态及其描述1.2 热平衡定律和温度1.3 物态方程1.4 功1.5 热力学第一定律1.6 热容和焓1.7 理想气体的内能1.8 理想气体的绝热过程附录1.9 理想气体的卡诺循环1.10 热力学第二定律1.11 卡诺定理1.12 热力学温标1.13 克劳修斯等式和不等式1.14 熵和热力学基本方程1.15 理想气体的熵1.16 热力学第二定律的数学表述1.17 熵增加原理的简单应用1.18 自由能和吉布斯函数习题第二章均匀物质的热力学性质2.1 内能、焓、自由能和吉布斯函数的全微分 2.2 麦氏关系的简单应用2.3 气体的节流过程和绝热膨胀过程2.4 基本热力学函数的确定2.5 特性函数2.6 热辐射的热力学理论2.7 磁介质的.热力学2.8 获得低温的方法习题第三章单元系的相变3.1 热动平衡判据3.2 开系的热力学基本方程3.3 单元系的复相平衡条件3.4 单元复相系的平衡性质3.5 临界点和气液两相的转变3.6 液滴的形成3.7 相变的分类3.8 临界现象和临界指数3.9 朗道连续相变理论习题第四章多元系的复相平衡和化学平衡热力学第三定律 4.1 多元系的热力学函数和热力学方程4.2 多元系的复相平衡条件4.3 吉布斯相律4.4 二元系相图举例附录4.5 化学平衡条件4.6 混合理想气体的性质4.7 理想气体的化学平衡4.8 热力学第三定律习题第五章不可逆过程热力学简介5.1 局域平衡熵流密度与局域熵产生率 5.2 线性与非线性过程昂萨格关系5.3 温差电现象5.4 最小熵产生定理5.5 化学反应与扩散过程5.6 非平衡系统在非线性区的发展判据 5.7 三分子模型与耗散结构的概念习题第六章近独立粒子的最概然分布6.1 粒子运动状态的经典描述6.2 粒子运动状态的量子描述6.3 系统微观运动状态的描述6.4 等概率原理6.5 分布和微观状态6.6 玻耳兹曼分布6.7 玻色分布和费米分布……第七章玻耳兹曼统计第八章玻色统计和费米统计第九章系综理论第十章涨落理论第十一章非平衡态统计理论初步附录A 热力学常用的数学结果B 概率基础知识C 统计物理学常用的积分公式索引参考书目物理常量表热力学统计物理第五版(汪志诚著)图书目录《“十二五”普通高等教育本科国家级规划教材:热力学统计物理(第5版)》是“十二五”普通高等教育本科国家级规划教材,是作者在第四版的基础上全面修订而成的。

热力学统计物理-第五版-汪志诚-第4章

热力学统计物理-第五版-汪志诚-第4章
f
i xi xi mf
这就是欧勒定理,当m=1时,对应的就是一次齐次函数。
4
因体积、内能和熵都是各组元摩尔数的一次齐函数,
由欧勒定理知
i
xi
f xi

f
V
V i ni ( ni )T , p,n j
U
i
ni
(
U ni
)T
, p,n j
S
i
S ni ( ni )T , p,n j
用 ni 和 ni (i=1,2,…,k)表示在α相和 β 相中i组元摩尔
数的改变。各组元的总摩尔数不变要求:
ni ni 0
两相的吉布斯函数在虚变动中的变化为:
G

i

ni
i
G

i

ni
i
12
总吉布斯函数的变化为 G G G
2H 2O 2H 2 O2 0 dnH2O : dnH2 : dnO2 2 : 2 : 1
令 dn为共同的比例因子,则
dnH2O 2dn
dnH2 2dn
一般性统一表示:
dnO2 dn
反应正向进行 反应逆向进行
21
在等温等压下,发生单相反应,设想系统发生一个虚变 动,在虚变动中 i 组元物质的量的改变为:
ni vi n (i 1, 2, ...k )
由 dG SdT VdP idni
i
以及平衡态吉布斯函数最小得:
在等温等压下 G i ni ivi n 0
i
i
ivi 0 ——化学平衡条件
i
22

