2015-2016学年度人教版九年级数学上第24章圆单元测试题含答案

合集下载

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.如图,一个油桶靠在直立的墙边,量得0.8m,BC =并且,AB BC ⊥则这个油桶的底面半径是( )A .1.6mB .1.2mC .0.8mD .0.4m 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个3.如图,点A 、B 、C 在⊙O 上,且∠ACB=100o ,则∠α度数为( )A .160oB .120oC .100oD .80o4.如图,在⊙O 中,CD 是直径,AB 是弦,AB ⊥CD 于E ,AB =8,OD =5,则CE 的长为( )A .4B .2C 2D .15.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°6.如图,AB 为⊙O 的直径,点 D 是弧 AC 的中点,过点 D 作 DE ⊥AB 于点 E ,延长 DE 交⊙O 于点 F ,若 AC =12,AE =3,则⊙O 的直径长为( )A .7.5B .15C .16D .187.如图,已知AB 、AD 是O 的弦,30B ∠=︒,点C 在弦AB 上,连接CO 并延长CO 交于O 于点D ,20D ∠=︒,则BAD ∠的度数是( )A .30°B .40°C .50°D .60°8.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°9.如图,⊙O 是△ABC 的外接圆,将△ABC 绕点C 顺时针旋转至△EDC ,使点E 在⊙O 上,再将△EDC 沿CD 翻折,点E 恰好与点A 重合,已知∠BAC =36°,则∠DCE 的度数是( )A.24 B.27 C.30 D.3310.下列说法正确的是()①近似数2⨯精确到十分位;32.610--中,最小的是38-;②在2,2,38-,2③如图所示,在数轴上点P所表示的数为15-+;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在ABC内一点P到这三条边的距离相等,则点P是三个角平分线的交点.A.1 B.2 C.3 D.4二、填空题11.某圆的周长是12.56米,那么它的半径是______________,面积是__________.OA=,12.如图,A、B、C是O上的点,OC AB⊥,垂足为点D,且D为OC的中点,若7则BC的长为___________.13.如图,AB 、AC 是O 的弦,过点A 的切线交CB 的延长线于点D ,若35BAD ∠=︒,则C ∠=___________°.14.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.15.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.16.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.三、解答题17.如图,在菱形ABCD 中,90BAD ∠>︒,P 为AC ,BD 的交点,O 经过A ,B ,P 三点.(1)求证:AB 为O 的直径.(2)请用无刻度的直尺在圆上找一点Q ,使得BP =PQ (不写作法,保留作图痕迹).18.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt △ABC 中,∠C =90°.求作:一个⊙O ,使⊙O 与AB 、BC 所在直线都相切,且圆心O 在边AC 上.19.如图所示,AB 为⊙O 的直径,在△ABC 中,AB =BC ,AC 交⊙O 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)证明DE 是⊙O 的切线;(2)AD =8,P 为⊙O 上一点,P 到弦AD 的最大距离为8.①尺规作图作出此时的P 点,保留作图痕迹;②求DE 的长.20.如图,在Rt ABC △中,90ACB ∠=︒,延长CA 到点D ,以AD 为直径作O ,交BA 的延长线于点E ,延长BC 到点F ,使BF EF =.(1)求证:EF 是O 的切线;(2)若9OC =,4AC =,8AE =,求BE 的长.21.如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:AC =BD ;<),点E是线段OP的中点.在22.如图,点P是O的直径AB延长线上的一点(PB OB=.求证:PC是O的切线.直径AB上方的圆上作一点C,使得EC EP23.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒24.如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若3AP ,BF=1,求⊙O的半径.25.如图,⊙O是以△ABC的边AC为直径的外接圆,∠ACB=54°,如图所示,D为⊙O上与点B关于AC的对称点,F为劣弧BC上的一点,DF交AC于N点,BD交AC于M点.(1)求∠DBC的度数;(2)若F为弧BC的中点,求MN ON.26.已知P为⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若∠APQ=∠BPQ(1)如图1,当∠APQ=45°,AP=1,2⊙O的半径。

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题(含答案)一、选择题(每小题3分,共24分)1.已知⊙O 的半径为5 cm ,点P 在直线l 上,且点P 到圆心O 的距离为5 cm ,则直线l 与⊙O ( )A .相离B .相切C .相交D .相交或相切2.若一个圆锥的侧面积是18π,侧面展开图是半圆,则该圆锥的底面圆半径是( ) A .6 B .3 C. 3 D .123.如图1,四边形ABCD 内接于⊙O ,若∠C =36°,则∠A 的度数为( ) A .36° B .56° C .72° D .144°图1 图24.如图2所示,⊙O 的半径为4 cm ,C 是AB ︵的中点,半径OC 交弦AB 于点D ,OD =2 3 cm ,则弦AB 的长为( )A .2 cmB .3 cmC .2 3 cmD .4 cm5.如图3所示,D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论不一定正确的是( )A .CD ⊥AB B .∠OAD =2∠CBDC .∠AOD =2∠BCD D.AC ︵=BC ︵图3 图46.如图4,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交于⊙O 点D , 点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45° 7.把球放在长方体纸盒内,球的一部分露出盒外,其轴截面如图5所示,已知EF =CD =4 cm ,则球的半径是( )A .2 cmB .2.5 cmC .3 cmD .4 cm图5 图68.