(完整)初中三角函数专项练习题
三角函数练习题目初三
三角函数练习题目初三1.已知直角三角形中一条直角边的长度为3cm,另一条直角边的长度为4cm。
求其两条直角边上的正弦、余弦和正切值。
解析:已知直角边 a = 3cm、直角边 b = 4cm。
根据三角函数的定义可知:正弦(sin) = 直角边a / 斜边c余弦(cos) = 直角边b / 斜边c正切(tan) = 直角边a / 直角边b其中,斜边c可以通过勾股定理求得:斜边c = √(a² + b²) = √(3² + 4²) = √(9 + 16) = √25 = 5代入计算得:正弦(sin) = 3 / 5 = 0.6余弦(cos) = 4 / 5 = 0.8正切(tan) = 3 / 4 = 0.75所以,该直角三角形的正弦值为0.6,余弦值为0.8,正切值为0.75。
2.已知角度θ的正弦值为0.5,求角度θ的余弦值和正切值。
解析:已知正弦(sin) = 0.5,要求余弦(cos)和正切(tan)。
根据正弦函数的定义可得:正弦(sin) = 直角边a / 斜边c已知正弦(sin) = 0.5,令直角边a = 0.5,斜边c = 1。
根据勾股定理可得:直角边b = √(c² - a²) = √(1² - 0.5²) = √(1 - 0.25) = √0.75 ≈ 0.866所以,余弦(cos) = 直角边b / 斜边c = 0.866 / 1 = 0.866正切(tan) = 直角边a / 直角边b = 0.5 / 0.866 ≈ 0.577所以,角度θ的余弦值为0.866,正切值为0.577。
3.已知角度α的正切值为2,求角度α的正弦值和余弦值。
解析:已知正切(tan) = 2,要求正弦(sin)和余弦(cos)。
根据正切函数的定义可得:正切(tan) = 直角边a / 直角边b已知正切(tan) = 2,令直角边a = 2,直角边b = 1。
初中三角函数计算题100道
初中三角函数计算题100道1. 计算 sin30°2. 计算 cos45°3. 计算 tan60°4. 计算 sec30°5. 计算 csc45°6. 计算 cot60°7. 计算 sin90°8. 计算 cos180°9. 计算 tan270°10. 计算 sec360°11. 计算 csc30°12. 计算 cot45°13. 计算 sin60°14. 计算 cos90°15. 计算 tan180°16. 计算 sec270°18. 计算 cot30°19. 计算 sin45°20. 计算 cos60°21. 计算 tan90°22. 计算 sec180°23. 计算 csc270°24. 计算 cot360°25. 计算 sin180°26. 计算 cos270°27. 计算 tan360°28. 计算 sec45°29. 计算 csc60°30. 计算 cot90°31. 计算 sin270°32. 计算 cos360°33. 计算 tan45°35. 计算 csc90°36. 计算 cot180°37. 计算 sin360°38. 计算 cos45°39. 计算 tan30°40. 计算 sec90°41. 计算 csc180°42. 计算 cot270°43. 计算 sin45° + cos45°44. 计算 tan30° - sin60°45. 计算 cos90° * sec30°46. 计算 tan45° / csc45°47. 计算 sin60° + csc30°48. 计算 sec45° - cos45°49. 计算 csc45° * cot45°50. 计算 cos60° / tan60°51. 计算 sec30° + csc60°52. 计算 tan45° - sin45°53. 计算 cos90° * cot30°54. 计算 sin60° / sec45°55. 计算 csc30° + cos60°56. 计算 tan45° - sec30°57. 计算 sin45° * cot60°58. 计算 cos60° / csc45°59. 计算 tan30° + sin60°60. 计算 sec45° - cos90°61. 计算 csc45° * cot30° + sin45°62. 计算 cos60° / tan45° - csc60°63. 计算 sin60° + csc30° * cos60°64. 计算 sec45° - cos45° / cot45°65. 计算 cos60° * sec30° - csc30°66. 计算 tan45° - sec30° + cot60°67. 计算 sin45° * cot60° - csc45°68. 计算 cos60° / csc45° + tan60°69. 计算 tan30° + sin60° * sec45°70. 计算 sec45° - cos90° / cot45°71. 计算 csc45° * cot30° + sin45° * cos45°72. 计算 cos60° / tan45° - csc60° * sec30°73. 计算 sin60° + csc30° * cos60° / tan45°74. 计算 sec45° - cos45° / cot45° + csc45°75. 计算 cos60° * sec30° - csc30° + tan45°76. 计算 tan45° - sec30° + cot60° / csc45°77. 计算 sin45° * cot60° - csc45° + cos45°78. 计算 cos60° / csc45° + tan60° - sec45°79. 计算 tan30° + sin60° * sec45° + cot30°80. 计算 sec45° - cos90° / cot45° - csc60°81. 计算 csc45° * cot30° + sin45° * cos45° - sec30°82. 计算 cos60° / tan45° - csc60° * sec30° + sin60°83. 