第04章--统计热力学基本概念及定律--习题及答案

第04章--统计热力学基本概念及定律--习题及答案

第四章 统计热力学基本概念及定律习题及答案4-1 一个系统中有四个可分辨的粒子,这些粒子许可的能级为ε0 = 0, ε1 =ω,ε2=2ω, ε3 = 3ω,其中ω为某种能量单位,当系统的总量为2ω时,试计算: (1)若各能级非简并,则系统可能的微观状态数为多少?(2)如果各能级的简并度分别为g 0 =1,g 1 =3,g 2 =3,则系统可能的微观状态数又为多少?解:(1) 许可的分布{2,2,0,0}{3,0,1,0},微观状态数为24C +14C =10(2) 微观状态数为g 02 g 1224C + g 03 g 2 14C =664-2 已知某分子的第一电子激发态的能量比基态高400kJ ⋅mo1-1,且基态和第一激发态都是非简并的,试计算:(1) 300K 时处于第一激发态的分子所占分数;(2)分配到此激发态的分子数占总分子数10%时温度应为多高? 解:(1) N 0→N , N 1/N =exp[-ε / (kT )]= 2.2×10-70(2)q ’≈1+ exp[-△ε / (kT )] , N 0: N 1=9 , exp[-ε / (kT )]=1/9, T =2.2×104K4-3 N 2分子在电弧中加热,根据所测定的光谱谱线的强度,求得处于不同振动激发态的分子数N v 与基态分子数N 0之比如下表所示:振动量子数υ1 2 3 N v / N 00.2610.0690.018请根据以上条件证明火焰中气体处于热平衡态。

解:气体处于热平衡N v / N 0=exp[-υhν/( kT )], N 1:N 2:N 3=0.261:0.261 2:0.261 34-4 N 个可别粒子在ε0 = 0, ε1 = kT , ε2 = 2kT 三个能级上分布,这三个能级均为非简并能级,系统达到平衡时的内能为1000kT ,求N 值。

解:q =1+exp(-1)+exp(-2)=1.503 , N 0= N exp(-0) / q , N 1= N exp(-1) / q ,N 2= N exp(-2) /q1000kT = N 0ε0+ N 1ε1+ N 2ε2 , N = 23544-5 HCl 分子的振动能级间隔为5.94×10-20 J ,试计算298.15K 某一能级与其较低一能级上的分子数的比值。

热力学与统计物理第四章知识总结

热力学与统计物理第四章知识总结

§6.1粒子运动状态的经典描述一、μ空间1、μ空间的建立在经典力学中,我们经常利用物体的坐标和动量描述物体的力学运动状态。

当然这种方法也可以用于描述遵守经典力学规律的近独立粒子。

如果粒子的自由度为r,则粒子在任一时刻的力学运动状态由粒子的r个坐标q,q,…,q和相应的r个广义动量P,P,…,P在该时刻的数值确定。

粒子的能量ε是广义坐标和广义动量的函数,即ε=ε(q,q,…,q; P,P,…,P)当存在外场时,ε还是描述外场参量的函数。

为了形象地描述粒子的力学运动状态,我们用q,q,…,q;P,P,…,P共2r个变量为直角坐标,构成一个2r维空间,称为粒子的相空间或者μ空间。

粒子在某一时刻的力学运动状态 (q,q,…,q; P,P,…,P)可以用μ空间中的一个点表示,称为粒子运动状态的代表点。

当粒子的运动状态随时间改变时,代表点相应地在μ空间中移动,描绘出一种轨迹,称为相轨迹。

由N个粒子组成的系统在某一时刻的一个特定的微观状态,在μ空间中用N个代表点表示。

随着时间的变化,系统运动状态的变化由N个代表点在μ空间中的N条运动轨迹,即N条线代表。

2、性质i) μ空间是人为想象出来的超越空间,是个相空间。

引进它的目的在于使运动状态的描述几何化、形象化,以便于进行统计。

μ空间中的一个代表点是一个粒子的微观运动状态而不是一个粒子。

ii) 在经典力学范围,在无相互作用的独立粒子系统中,任何粒子总可找到和它相应的μ空间来形象地描述它的运动状态,但不是所有的粒子的运动状态可以在同一μ空间中描述。