如图6,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2 3,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( )A.15 34-32πB.15 32-32πC.734-π6D.732-π6π二、填空题(每小题4分,共32分)9.如图7,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是________.图7 图810.如图8,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ACD =54°,则∠BAD =________°. 11.在Rt △ABC 中,∠C =90°,若AC =4,BC =3,则△ABC 的内切圆半径r =________. 12.一个扇形的圆心角是120°,它的半径是3 cm ,则扇形的弧长为________ cm.13.如图9,⊙M 与x 轴相切于原点,平行于y 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的下方.若点P 的坐标是(2,1),则圆心M 的坐标是________.图914.若用圆心角为120°,半径为9的扇形围成一个圆锥侧面,则这个圆锥的底面圆的直径是________.15.如图10所示,AB 是半圆O 的直径,E 是BC ︵的中点,OE 交弦BC 于点D .若BC =8 cm ,DE =2 cm ,则OD =________ cm.图10 图1116.如图11,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π3,则图中阴影部分的面积为________.三、解答题(共44分)17.(10分)如图12,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,G 是AC ︵上的一点,AG 与DC 的延长线交于点F .(1)若CD =8,BE =2,求⊙O 的半径; (2)求证:∠FGC =∠AGD .图1218.(10分)如图13,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点M ,N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD,求证:MD=NB.图1319.(12分)如图14,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA长为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.图1420.(12分)如图15①所示,OA是⊙O的半径,D为OA上的一个动点,过点D作线段CD⊥OA交⊙O于点F,过点C作⊙O的切线BC,B为切点,连接AB,交CD于点E. (1)求证:CB=CE;(2)如图②,当点D 运动到OA 的中点时,CD 刚好平分AB ︵,求证:△BCE 是等边三角形;(3)如图③,当点D 运动到与点O 重合时,若⊙O 的半径为2,且∠DCB =45°,求线段EF 的长.图11.D2.[解析] B 设圆锥的母线长为R ,π×R 2÷2=18π,解得R =6,∴圆锥侧面展开图的弧长为6π,∴圆锥的底面圆半径是6π÷2π=3.故选B. 3.D4.[解析] D 由圆的对称性,将圆沿OC 折叠,A ,B 两点重合,所以OC ⊥AB .连接OA ,由勾股定理求得AD =2 cm ,所以AB =4 cm.5.[解析] B ∵D 是弦AB 的中点,CD 经过圆心O , ∴CD ⊥AB ,AC ︵=BC ︵,故A ,D 正确; 连接OB , ∴∠AOD =∠BOD . ∵∠BOD =2∠C ,∴∠AOD =2∠BCD ,故C 正确;B 不一定正确.故选B. 6.D7.[解析] B 过点O 作OM ⊥EF 于点M ,延长MO 交BC 于点N ,连接OF ,如图. ∵四边形ABCD 是矩形, ∴∠C =∠D =90°,∴四边形CDMN 是矩形, ∴MN =CD =4. 设OF =x , 则ON =OF =x ,∴OM =MN -ON =4-x ,MF =2, 在Rt △OMF 中,OM 2+MF 2=OF 2, 即(4-x )2+22=x 2,解得x =2.5. 故选B.8.A9.[答案] 2 7[解析] 连接OC,如图,由题意,得OE=OA-AE=4-1=3,∴CE=ED=OC2-OE2=7,∴CD=2CE=2 7.10.[答案] 36[解析] 连接BD,如图所示.∵∠ACD=54°,∴∠ABD=54°.∵AB为⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠ABD=36°.11.[答案] 1[解析] 如图,设△ABC的内切圆与各边分别相切于点D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC.设⊙O的半径为r,∴CD=CE=r.∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3-r,AF=AD=4-r,∴4-r+3-r=5,∴r=1,∴△ABC的内切圆的半径为1.12.[答案] 2π[解析] 根据题意,扇形的弧长为120π×3180=2π.13.[答案] (0,2.5)[解析] 如图,连接MP ,过点P 作P A ⊥y 轴于点A , 设点M 的坐标是(0,b ),且b >0. ∵P A ⊥y 轴,∴∠P AM =90°, ∴AP 2+AM 2=MP 2, ∴22+(b -1)2=b 2,解得b =2.5.故答案是(0,2.5). 14.[答案] 6[解析] 扇形的弧长l =120π×9180=6π,所以圆锥底面圆的周长为6π,则圆锥底面圆的直径为6ππ=6.15.[答案] 3[解析] 因为E 为BC ︵的中点,所以OE ⊥BC ,所以△OBD 为直角三角形. 设OD =x cm ,则OB =OE =OD +DE =(x +2)cm. 在Rt △OBD 中,根据勾股定理,得 (x +2)2=42+x 2, 解得x =3.故OD =3 cm. 16.[答案]3 32-23π[解析] 如图,连接BD ,BE ,BO ,EO . ∵B ,E 是半圆弧的三等分点, ∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =∠BAD =30°,∴BE ∥AD . ∵BE ︵的长为23π,∴60π×R 180=23π,解得R =2,易得AB =2 3,∴BC =12AB =3,∴AC =AB 2-BC 2=(2 3)2-(3)2=3, ∴S △ABC =12BC ·AC =12×3×3=3 32.∵△BOE 和△ABE 同底等高, ∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为S △ABC -S 扇形BOE =3 32-60π×22360=3 32-23π.故答案为3 32-23π.17.解:(1)如图,连接OC .设⊙O 的半径为R . ∵CD ⊥AB , ∴DE =EC =4.在Rt △OEC 中, ∵OC 2=OE 2+EC 2, ∴R 2=(R -2)2+42, 解得R =5.(2)证明:连接AD , ∵CD ⊥AB , ∴AD ︵=AC ︵, ∴∠ADC =∠AGD .∵四边形ADCG 是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.18.