计算 sin60° + csc30° * cos60° / tan45° - sec45°84. 计算 sec45° - cos45° / cot45° + csc45° * cos60°85. 计算 cos60° * sec30° - csc30° + tan45° / sin60°86. 计算 tan45° - sec30° + cot60° / csc45° + cos90°87. 计算 sin45° * cot60° - csc45° + cos45° * tan45°88. 计算 cos60° / csc45° + tan60° - sec45° * sin45°89. 计算 tan30° + sin60° * sec45° + cot30° * csc60°90. 计算 sec45° - cos90° / cot45° - csc60° / cos60°91. 计算 csc45° * cot30° + sin45° * cos45° - sec30° + tan45°92. 计算 cos60° / tan45° - csc60° * sec30° + sin60° * csc30°93. 计算 sin60° + csc30° * cos60° / tan45° - sec45° * csc45°94. 计算 sec45° - cos45° / cot45° + csc45° * cos60° - tan60°95. 计算 cos60° * sec30° - csc30° + tan45° / sin60° + cot45°96. 计算 tan45° - sec30° + cot60° / csc45° + cos90° * sec60°97. 计算 sin45° * cot60° - csc45° + cos45° * tan45° * csc60°98. 计算 cos60° / csc45° + tan60° - sec45° * sin45° / cos45°99. 计算 tan30° + sin60° * sec45° + cot30° * csc60° + cos60°100. 计算 sec45° - cos90° / cot45° - csc60° / cos60° + tan60°这是一百道关于初中三角函数的计算题。
初中数学三角函数考试试卷
一、选择题(每题5分,共50分)1. 在直角三角形ABC中,∠C=90°,∠A=30°,则tanA的值为:A. √3B. 1/√3C. √3/3D. 32. 已知sinθ=1/2,且θ是锐角,则cosθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/23. 在直角三角形ABC中,∠C=90°,AB=5,BC=3,则tanB的值为:A. 3/5B. 5/3C. √2/3D. √3/24. 已知cosθ=1/2,且θ是锐角,则sinθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/25. 在直角三角形ABC中,∠C=90°,∠B=45°,AC=6,则AB的值为:A. 6√2B. 3√2C. 6√3D. 3√36. 已知sinθ=√3/2,且θ是锐角,则cosθ的值为:A. 1/2B. √3/2C. 1/√2D. √2/27. 在直角三角形ABC中,∠C=90°,AB=10,BC=8,则tanA的值为:A. 4/5B. 5/4C. 8/10D. 10/88. 已知cosθ=√3/2,且θ是锐角,则sinθ的值为:A. 1/2B. √3/2C. 1/√2D. √2/29. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则tanB的值为:A. 5/12B. 12/5C. 5/√3D. 12/√310. 已知sinθ=1/2,且θ是锐角,则cosθ的值为:A. √3/2B. 1/2C. 1/√2D. √2/2二、填空题(每题5分,共50分)1. 在直角三角形ABC中,∠C=90°,∠A=30°,则cosA的值为______。
2. 已知sinθ=√3/2,且θ是锐角,则tanθ的值为______。
3. 在直角三角形ABC中,∠C=90°,AB=8,BC=6,则tanA的值为______。
初中三角函数练习试题和答案解析
.初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2 倍,则锐角 A 的正弦值与余弦值都()A 、缩小 2倍B 、扩大 2倍C 、不变D 、不能确定412、在 Rt △ ABC 中,∠ C=900, BC=4, sinA= 5,则 AC=() A 、3B 、4C 、5D 、613、若∠ A 是锐角,且 sinA= 3,则()A 、00<∠ A<300B 、300<∠ A<450C 、450<∠ A<600D 、600<∠ A<90013 sin A tan A4、若 cosA= 3,则4 sin A2 tan A =()411A 、7B 、 3C、 2D、 05、在△ ABC 中,∠ A :∠ B :∠ C=1: 1: 2,则 a : b : c= ()2A 、1: 1:2B 、 1:1:2 C、1: 1:3D 、 1:1:26、在 Rt △ ABC 中,∠ C=900,则下列式子成立的是( )A 、sinA=sinBB、sinA=cosBC、tanA=tanB D 、 cosA=tanB7.已知 Rt △ ABC 中,∠ C=90°, AC=2, BC=3,那么下列各式中,正确的是()2223A . sinB= 3B. cosB= 3C. tanB= 3D. tanB= 28.点( -sin60 °, cos60 °)关于 y 轴对称的点的坐标是()313131 1 3A .(2,2)B .(- 2,2 )C .(- 2,-2) D .(- 2,- 2)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.? 某同学站在离旗杆 12 米远的地方, 当国旗升起到旗杆顶时,他测得视线的仰角为30°, ? 