如一个自由度数为3的粒子,它需在一个6维的μ空间中描述;一个自由度数为5的粒子,它的μ空间是10维的,即需在10维的μ空间中描述它的运动状态。

二、自由粒子所谓自由粒子,指的是不受外力作用可以自由运动的粒子。

在通常情况下,我们还经常把可以忽略外力作用的粒子看作自由粒子。

例如,当不存在力场时,理想气体的分子或金属中的自由电子都可以被看作自由粒子。

热力学与统计物理第四章知识总结

热力学与统计物理第四章知识总结

§6.1粒子运动状态的经典描述一、μ空间1、μ空间的建立在经典力学中,我们经常利用物体的坐标和动量描述物体的力学运动状态。

当然这种方法也可以用于描述遵守经典力学规律的近独立粒子。

如果粒子的自由度为r,则粒子在任一时刻的力学运动状态由粒子的r个坐标q,q,…,q和相应的r个广义动量P,P,…,P在该时刻的数值确定。

粒子的能量ε是广义坐标和广义动量的函数,即ε=ε(q,q,…,q; P,P,…,P)当存在外场时,ε还是描述外场参量的函数。

为了形象地描述粒子的力学运动状态,我们用q,q,…,q;P,P,…,P共2r个变量为直角坐标,构成一个2r维空间,称为粒子的相空间或者μ空间。

粒子在某一时刻的力学运动状态 (q,q,…,q; P,P,…,P)可以用μ空间中的一个点表示,称为粒子运动状态的代表点。

当粒子的运动状态随时间改变时,代表点相应地在μ空间中移动,描绘出一种轨迹,称为相轨迹。

由N个粒子组成的系统在某一时刻的一个特定的微观状态,在μ空间中用N个代表点表示。

随着时间的变化,系统运动状态的变化由N个代表点在μ空间中的N条运动轨迹,即N条线代表。

2、性质i) μ空间是人为想象出来的超越空间,是个相空间。

引进它的目的在于使运动状态的描述几何化、形象化,以便于进行统计。

μ空间中的一个代表点是一个粒子的微观运动状态而不是一个粒子。

ii) 在经典力学范围,在无相互作用的独立粒子系统中,任何粒子总可找到和它相应的μ空间来形象地描述它的运动状态,但不是所有的粒子的运动状态可以在同一μ空间中描述。