证明:(1)连接ON,如图.∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B.∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB.∵NE为⊙O的切线,∴ON⊥NE,∴NE⊥AB.(2)连接DN,如图.∵CD为⊙O的直径,∴∠CMD=∠CND=90°.而∠MCB=90°,∴四边形CMDN为矩形,∴MD=CN.∵DN⊥BC,∠1=∠B,∴CN=NB,∴MD=NB.19.解:(1)MN是⊙O的切线.理由:如图,连接OC.∵OA=OC,∴∠A=∠OCA,∴∠BOC=∠A+∠OCA=2∠A.又∵∠BCM =2∠A ,∴∠BCM =∠BOC . ∵∠B =90°,∴∠BOC +∠BCO =90°, ∴∠BCM +∠BCO =90°,即∠OCM =90°, ∴OC ⊥MN ,∴MN 是⊙O 的切线. (2)由(1)可知∠BOC =∠BCM =60°, ∴∠AOC =120°.在Rt △BCO 中,OC =OA =4,∠BCO =90°-60°=30°,∴BO =12OC =2,BC =23,∴S 阴影=S 扇形OAC -S △OAC =120π×42360-12×4×2 3=16π3-4 3.∴图中阴影部分的面积为163π-4 3.20.解:(1)证明:在图①中,连接OB . ∵CB 为⊙O 的切线,切点为B ,∴OB ⊥BC ,∴∠OBC =90°. ∵OA =OB , ∴∠DAE =∠OBA .∵∠DAE +∠DEA =90°,∠OBA +∠CBE =90°, ∴∠DEA =∠CBE . ∵∠CEB =∠DEA ,∴∠CEB =∠CBE ,∴CB =CE . (2)证明:在图②中,连接OF ,OB . 在Rt △ODF 中,OF =OA =2OD ,∴∠OFD =30°,∴∠DOF =60°. ∵CD 平分AB ︵,∴∠AOB =2∠AOF =120°,∴∠C =360°-∠ODC -∠OBC -∠AOB =60°. ∵CB =CE ,∴△BCE 是等边三角形. (3)在图③中,连接OB ,∴∠OBC =90°. 又∵∠DCB =45°,∴△OBC 为等腰直角三角形, ∴BC =OB =2,OC =2 2. 又∵CB =CE ,∴OE =OC -CE =OC -BC =2 2-2, ∴EF =DF -OE =2-(2 2-2)=4-2 2.人教版九年级上册第24章数学圆单元测试卷(含答案)(1)一、知识梳理(一)点、直线与圆的位置关系:(可用什么方法判断?) 1.2.已知圆O 的半径为8cm ,若圆心O 到直线l 的距离为8cm ,那么直线l 和圆O 的位置关系是( )A .相离B .相切C .相交D .相交或相离(二)圆心角、弧、弦之间的关系 1.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 2.(三)圆周角定理及其推理1.如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm 。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

人教版九年级数学上册 第24章圆 单元测试(含解析)

人教版九年级数学上册 第24章圆 单元测试(含解析)

第24章圆单元测试(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.如图,在☉O中,弦的条数是()A.2B.3C.4D.以上均不正确2.如图,△ABC为☉O的内接三角形,AB为☉O的直径,点D在☉O上,∠ADC=55°,则∠BAC的大小等于()A.55°B.45°C.35°D.30°(第1题图)(第2题图)3.用反证法证明“三角形的三个外角中至少有两个钝角”时,假设正确的是()A.假设三个外角都是锐角B.假设至少有一个钝角C.假设三个外角都是钝角D.假设三个外角中至多有一个钝角4.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.95.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A.1B.C.2D.6.已知圆锥的侧面展开图的面积是15π,母线长是5,则圆锥的底面半径为()A. B.3 C.4 D.67.如图,四边形ABCD是☉O的内接四边形,☉O的半径为2,∠B=135°,则的长为()A.2πB.πC.D.8.在△ABC中,∠C=90°,AC=6,BC=8,以C为圆心r为半径画☉C,使☉C与线段AB 有且只有两个公共点,则r的取值范围是()A.6≤r≤8B.6≤r<8C.<r≤6D.<r≤89.如图,在半径为2,圆心角为90°的扇形ACB内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π-1B.2π-1C.π-1D.π-210.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π(第9题图)(第10题图)二、填空题(每小题4分,共24分)11.如图所示,在平面直角坐标系xOy中,半径为2的☉P的圆心P的坐标为(-3,0),将☉P沿x轴正方向平移,使☉P与y轴相切,则平移的距离为.12.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A,B 的读数分别为100°,150°,则∠ACB的大小为度.(第11题图)(第12题图)13.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.14.(2015·贵阳)如图,四边形ABCD是☉O的内接正方形,若正方形的面积等于4,则☉O的面积等于.15.如图所示,☉M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M 的坐标是.16.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.(第14题图)(第15题图)(第16题图)三、解答题(共66分)17.(6分)如图,☉O中,C为的中点,CD⊥OA,CE⊥OB,求证:AD=BE.18.(6分)如图,在△ABC中,点D是AC边上一点,以AD为直径的☉O与边BC相切于点E,且AB=BE.求证:AB是☉O的切线.19.(8分)已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?20.(8分)如图,AB,CD是☉O中互相垂直的两条直径,以A为圆心,OA为半径画弧,与☉O交于E,F两点.(1)求证:AE是☉O的内接正六边形的一边;(2)请在图上继续画出这个正六边形.21.(8分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A,B,C及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.22.(8分)如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE是☉O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.23.(10分)如图,△ABC是☉O的内接三角形,直径HF交AC于D,HF,BC的延长线交于点E.