若这位同 学的目高 1.6 米,则旗杆的高度约为()A .6.9 米B .8.5 米C .10.3 米D .12.0 米10.王英同学从 A 地沿北偏西 60o 方向走 100m 到 B 地,再从B 地向正南方向走 200m到 C 地,此时王英同学离A 地 ()( A )50 3m ( B ) 100 m( C ) 150m (D )100 3m11、如图 1,在高楼前D 点测得楼顶的仰角为30 ,3045ADC B.图1.向高楼前进 60 米到C点,又测得仰角为45,则该高楼的高度大约为()A.82 米B.163米C.52米D.70米12、一艘轮船由海平面上 A 地出发向南偏西40o的方向行驶 40 海里到达 B 地,再由B 地向北偏西10o的方向行驶 40 海里到达C 地,则 A、 C两地相距().(A)30 海里(B) 40 海里( C)50 海里(D) 60 海里(二)细心填一填1.在 Rt △ ABC中,∠ C=90°, AB=5, AC=3,则 sinB=_____ .2.在△ ABC中,若 BC=2,AB=7, AC=3,则 cosA=________.3.在△ ABC中, AB=2,AC= 2,∠ B=30°,则∠ BAC的度数是 ______.4.如图,如果△ APB绕点 B 按逆时针方向旋转30°后得到△ A'P'B,且 BP=2,那么 PP'62的长为 ____________ . ( 不取近似值 . 以下数据供解题使用: sin15 °=4,62cos15°=4)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.北y乙A北B第4题图甲Ox第5题图第 6题图6.如图,机器人从 A 点,沿着西南方向,行了个 4 2单位,到达 B 点后观察到原点O在它的南偏东60°的方向上,则原来 A 的坐标为 ___________结果保留根号).7.求值: sin 260° +cos 260° =___________ .8.在直角三角形ABC中,∠A=900, BC=13, AB=12,那么tan B___________ .9.根据图中所给的数据,求得避雷针CD的长约为 _______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈ 0.6802 , sin40 °≈ 0.6428, cos43 °≈0.7341 , cos40 °≈ 0.7660 , tan43 °≈ 0.9325, tan40 °≈ 0.8391 )10.如图,自动扶梯AB段的长度为20 米,倾斜角 A 为α,高度BC为 ___________ 米(结果用含α的三角比表示)...DCB 43°40°AB52m第9题图A第 10题图C(1)(2)11.如图 2 所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角, ? 这时测得大树在地面上的影子约为10 米,则大树的高约为________米.( ? 保留两个有效数字,2≈1.41 ,3≈1.73)三、认真答一答1,计算:sin 30cos60 cot 45 tan60tan30分析:可利用特殊角的三角函数值代入直接计算;2 计算: 2 (2cos45 sin 90 ) ( 4 4 ) ( 2 1)1分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
(完整版)初中三角函数专项练习题及答案
初中三角函数基础检测题得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00〈∠A<300B 、300〈∠A 〈450C 、450〈∠A 〈600D 、600<∠A 〈9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(3,12)B .(-3,12)C .(—3,-12)D .(—12,—32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1。
6米,则旗杆的高度约为( )A .6。
9米B .8。
5米C .10。
3米D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( ) (A)350m (B)100 m(C)150m(D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( ) A 。
初中三角函数专项练习题及答案
初中三角函数基础检测题山岳 得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离A 地 ( ) (A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里图145︒30︒BAD C(二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示). 11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米。
(完整)初中数学三角函数练习题
(完整)初中数学三角函数练习题初中数学三角函数练题1. 求下列三角函数的值:a) sin 30°b) cos 45°c) tan 60°2. 在直角三角形 ABC 中,∠ACB = 90°,AC = 5 cm,BC = 12 cm。
求 sin A、cos A 和 tan A 的值。
3. 如果 sin x = 0.6,求 x 的值(0° ≤ x ≤ 180°)。
4. 已知 sin y = 0.8,求 cos y 的值(0° ≤ y ≤ 180°)。
5. 在直角三角形 DEF 中,∠E = 30°,EF = 6 cm,DE = 8 cm。
求 sin F、cos F 和 tan F 的值。
6. 如果 cos z = 0.4,求 z 的值(0° ≤ z ≤ 180°)。