如一个自由度数为3的粒子,它需在一个6维的μ空间中描述;一个自由度数为5的粒子,它的μ空间是10维的,即需在10维的μ空间中描述它的运动状态。

二、自由粒子所谓自由粒子,指的是不受外力作用可以自由运动的粒子。

在通常情况下,我们还经常把可以忽略外力作用的粒子看作自由粒子。

例如,当不存在力场时,理想气体的分子或金属中的自由电子都可以被看作自由粒子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) (3)
上式对的任意取值都成立,故有
(4)
4.2 证明是的零次齐函数 解:根据式(4.1.9),化学势是组元的偏摩尔吉布斯函数 G是广延量,是的一次齐函数,即
将上式对求导,有
(1) (2)
令式(3)与式(4)相等,比较可知 上式说明是的零次齐函数. 根据欧勒定理(式(4.1.4)),有
(3) (4)
4.8 绝热容器中有隔板隔开,两边分别装有物质的量为和的理想
气体,温度同为T,压强分别为和. 今将隔板抽去,
(a)试求气体混合后的压强.
(b)如果两种气体是不同的,计算混合后的熵增加值.
(c)如果两种气体是相同的,计算混合后的熵增加值.
解:(a)容器是绝热的,过程中气体与外界不发生热量交换. 抽
去隔板后气体体积没有变化,与外界也就没有功的交换. 由热力学第一
解:根据式(4.6.3),初始状态下混合理想气体的物态方程为 (1)
以表示发生化学变化达到平衡后的反应度,则达到平衡后各组元物质的 量依次为 总的物质的量为 其物态方程为
(2) 两式联立,有
(3) 因此,测量混合气体反应前后的体积即可测得气体反应的反应度.
4.11 试根据热力学第三定律证明,在时,表面张力系数与温度无 关,即
(2) 根据(3.2.1),有 所以式(2)可以改写为
(3) 利用式(1)更可将上式表为
(4) 其中是摩尔焓. 由式(4)可得
(5) 式中是纯溶剂的汽化热.
(b)将式(5)改写为 (6)
在固定压强下对上式积分,可得 (7)
式中是溶质浓度为时溶液的沸点,是纯溶剂的沸点. 在稀溶液的情形 下,有
式(7)可近似为 (8)
补充题3 热力学第三定律要求遵从居里-外斯定律 的顺磁性固体,在足够低的某一温度发生相变,试加以证明.
解: 根据式(2.7.3),磁性介质的热力学基本方程(单位体积)为 (1)
吉布斯函数的全微分为 (2)
由此可得麦氏关系 (3)
(5)
(6)
4.3 二元理想溶液具有下列形式的化学势:
其中为纯组元的化学势,是溶液中组元的摩尔分数. 当物质的量分别为
的两种纯液体在等温等压下合成理想溶液时,试证明混合前后
(a)吉布斯函数的变化为
(b)体积不变,即
(c)熵变
(d)焓变 因而没有混合热.
(e)内能变化为多少?
解:(a)吉布斯函数是广延量,具有相加性. 混合前两纯液体的吉
4.5 承4.4题: (a)试证明,在一定压强下溶剂沸点随溶质浓度的变化率为 其中L为纯溶剂的汽化热. (b)假设 试证明,溶液沸点升高与溶质在溶液中的浓度成正比, 即 解:(a)习题4.4式(4)给出溶液与溶剂蒸气达到平衡的平衡条 件
(1) 式中和是纯溶剂液相和气相的摩尔吉布斯函数,是溶质在溶液中的摩尔 分数,令压强保持不变,对式(1)求微分,有
以表示管内糖水的压强,表示容器内纯水的压强. 根据式(4.6.17),
管内糖水中水的化学势为
(1)
容器内纯水的化学势为 相平衡条件要求
(2)
由于和相差很小,可令
(3)
其中用了(3.2.1)式,是纯水的摩尔体积. 代入式(2),得
(4)
在的情形下,可以作近似
且糖水溶液的体积,因此式(4)可近似为
(5)
焓是态函数,在初态和终态给定后,焓的变化就有确定值,与中间 经历的过程无关. 将式(1)减去式(2),得
(3)
式中 式(3)意味着,的与的燃烧为的将放出燃烧热燃烧为CO的燃烧 热是不能直接测量的. 上面的计算表明,它可由C燃烧为CO2和CO燃烧 为CO2的燃烧热计算出来. 这是应用赫斯定律的一个例子.
布斯函数为
(1)
根据式(4.1.8),混合后理想溶液的吉布斯函数为 混合前后吉布斯函数的变化为
(2)
(3)
其中分别是溶液中组元1,2的摩尔分数. (b)根据式(4.1.10),混合前后体积的变化为
(c)根据式(4.1.10),混合前后熵的变化为
(4)
(5)
注意和都小于1,故 混合后熵增加了.
(d)根据焓的定义 将式(3)和式(5)代入,知混合前后焓的变化
溶液中的摩尔分数.
(b)求证:在一定温度下,溶剂的饱和蒸气压随溶质浓度的变化
率为
(c)将上式积分,得
其中是该温度下纯溶剂的饱和蒸气压,是溶质浓度为时的饱和蒸气压.
上式表明,溶剂饱和蒸气压的降低与溶质的摩尔分数成正比. 该公式称
为拉乌定律.
解:(a)溶液只含一种溶质. 以表示溶质在液相的摩尔分数,则
ቤተ መጻሕፍቲ ባይዱ
溶剂在液相的摩尔分数为 根据式(4.6.17),溶剂在液相的化学势为