(1)若HF⊥AB,求证:∠OAD=∠E.(2)若A点是下半圆上一动点,当点A运动到什么位置时,△CDE的外心在△CDE 一边上?请简述理由.24.(12分)如图,等腰直角三角形ABC中,AB=AC= cm,P在BC上,以C为圆心,PC为半径画弧交边AC于D,以B为圆心,PB为半径画弧交边AB于E.设PB=x cm,图中阴影部分的面积为y cm2(π取3).(1)求y关于x的函数解析式;(2)写出自变量x的取值范围;(3)当P在什么位置时,y有最大值?最大值是多少?参考答案1.C解析:在☉O中,有弦AB,弦DB,弦CB,弦CD.共有4条弦.2.C解析:∵AB为☉O的直径,∴∠ACB=90°.∵∠B=∠ADC=55°,∴∠BAC=90°-∠B=35°.3.D4.D 解析:∵正方形的边长为3,∴的弧长=6, ∴S 扇形DAB = lr=×6×3=9. 5.B 解析:如图所示,连接AG ,GE ,EC ,则四边形ACEG 为正方形,故.6.B 解析:设底面半径为R ,则底面周长=2πR ,圆锥的侧面展开图的面积=×2πR ×5=15π,∴R=3.7.B 解析:如图所示,连接OA ,OC.∵∠B=135°,∴∠D=180°-135°=45°, ∴∠AOC=90°, 则 的长==π.8.C9.A 解析:在Rt △ACB 中,AB= =2 ,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,CD=BD= ,∴D 为半圆的中点,S 阴影部分=S 扇形ACB-S △ADC = π×22-×( )2=π-1.10.A 解析:∵AB=5,AC=3,BC=4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积-△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=π.11.1或5 解析:当☉P 位于y 轴的左侧且与y 轴相切时,平移的距离为1;当☉P 位于y 轴的右侧且与y 轴相切时,平移的距离为5.12.25解析:设量角器的半圆圆心为O,连接OA,OB,由题意得∠AOB=50°,∵∠ACB与∠AOB都对应,∴∠ACB=∠AOB=25°.13.3<r<5解析:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.14.2π解析:正方形的边长AB=2,则☉O的半径是,则☉O的面积是π()2=2π.15.(5,4)解析:如图所示,连接AM,作MN⊥x轴于点N,则AN=BN.∵点A(2,0),B(8,0),∴OA=2,OB=8,∴AB=OB-OA=6.∴AN=BN=3.∴ON=OA+AN=2+3=5,则M的横坐标是5,圆的半径是5.在直角△AMN中,MN=--=4,则M的纵坐标是4.故M的坐标是(5,4).16.解析:如图所示,连接OE,AE.∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S=π,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=扇形AOEπ-π+.17.分析:此题需先证出∠AOC=∠BOC,再根据CD⊥OA,CE⊥OB,得出∠ODC=∠OEC,从而证出△COD≌△COE,得出OD=OE,再根据OA=OB,即可得出AD=BE.证明:∵点C是的中点,∴∠AOC=∠BOC.∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC,又∵OC=OC,∴△COD≌△COE(AAS).∴OD=OE.∵OA=OB,∴AD=BE.18.分析:连接OB,OE,由AD为圆O的直径得到OA=OE,由BC为圆O的切线,得到OE垂直于BC,利用SSS得出三角形ABO与三角形BEO全等,由全等三角形的对应角相等得到∠BAO=∠BEO=90°,即OA垂直于AB,即可得证.证明:如图所示,连接OE,OB.∵AD是圆O的直径,圆O与BC相切于点E,∴OA=OE,OE⊥BC,∵OA=OE,OB=OB,AB=BE,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO=90°,即OA⊥AB,则AB为圆O的切线.19.分析:圆柱的体积=底面积×高;圆锥的体积=底面积×高.关系式为圆柱的体积=圆锥的体积×1.5,把相应数值代入即可.解:设圆锥高为x毫米,π×·x×=π××100,解得x=50.答:圆锥高为50毫米.20.分析:(1)连接OE,OF,AF,得到△AOE是等边三角形,从而得到AE是正六边形的一边;(2)用以AE的长为圆规两脚间的距离,分别在圆上截得相等的弧长.解:(1)证明:如图所示,连接OE,OF,AF.∵AE=OA=OE,∴△AOE是等边三角形,∠OAE=60°,同理可证△OAF是等边三角形,∴∠OAF=60°,∴AE=AF,且∠EAF=∠OAE+∠OAF=120°,∴AE是☉O的内接正六边形的一边.(2)用圆规截取AE弧的弧长,然后以B点为圆心,在圆上截得相等的弧长,取得G,H点,然后顺次将A,E,G,B,H和F连接起来就得到正六边形.21.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.22.分析:(1)连接AC,由题意得,∠DAC=∠CAB,即可证明AE∥OC,从而得出∠OCE=90°,即可证得结论;(2)四边形AOCD为菱形.由,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形).解:(1)如图所示,连接AC,∵点C,D是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC,∴∠OCE+∠E=180°.∵CE⊥AD,∴∠OCE=90°,∴OC⊥CE,∴CE是☉O的切线.(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA;又∵AE∥OC,∴四边形AOCD是平行四边形.∵OA=OC,∴平行四边形AOCD是菱形.23.分析:(1)首先连接OB,由HF⊥AB,根据垂径定理与圆周角定理,即可求得∠AOH=∠ACB,继而可得∠AOD=∠ECD,又由∠ODA=∠CDE,即可证得∠OAD=∠E;(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.因为直径所对的圆周角是直角,直角三角形的外心在其一边上.解:(1)证明:如图所示,连接OB.∵HF⊥AB,∴,∴∠AOH=∠ACB=∠AOB.∵∠AOD+∠AOH=180°,∠ECD+∠ACB=180°,∴∠AOD=∠ECD.∵∠ODA=∠CDE,∴∠OAD=∠E.(2)当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.理由:①当AB是直径时,△CDE的外心在△CDE一边上.∵AB是直径,∴∠ACB=90°,∴∠DCE=90°,即△CDE是直角三角形,∴△CDE的外心在△CDE边DE上;②当A运动到使AC⊥HF时,△CDE是直角三角形.此时△CDE的外心在△CDE 边CE上.综上两种情况下,当AB是直径或AC⊥DF时,△CDE的外心在△CDE的一边上.24.分析:(1)利用扇形面积以及等腰直角三角形的性质得出面积即可;(2)利用三角形边长得出自变量x的取值范围;(3)利用(1)中所求求出面积最值即可.解:(1)∵AB=AC= cm,∴BC=2 cm.∵设PB=x cm,∴PC=(2-x)cm,∴y=·· -=1--=1--=-x2+x-.(2)∵以B为圆心,PB为半径画弧交边AB于E,∴0≤x≤.(3)∵y=-x2+x-,∴当x=1时,y最大=,∴当PB=1 cm时,即P为BC的中点时,y 有最大值,最大值是cm2.。