7. 已知 cos w = 0.7,求 sin w 的值(0° ≤ w ≤ 180°)。
8. 在直角三角形 GHI 中,∠H = 60°,GH = 9 cm,HI = 3 cm。
求 sin G、cos G 和 tan G 的值。
9. 如果 tan v = 1.5,求 v 的值(0° ≤ v ≤ 180°)。
10. 已知 tan u = 2,求 sin u 的值(0° ≤ u ≤ 180°)。
11. 在直角三角形 ___ 中,∠K = 45°,JK = 6 cm,KL = 6 cm。
求 sin L、cos L 和 tan L 的值。
12. 如果 cot t = 0.75,求 t 的值(0° ≤ t ≤ 180°)。
13. 已知 cot s = 4,求 sin s 的值(0° ≤ s ≤ 180°)。
14. 已知cos α = 0.6,求sin^2 α 和cos^2 α 的值。
初中三角函数练习题及答案
初中三角函数练习题(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在△中,∠900,4,54,则( )A 、3B 、4C 、5D 、6 3、若∠A 是锐角,且31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△中,∠A :∠B :∠1:1:2,则a :b :( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在△中,∠900,则下列式子成立的是( ) A 、 B 、 C 、 D 、7.已知△中,∠90°,2,3,那么下列各式中,正确的是( )A .23B .23 C .23 D .328.点(60°,60°)关于y 轴对称的点的坐标是( )A.(2,12) B .(-2,12) C .(-2,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米 12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)细心填一填1.在△中,∠90°,5,3,则.2.在△中,若2,7,3,则.3.在△中,2,2,∠30°,则∠的度数是.4.如图,如果△绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且2,那么'的长为. (不取近似值. 以下数据供解题使用:15°=624-,15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西度.图145︒30︒BAD C第6题图xO AyB北甲北乙第5题图第4题6.如图,机器人从A 点,沿着西南方向,行了个4单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为结果保留根号).7.求值:260°260°.8.在直角三角形中,∠090,13,12,那么tan B =.9.根据图中所给的数据,求得避雷针的长约为(结果精确的到也可用下列参考数据求:43°≈0.6802,40°≈0.6428,43°≈0.7341,40°≈0.7660,43°≈0.9325,40°≈0.8391)10.如图,自动扶梯段的长度为20米,倾斜角A 为α,高度为米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为米.(•保留两个有效数字,2≈1.41,3≈1.73)三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图1,在∆ABC 中,是边上的高,tan cos B DAC =∠。
初中三角函数专项练习题及答案
初中三角函数基础检测题得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.图145︒30︒BAD C4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图αACB第10题图A40°52mCD第9题图B43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。
初中三角函数专项练习题及答案
初中三角函数专项练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23 D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).图145︒30︒BAD C(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.第6题图xOAy B北甲北乙第5题图第4题图8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2) 11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73) 三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;αA C B第10题图A40°52mCD第9题图B432计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中三角函数大题专项练习(含答案)
初中三角函数大题专项练习(含答案)三角函数专项练习(含答案)1、已知向量a =(sinx x x x,cos ), b =(cos) ,函数f (x ) =⋅. 3333(1)求函数f (x ) 的单调递增区间;(2)如果△ABC 的三边a 、b 、c 满足b =ac ,且边b 所对的角为x ,试求x 的范围及函数f (x ) 的值域.2、在∆ABC 中,角A , B , C 的对边分别为a 、b 、c,已知B = (1)求sin C 的值;(2)求∆ABC 的面积.3、已知函数f (x ) =sin x +cos x ,f '(x ) 是f (x ) 的导函数.(1)求出f '(x ) ,及函数y=f '(x ) 的最小正周期;(2)当x ∈[0,2π3,cos A =4, b = 5π2]时,函数F (x ) =f (x ) f '(x ) +f 2(x ) 的值域.4、已知向量=(sin 2x +2, cos x ), =(1, 2cos x ) ,设函数f (x ) =m ⋅n 。