解: 根据式(1.14.7),如果在可逆过程中外界对系统所做的功为
则系统的热力学基本方程为 (1)
相应地,自由能的全微分为 (2)
由式(2)可得麦氏关系 (3)
根据热力学第三定律,当温度趋于绝对零度时,物质的熵趋于一个 与状态参量无关的绝对常量,即 由式(3)知
(4) 对于表面系统,有 即,所以
(5) 考虑到只是温度T的函数,与面积A无关(见§2.5),上式可表为
(6)
4.12 设在压强下,物质的熔点为,相变潜热为L,固相的定压热 容量为,液相的定压热容量为. 试求液相的绝对熵的表达式.
解: 式(4.8.12)给出,以为状态参量,简单系统的绝对熵的表达 式为
(1) 积分中压强保持恒定. 一般来说,式(1)适用于固态物质,这是因为 液态或气态一般只存在于较高的温度范围. 为求得液态的绝对熵,可以 将式(1)给出的固态物质的绝对熵加上转变为液态后熵的增加值.
(2)
补充题2 试根据热力学第三定律证明,在时,一级相变两相平衡 曲线的斜率为零.
解: 式(3.4.4)给出一级相变两相平衡曲线的斜率为 (1)
根据热力学第三定律,当温度趋于绝对零度时,物质的熵趋于一个 绝对常量. 这意味着在时,相与相的摩尔熵相等,即 对于一级相变,有 所以由式(1)知
这一结论得到实验的证实. 例如,和的熔解曲线在时斜率为零,如《热 力学·统计物理(第四版)》教材图9.7和9.14所示.
根据式(3.2.1),,所以式(5)可以表示为
(5) (6)
其中和分别是溶剂气相和液相的摩尔体积. 由于,略去,并假设溶剂蒸
气是理想气体,
可得
(7)
(c)将上式改写为
(8) 在固定温度下对上式积分,可得
(9) 式中是该温度下纯溶剂的饱和蒸气压,是溶质浓度为时溶剂的饱和蒸气 压. 式(9)表明,溶剂饱和蒸气压的降低与溶质浓度成正比.
补充题1 隔板将容器分为两半,各装有的理想气体A和B. 它们的 构成原子是相同的,不同仅在于A气体的原子核处在基态,而B气体的原 子核处在激发态. 已知核激发态的寿命远大于抽去隔板后气体在容器内 的扩散时间. 令容器与热源接触,保持恒定的温度.
(a)如果使B气体的原子核激发后,马上抽去隔板,求扩散完成后 气体的熵增加值.
其中是纯水的摩尔吉布斯函数,是糖水中糖的摩尔分数,(分别是糖水 中水和糖的物质的量). 试据证明
是糖水溶液的体积.
解:这是一个膜平衡问题. 管中的糖水和容器内的水形成两相. 平
衡时两相的温度必须相等. 由于水可以通过半透膜,水在两相中的化学
势也必须相等. 半透膜可以承受两边的压强差,两相的压强不必相等.
值得注意,将式(6)减去式(10),得
(11)
式(11)正好是式(4.6.15)给出的混合熵.
4.9 试证明,在分解为和的反应 中,平衡常量可表为 其中是分解度. 如果将反应方程写作 平衡常量为何?
解: 已知化学反应 (1)
的平衡常量为 (2)
对于分解为和的反应 (3)
有 故平衡常量为
(4) 假设原有物质的量为的,达到平衡后分解度为,则平衡混合物中有的的
如果在所考虑的压强下,物质的熔点为,相变潜热为L,固相和液 相的定压热容量分别为和,则液相的绝对熵为
(2)
4.13 锡可以形成白锡(正方晶系)和灰锡(立方晶系)两种不同 的结晶状态。常压下相变温度以下灰锡是稳定的。如果在以上将白锡迅
速冷却到以下,样品将被冻结在亚稳态。已知相变潜热。 由热容量的测量数据知,对于灰锡,对于白锡。试验证能氏定理对于亚 稳态的白锡的适用性。
上式意味着,在固定压强下溶液的沸点高于纯溶剂的沸点,二者之差与 溶质在溶液中的浓度成正比.
4.6 如图所示,开口玻璃管底端有半透膜将管中的糖的水溶液与 容器内的水隔开. 半透膜只让水透过,不让糖透过. 实验发现,糖水溶 液的液面比容器内的水现上升一个高度,表明在同样温度下糖水溶液的 压强与水的压
强之差为 这一压强差称为渗透压. 从理想溶液化学势的表达式可知,如果糖的水 溶液与纯水具有相同的压强和温度,糖水溶液的化学势将低于纯水的化 学势. 因此水将从容器流入玻璃管,直到糖水的压强增为,两相的化学 势相等而达到平衡. 平衡时有
4.7实验测得碳燃烧为二氧化碳和一氧化碳燃烧为二氧化碳的燃烧 热,其数值分别如下: 试根据赫斯定律计算碳燃烧为一氧化碳的燃烧热.
解:本题给出了两个实验数据,在291K和下,有 (1) (2)
式(1)的含义是,的与的燃烧为的,放出燃烧热 由于等压过程中系统 吸收的热量等于焓的增量,所以燃烧热为 式(2)的含义是,的与的燃烧为的,放出燃烧热
(b)如果使B气体的原子核激发后,经过远大于激发态寿命的时间 再抽去隔板,求气体的熵增加值.
解: (a)核激发后两气体中的原子核状态不同,它们是不同的气 体. 如果马上抽去隔板,将发生不同气体的扩散过程. 由4.8题式(6) 知,熵增加值为
(1) (b)核激发后经过无大于激发态寿命的时间之后,B气体中的原子 核已衰变到基态,两气体就形成同种气体,由4.8题式(10)可知,抽 去隔板后熵变为
相关文档
最新文档