人教版九年级上册第24章数学圆单元测试卷(含答案)

人教版九年级上册第24章数学圆单元测试卷(含答案)

人教版九年级上册第24章数学圆单元测试卷(含答案)一、选择题1.下列语句中,正确的是( )A.长度相等的弧是等弧;等弧对等弦B.在同一平面上的三点确定一个圆C.直径是弦;半圆是劣弧D.三角形的外心到三角形三个顶点的距离相等答案 D 选项A中,长度相等的弧不一定是等弧,故A错误;选项B中,不在同一直线上的三点确定一个圆,故B错误;选项C中,直径是圆中最长的弦,半圆既不是优弧也不是劣弧,故C 错误;选项D中,三角形的外心到三角形三个顶点的距离相等,故D正确.故选D.2.如图,已知☉O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3答案 B 过O作OC⊥AB于C,由垂径定理得AC=BC=AB=12,在Rt△AOC中,由勾股定理得OC==5.故选B.3.如图,△ABC内接于☉O,∠OBC=40°,则∠A的度数为( )A.80°B.100°C.110°D.130°答案 D 连接OC,如图所示,∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=100°.∵∠1+∠BOC=360°,∴∠1=260°,∵∠A=∠1,∴∠A=130°.故选D.4.如图,四边形ABCD内接于☉O,已知∠ADC=140°,则∠AOC的大小是( )A.80°B.100°C.60°D.40°答案 A 因为∠ADC=140°,所以∠ABC=180°-∠ADC=40°,所以∠AOC=2∠ABC=80°.5.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,☉O2的半径为1,O1O2⊥AB于点P,O1O2=6,若☉O2绕点P按顺时针方向旋转360°,则在旋转过程中,☉O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次答案 B 当☉O2与AD相切且位于AD上方时,有一个交点;当☉O2与AD相切且位于AD下方时,有一个交点;与BC相切时与AD情况相同,所以共出现4次,故选B.6.如图,直径AB为12的半圆绕点A逆时针旋转60°,此时点B旋转到点B',则图中阴影部分的面积是( )A.12πB.24πC.6πD.36π答案 B 因为以AB为直径的半圆绕点A逆时针旋转60°得到以AB'为直径的半圆,故S半圆AB'=S半圆AB,则S阴影=S扇形BAB'+S半圆AB'-S半圆AB=S扇形BAB'===24π,故选B.7.如图,已知线段OA交☉O于点B,且OB=AB,点P是☉O上的一个动点,那么∠OAP的最大值是( )A.30°B.45°C.60°D.90°答案A连接OP,根据题意知,当OP⊥AP时,∠OAP的取值最大.在Rt△AOP 中,∵OP=OB,OB=AB,∴AO=2OP,∴∠OAP=30°.故选A.8.如图,直线AB与☉O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若☉O的半径为,CD=4,则弦EF的长为( )A.4B.2C.5D.6答案 B 连接OA,并反向延长交CD于点H,连接OC,∵直线AB与☉O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴OH⊥CD,∴CH=CD=×4=2,∵☉O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.9.如图,在平面直角坐标系xOy中,☉P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被☉P截得的弦AB的长为4,则a的值是( )A.4B.3+C.3D.3+答案B作如图所示的辅助线,易得OC=CD=3,AP=3,AE=2,故PE=DE==1,PD=,故a=PC=DC+PD=3+.10.如图,已知直线y=x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA、PB,则△PAB面积的最大值是( )A.8B.12C.D.答案 C 如图,平移AB使其与☉C相切于P,此时P点距离AB最远,即△PAB的面积最大,连接AC,连接PC并延长交AB于H.因为PC是☉C的半径,MN∥AB,所以PH⊥AB.∵直线y=x-3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,-3),则AB=5.∵S△ABC=·BC·AO=·AB·CH,∴CH=,∴PH=1+=,∴△PAB面积的最大值是×5×=,故选C.二、填空题11.“三角形中至少有一个内角大于或等于60°”,这个命题用反证法证明应假设.答案三角形中三个内角都小于60°解析第一步应假设结论不成立,即三角形中三个内角都小于60°.12.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°,弧AB的长为12πcm,则该圆锥的侧面积为cm2.答案108π解析圆锥的侧面积就是所给扇形的面积,设扇形的半径为r cm,∵弧AB的长为12πcm,∴πr=12π,解得r=18,∴S=πr2=π×182=108π(cm2).另解:S=rl=×18×12π=108π(cm2).13.如图,将长为8cm的铁丝AB首尾相接围成半径为2cm的扇形.则S扇形= cm2.答案4解析由题意可知扇形的周长为8cm.因为半径r=2cm,所以弧长l=8-2×2=4(cm),所以S扇形=l·r=×4×2=4(cm2).14.如图,点A、B、C、D都在☉O上,∠ABC=90°,AD=3,CD=2,则☉O的直径的长是.答案解析连接AC,∵点A、B、C、D都在☉O上,∠ABC=90°,∴∠ADC=180°-∠ABC=90°,AC是直径,∵AD=3,CD=2,∴AC==,即☉O直径的长是.15.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,外圆的半径OC⊥AB于D,测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.答案50cm解析如图,连接OA,设半径为r cm,∵CD=10cm,AB=60cm,∴AD=AB=30cm,OD=(r-10)cm,∴r2=(r-10)2+302,解得r=50.∴这个车轮的外圆半径是50cm.16.如图,两个同心圆,大圆的半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.答案8<AB≤10解析如图,当AB经过圆心时最长,此时AB=2×5=10.当AB与小圆相切于D时,利用勾股定理可得AD=4.利用垂径定理可得AB=8.根据直线与圆的位置关系可得,若大圆的弦AB与小圆相交,则8<AB≤10.17.如图,在平面直角坐标系中,直线l经过原点O,且与x轴正半轴的夹角为30°,点M在x 轴上,☉M半径为2,☉M与直线l相交于A、B两点,若△ABM为等腰直角三角形,则点M的坐标为.