(1)求f (x ) 的最小正周期与单调递减区间;(2)在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若f (A ) =4, b =1, ∆ABC 的面积为,求a 的值. 25、已知向量a =(,113sin x +cos x ) 与=(1, y ) 共线,且有函数y =f (x ) . 222(1)求函数y =f (x ) 的周期与最大值;(2)已知锐角∆ABC 的三个内角分别是A 、B 、C ,若有f (A -π3) =,边BC =7,sin B =21,求AC 的长. 76、已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P (-.(1)求sin 2α-tan α的值;(2)若函数f (x ) =cos(x -α)cos α-sin(x -α)sin α,求函数y =(7、在∆ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知b +c =a +bc .(1)求角A 的大小;(2)若2sin2π22π⎤上的取值范围.-2x ) -2f 2(x ) 在区间⎡0⎢⎥⎣3⎦222B C+2sin 2=1,判断∆ABC 的形状. 22三角函数专项练习参考答案x x x x1、解:(1)f (x ) =⋅=sin cos +cos cos333312x 2x 2x π=sin +cos +=+) +. 232323322x ππ5ππ+≤2k π+,解得,3k π-≤x ≤3k π+, (k ∈Z ) .2332445ππ, 3k π+],(k ∈Z ) .…………(7分) 故函数f (x ) 的单调递增区间为[3k π-44a 2+c 2-b 2a 2+c 2-ac 2ac -ac 12b =ac ,cos x ==≥=.2ac 2ac 2ac 21ππ2x π5π∴≤cos x2x ππ2x π,≤1+∴sin3333322即f (x ) 的值域为(3, 1+].2π综上所述,x ∈(0, ],f (x ) 的值域为(, 1+]..…………………(14分)π42π3-A ,sin A =.2、解:(1)因为A , B , C 为∆ABC 的内角,B =,cos A =,所以C = 3535(2)令2k π-π≤所以sin C =sin(2π13+-A ) =A +sin A =………………7分 3221033+,sin C =510b sin A 6=. sin B 5(2)由(1),知sin A =因为B =π3, b =∆ABC 中,a =所以∆ABC 的面积S =113+36+ab sin C ==……14分 2210503、解:(1)∵f '(x ) =cos x -sin x ,…………………………3分∴ f '(x ) =cos x -sin x ==x +4) ,………5分所以y =f '(x ) 的最小正周期为T =2π.………7分22(2)F (x ) =cos x -sin x +1+2sin x cos x =1+sin 2x +cos 2x =1x +) .π4∵x ∈[0,π2],∴2x +ππ5ππ∈[, ],∴sin(2x +) ∈[. 4444∴函数F (x) 的值域为⎡0,1+.……………………………………………14分⎣4、解:(1) m =(sin 2x +2, cos x ), n =(1, 2cos x ) ,∴f (x ) =m ∙n =sin 2x +2+2cos 2x =sin 2x +cos 2x +3=2sin(2x +∴T =π6) +3 ……………………………………4分2π=π ………………………………………5分 2π2ππ3π(k ∈Z ) ∴k π+≤x ≤k π+π(k ∈Z ) 令2k π+≤2x +≤2k π+63262π2∴f (x ) 的单调递减区间为[k π+, k π+π],k ∈Z .………………………7分 63(2)由f (A ) =4得 f (A ) =2sin(2A +π6) +3=4∴sin(2A +1……………………………………………………………………8分62ππ13ππ5π又 A 为∆ABC 的内角,∴66666) =π∴A =π3…………………………………………………………………………………10分S ∆ABC =1,∴c =2……………………………12分 , b =1,∴bc sin A =1=3,∴a =…………………14分 5、2∴a 2=b 2+c 2-2bc cos A =4+1-2⨯2⨯1⨯解:由//得11y -(sin x +cos x ) =0, 222即y =f (x ) =2sin(x +π3) .---------------------------------------------------------------(5分)(1)函数y =f (x ) 的周期为2π,函数的最大值为2.-------------------------------------(7分)(2)由f (A -π3) =,得2sin(A -π3+π3) =3,即sin A =3, 2∵∆ABC 是锐角三角形,∴A =3.---------------------------------------------------(10分)由正弦定理BC AC 21=及边BC =7,sin B =,得AC =2.---------(14分) sin A sin B 76、解:(1)因为角α终边经过点P (-,所以sin α=1,cos α=,tan α=.2 ∴sin 2α-tan α=2sin αcos α-tan α=(2).