答案(2,0)或(-2,0)解析过点M作MC⊥l,垂足为C,∵△MAB是等腰直角三角形,∴MA=MB,且∠BAM=∠ABM=45°.∵MC⊥l,∴∠BAM=∠CMA=45°,∴AC=CM.在Rt△ACM中,∵AC2+CM2=AM2,即2CM2=4,∴CM=.在Rt△OCM中,∠COM=30°,∴CM=OM,∴OM=2CM=2,∴M(2,0).根据对称性知,若点M在x轴负半轴上,则点M(-2,0)也满足条件.18.如图24-5-16,在☉O中,AB是直径,点D是☉O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q.连接AC.关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中正确结论是(只需填写序号).答案②③解析如图,连接OD,∵DG是☉O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠APE=∠GPD=∠GDP,∴GP=GD.结论②正确.∵AB是☉O的直径,∴∠ACB=90°,∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.所以结论③正确.由于不能确定∠BAD与∠ABC的关系,所以结论①不一定正确.故答案是②③.三、解答题19.如图,AB是☉O的直径,弦CD⊥AB于点E.点M在☉O上,MD恰好经过圆心O,连接MB. (1)若CD=16,BE=4,求☉O的直径;(2)若∠M=∠D,求∠D的度数.答案(1)∵AB是☉O的直径,弦CD⊥AB,CD=16,∴DE=CD=8.∵BE=4,∴OE=OB-BE=OD-4.在Rt△OED中,OE2+ED2=OD2,∴(OD-4)2+82=OD2,解得OD=10.∴☉O的直径是20.(2)∵弦CD⊥AB,∴∠OED=90°.∴∠EOD+∠D=90°.∵∠M=∠D,∠EOD=2∠M,∴∠BOD+∠D=2∠M+∠D=90°.∴∠D=30°.20.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的☉O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).答案(1)证明:连接OD.∵BC是☉O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵∠OAD=∠BAC=30°,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∠OED=∠AOE=60°,∵OE=OD,∴△ODE为等边三角形,∴∠DOE=60°,∴阴影部分的面积=S扇形ODE==π.21.如图,AB是☉O的直径,BD是☉O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为☉O的切线;(3)若☉O的半径为5,∠BAC=60°,求DE的长.答案(1)证明:连接AD,∵AB是☉O的直径,∴∠ADB=90°,又BD=CD,∴AD垂直平分BC,∴AB=AC.(2)证明:连接OD,∵点O、D分别是AB、BC的中点,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE为☉O的切线.(3)由AB=AC,∠BAC=60°知,△ABC是等边三角形.∵☉O的半径为5,∴A B=BC=10,CD=BC=5.又∵∠C=60°,∴∠CDE=30°,∴CE=CD=.∴DE===.22.如图①,AB为☉O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,过点B的直线与线段AD的延长线交于点F,且∠F=∠ABC.(1)若CD=2,BP=4,求☉O的半径;(2)求证:直线BF是☉O的切线;(3)当点P与点O重合时,过点A作☉O的切线交线段BC的延长线于点E,在其他条件不变的情况下,判断四边形AEBF是什么特殊的四边形,请在图②中补全图形并证明你的结论.答案(1)∵CD⊥AB,AB为☉O的直径,CD=2,∴CP=PD=CD=.又∵BP=4,CD⊥AB,∴BC===.设☉O的半径为x,则OP=4-x,连接OC,∵CD⊥AB,∴OC2=OP2+CP2,∴x2=(4-x)2+()2,解得x=.即☉O的半径为.(2)证明:∵CD⊥AB,∴∠C+∠ABC=90°,∵∠F=∠ABC,∠C=∠A,∴∠A+∠F=90°,即∠ABF=90°,又AB为直径,∴直线BF是☉O的切线.(3)四边形AEBF为平行四边形,证明如下:∵AE为切线,BF为切线,AB为直径,∴∠EAB=∠ABF=90°,∴AE∥BF.∵CD⊥AB,OC=OB,∴∠OCB=∠OBC=45°.∵∠F=∠ABC,∴∠F=45°.∵∠ABF=90°,∴∠BAF=45°,∴∠BAF=∠ABC=45°,∴AF∥BE.又∵AE∥BF,∴四边形AEBF为平行四边形.人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)一.选择题1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4 C.2D.4.83.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.点到直线的距离就是点到直线的垂线段D.过三点确定一个圆4.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.如图,已知钝角△ABC内接于⊙O,且⊙O的半径为5,连接OA,若∠OAC=∠ABC,则AC 的长为()A.5B.C.5D.86.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.77.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.8.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.29.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°10.如图,在⊙O的内接正六边形ABCDEF中,OA=2,以点C为圆心,AC长为半径画弧,恰好经过点E,得到,连接CE,OE,则图中阴影部分的面积为()A.﹣4B.2π﹣2C.﹣3D.﹣211.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°12.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6 D.3≤C≤6二.填空题13.已知圆锥底面圆的半径为5,高为12,则圆锥的侧面积为(结果保留π).14.如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=.15.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.16.如图,AB是⊙O的直径,点C、D在⊙O上,若∠DCB=110°,则∠AED=.17.如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=.18.如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是.三.解答题19.已知等边△ABC内接于⊙O,D为弧BC的中点,连接DB、DC,过C作AB的平行线,交BD的延长线于点E.(1)求证:CE与⊙O相切;(2)若AB长为6,求CE长.20.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.21.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且PA是⊙O的切线.(1)求证:AP=AB;(2)若PD=,求⊙O的直径.22.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.23.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,C F 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.24.在等边△ABC中,BC=8,以AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线.(2)求弧DE的长度;(3)求EF的长.25.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.解:A、菱形的对角线垂直但不一定相等,故错误;B、到线段两端点距离相等的点,在线段的垂直平分线上,正确;C、点到直线的距离就是点到直线的垂线段的长度,故错误;D、过不在同一直线上的三点确定一个圆,故错误,故选:B.4.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.5.解:连接OC,如图,设∠OAC=α,则∠OAC=∠ABC=α,∠AOC=2∠ABC=2α,∵OA=OC,∴∠OCA=∠OAC=α,∴α+2α+α=180°,解得α=45°,∴∠AOC=90°,∴△AOC为等腰直角三角形,∴AC=OA=5.故选:A.6.解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:C E=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.7.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.8.【解答】解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.9.解:由题意得:正六边形的每个内角都等于120°,正方形的每个内角都等于90°,故∠BAC=360°﹣120°﹣90°=150°,∵AB=AC,∴∠ABC=∠ACB==15°.故选:B.10.解:连接OB、OC、OD,S 扇形CAE ==2π,S △AOC ==,S △BOC ==,S 扇形OBD ==,∴S 阴影=S 扇形OBD ﹣2S △BOC +S 扇形CAE ﹣2S △AOC =﹣2+2π﹣2=﹣4; 故选:A .11.解:连接OB ,如图,∵AB 为切线,∴OB ⊥AB ,∴∠ABO =90°,∴∠AOB =90°﹣∠A =90°﹣28°=62°,∴∠ACB =∠AOB =31°.故选:C .12.解:根据对称性可知,△GKI ,△HLJ 是等边三角形.阴影部分是正六边形,边长为GK的.∵GK 的最大值为2,GK 的最小值为3,∴阴影部分的正六边形的边长的最大值为,最小值为1,∴图中阴影部分的周长C 的取值范围为:4≤C ≤6.故选:C.二.填空题(共6小题)13.解:∵圆锥的底面半径为5,高为12,∴圆锥的母线长为13,∴它的侧面积=π×13×5=65π,故答案为:65π.14.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣70°=110°.∵点B是弧AC的中点,∴弧AB=弧BC.∴∠ADB=∠BDC.∴∠ADB=∠ADC=×110°=55°.故答案为55°.15.解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.16.解:连接BE,如图,∵AB是⊙O的直径,∴∠AEB=90°,∵∠DEB+∠DCB=180°,∴∠DEB=180°﹣110°=70°,∴∠AED=∠AEB﹣∠DEB=90°﹣70°=20°.故答案为20°17.解:∵AD∥OC,∴∠BAD=∠AOC=70°,∵AB是⊙O的直径,∴∠D=90°,∴∠ABD=90°﹣70°=20°.故答案为20°.18.解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4﹣,故答案为:4﹣.三.解答题(共7小题)19.(1)证明:连接OC,OB,∵△ABC是等边三角形,∴∠A=∠A BC=60°,∵AB∥CE,∴∠BCE=∠ABC=60°,∵OB=OC,∴∠OBC=∠OCB=30°,∴∠OCE=∠OCB+∠BCE=30°+60°=90°,∴CE与⊙O相切;(2)∵四边形ABDC是圆的内接四边形,∴∠A+∠BDC=180°,∴∠BDC=120°,∵D为弧BC的中点,∴∠DBC=∠BCD=30°,∴∠BEC=180°﹣∠EBC﹣∠BCE=90°,∵AB=BC=6,∴.20.(1)证明:连接AC、BD,如图,∵∠CAE=∠CDB,∠ACE=∠BDE,∴△ACE∽△BDE,∴AE:DE=CE:BE,∴AE•EB=CE•ED;(2)∵OE+BE=3,OE=2BE,∴OE=2,BE=1,∴AE=5,∴CE•DE=5×1=5,∵=,∴CE=DE,∴DE•DE=5,解得DE=,∴CE=3.∵PB为切线,∴PB2=PD•PC,而PB2=PE2﹣BE2,∴PD•PC=PE2﹣BE2,即(PE﹣)(PE+3)=PE2﹣1,∴PE=321.(1)证明:连接OA,如图,∵∠AOB=2∠ACB=2×60°=120°,而OA=OB,∴∠OAB=∠OBA=30°,∠AOP=60°,∵PA是⊙O的切线,∴OA⊥PA,∴∠OAP=90°,∴∠P=90°﹣60°=30°,∴∠ABP=∠P,∴AB=AP;(2)解:设⊙O的半径为r,在Rt△OPA中,∵∠P=30°,∴OP=2OA,即r+=2r,解得r=,∴⊙O的直径为2.22.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:23.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠ECO=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.24.(1)证明:连接DO,∵△AB C是等边三角形,∴∠A=∠C=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,即OD⊥DF,∵OD为半径,∴DF为⊙O的切线;(2)解:连接OC,OE,∵在等边△ABC中,OA=OB,∴CO⊥AB,∠OCB=∠OCA=30°,∴OB=BC==4,∵∠AOD=60°,同理∠BOE=60°,∴∠DOE=60°,∴弧DE的长度:=π;(3)解:∵△OAD是等边三角形,∴AD=AO=AB=4,∴CD=AC﹣AD=4,Rt△CDF中,∠CDF=30°,∴CF=CD=2,DF=2,连接OE,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE=4,∴EF=BC﹣CF﹣BE=8﹣2﹣4=2.25.