---------6分 +=f (x ) =cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R .∴y =-2x ) -2cos 2x =2x -1-cos 2x =2sin(2x -) -1.26ππ0≤x ≤2π4πππ7π, ∴0≤2x ≤, ∴-≤2x -≤. 33666∴-1ππ≤sin(2x -) ≤1,∴-2≤2sin(2x -) -1≤1. 266故函数y =π⎡2π⎤(-2x ) -2f 2(x ) 在区间⎢0⎥上的取值范围是[-2,1].---14分23⎣⎦2222227、解:(1)在∆ABC 中,b +c -a =2bc cos A ,又b +c =a +bc . 1π, A =. 23C 2B +2sin 2=1,∴1-cos B +1-cos C =1.(2)∵2sin222π-B ) =1,∴cos B +cos C =1,cos B +cos(32π2πcos B +sin sin B =1.∴cos B +cos 33∴cos A = ∴π1B +cos B =1,∴sin(B +) =1.622∵0π3, C =π3.。
初中三角函数专项练习题及答案
、认真答一答1计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.4. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是45°,求铁塔高.5 如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东60′的方向上, 渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?3045DCBAEACBD北东300450ArE D B C6、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107 千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
(1)问A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长?13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。
为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01.︒)参考数据: sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m ,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q M15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)ABC北东20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD 和BC(杆子的底端分别为D,C),且∠DAB=66. 5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中三角函数基础检测题(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填(共33分)1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB= ,AC=2,∠B=30°,则∠BAC 的度数是______.图145︒30︒BAD C4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图αACB第10题图A40°52mCD第9题图B43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。
(保留两个有效数字,2≈1.41,3≈1.73) 三、认真答一答(共51分)1计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。
(1)求证:AC =BD(2)若sin C BC ==121312,,求AD 的长。
4如图,已知∆ABC 中∠=∠C Rt ,AC m BAC =∠=,α,求∆ABC 的面积(用α的三角函数及m 表示)5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD 宽12m ,求路基顶AB 的宽。
B ADCE8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.30450ArE D BC FDAH9如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B 距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?10、如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?EAC BD北东11. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD ,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD 和高度DC 都可直接测得,从A 、D 、C 三点可看到塔顶端H ,可供使用的测量工具有皮尺、测倾器。
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案。
具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A 、D 间距离,用m 表示;如果测D 、C 间距离,用n 表示;如果测角,用α、β、γ表示)。
(2)根据你测量的数据,计算塔顶端到地面的高度HG (用字母表示,测倾器高度忽略不计)。
13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。
为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01.︒)参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,14. 公路MN和公路PQ在点P处交汇,且∠=︒QPN30,点A处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q.15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)A B C北东17、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈1.732.18、如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题: (1)火箭到达B 点时距离发射点有多远(精确到0.01km )?(2)火箭从A 点到B 点的平均速度是多少(精确到0.1km/s )?P 北4030图10AB OC19、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C处,测得68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°.(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)图①图②答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题1,35 2, 3,30°(点拨:过点C 作AB 的垂线CE ,构造直角三角形,利用勾股定理CE )4(点拨:连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,利用sin15°=,先求出PD ,乘以2即得PP ')5.48(点拨:根据两直线平行,内错角相等判断)6.(0,4+(点拨:过点B 作BC ⊥AO ,利用勾股定理或三角函数可分别求得AC 与OC 的长)7.1(点拨:根据公式sin 2α+cos 2α=1)8.125(点拨:先根据勾股定理求得AC=5,再根据tan ACB AB =求出结果) 9.4.86(点拨:利用正切函数分别求了BD ,BC 的长)10.20sin α(点拨:根据sin BCAB α=,求得sin BC AB =•α)11.35 三,解答题可求得 1. -1; 2. 43.解:(1)在Rt ABD ∆中,有tan B ADBD=, Rt ADC ∆中,有cos ∠=DAC ADACtan cos B DAC AD BD ADAC AC BD =∠∴==,故 (2)由sin C AD AC ==1213;可设AD x AC BD x ===1213, 由勾股定理求得DC x =5, BC BD DC x =∴+==121812即x =23∴=⨯=AD 122384.解:由tan ∠=BAC BCAC∴=∠=∠=∴=∴=⋅=⋅=BC AC BAC AC m BAC BC m S AC BC m m m ABC tan tan tan tan ,αααα∆12121225解过D 做DE ⊥AB 于E ∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BC ABtgACB =)(4545米=⋅=∴tg BC AB在Rt ΔADE 中,∠ADE=30°DEAEtgADE =315334530=⋅=⋅=∴ tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米. 6 解:设CD=x在Rt ΔBCD 中,CDBCctgDBC =∴BC=x(用x 表示BC) 在Rt ΔACD 中,CDACctgDAC =x ctgDAC CD AC 3=⋅=∴ ∵AC-BC=100 1003=-x x 100)13(=-x30450Ar E D BC∴)13(50+=x答:铁塔高)13(50+米.7、解:过B 作BF ⊥CD ,垂足为F BF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠3:2=iBCAE=3m ∴DE=4.5mAD=BC ,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m︒=∠=∠90AEF BFE ∴BF//CD∴四边形ABFE 为平行四边形 ∴AB=EF=3m8解:CD FB ⊥,AB FB ⊥,CD AB ∴∥CGE AHE ∴△∽△CG EG AH EH ∴=,即:CD EF FDAH FD BD-=+FDAH3 1.62215AH -∴=+,11.9AH ∴= 11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=9 解: A 、C 、E 成一直线∠=︒∠=︒∴∠=︒ABD D BED 1455590,,在Rt BED ∆中, cos cos D DEBDDE BD D =∴=⋅, BD =500米,∠=︒D 55︒=∴55cos 500DE 米,所以E 离点D 的距离是500cos55 o 10 解:在Rt△ABD 中,716284AD =⨯=(海里), ∠BAD=90°-65°45′=24°15′. ∵cos24°15′=AD AB , ∴2830.71cos 24150.9118AD AB ==≈'︒(海里). AC=AB+BC=30.71+12=42.71(海里). 在Rt△ACE 中,sin24°15′=CEAC, ∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里). ∵17.54<18.6,∴有触礁危险。