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.人教版九年级上册第二十四章《圆》培优练习卷(含答案)一.选择题1.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π2.如图,AB为⊙O的直径,P为弦BC上的点,∠ABC=30°,过点P作PD⊥OP交⊙O于点D,过点D作DE∥BC交AB的延长线于点E.若点C恰好是的中点,BE=6,则PC的长是()A.6﹣8 B.3﹣3 C.2 D.12﹣63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A.2πB.3πC.4πD.π4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°6.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C.7D.127.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是()A.4π﹣16 B.8π﹣16 C.16π﹣32 D.32π﹣168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H.若AE =3,则EG的长为()A.B.C.D.9.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm,弧长是8πcm,那么这个圆锥的高是()A.8cm B.6cm C.3cm D.4cm10.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.11.在△ABC中,∠C=90°,∠A=30°,AB=12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A.24πB.20πC.18πD.6π12.如图,矩形ABCD中,BC=2,CD=1,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.16.如图,用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA=2,则四叶幸运草的周长是.17.半径为6的扇形的面积为12π,则该扇形的圆心角为°.18.在平面直角坐标系中,点A(a,a),以点B(0,4)为圆心,半径为1的圆上有一点C,直线AC与⊙B相切,切点为C,则线段AC的最小值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,EC=6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.22.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,AB是半圆O的直径,C是半圆上一点,=,DH⊥AB于点H,AC分别交BD、DH于E、F.(1)已知AB=10,AD=6,求AH.(2)求证:DF=EF25.如图,已知AB是⊙O的直径,点C是弧AB的中点,点D在弧BC上,BD、AC的延长线交于点K,连接AD,交BC于点E,连接CD(1)求证:∠AKB﹣∠BCD=45°;(2)若DC=DB,求证:BC=2CK.参考答案一.选择题1.解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.2.解:连接OD,交CB于点F,连接BD,∵=,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.故选:B.3.解:∵ABCDEF为正六边形,∴∠COB=360°×=60°,∴△OBC是等边三角形,∴OB=OC=BC=6,弧BC的长为=2π.故选:A.4.解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故选:C.5.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.6.解:连接DO,EO,∵⊙O 是△ABC 的内切圆,切点分别为D ,E ,F ,∴OE ⊥AC ,OD ⊥BC ,CD =CE ,BD =BF =3,AF =AE =4又∵∠C =90°,∴四边形OECD 是矩形,又∵EO =DO ,∴矩形OECD 是正方形,设EO =x ,则EC =CD =x ,在Rt △ABC 中BC 2+AC 2=AB 2故(x +2)2+(x +3)2=52,解得:x =1,∴BC =3,AC =4,∴S △ABC =×3×4=6,故选:A .7.解:连接OA 、OB ,∵四边形ABCD 是正方形,∴∠AOB =90°,∠O AB =45°,∴OA =AB cos45°=4×=2,所以阴影部分的面积=S ⊙O ﹣S 正方形ABCD =π×(2)2﹣4×4=8π﹣16. 故选:B .8.解:如图,连接AC、BD、OF,,设⊙O的半径是r,则OF=OA=r,∵AO是∠EAF的平分线,∴∠OAF=60°÷2=30°,AC⊥EF,EG=EF=∵OA=OF,∴∠OFA=∠OAF=30°,∴∠COF=30°+30°=60°,∴FI=r•sin60°=r,∴EF=r×2=r=AE=3,∴r=∴OI=,∴CI=OC﹣OI=,∵EF⊥AC,∠BCA=45°∴∠IGC=∠BCI=45°∴CI=GI=∴EG=EI﹣GI=故选:B.9.解:设圆锥底面圆的半径为r,根据题意得2πr=8π,解得r=4,所以这个的圆锥的高==3(cm).故选:C.10.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,AB=12,∴BC=AB=6,∠ABC=60°,∴S=﹣=﹣=18π.阴影故选:C.12.解:连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,OA=OD=1,而CD=1,∴四边形ODCE和四边形ABEO都是正方形,∴BE=1,∠DOE=∠BEO=90°∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF =S△EBF,∴阴影部分的面积=S扇形EOD==.故选:C.二.填空题13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面展开扇形的弧长为5πcm,∴=5π,解得:n=150故答案为150°.14.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S 阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣. 15.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.16.解:由题意得:四叶幸运草的周长为4个半圆的弧长=2个圆的周长,连接AB 、BC 、CD 、AD ,则四边形ABCD 是正方形,连接OB ,如图所示:则正方形ABCD 的对角线=2OA =4,OA ⊥OB ,OA =OB =2,∴AB =2,过点O 作ON ⊥AB 于N ,则NA =AB =, ∴圆的半径为,∴四叶幸运草的周长=2×2π×=4π;故答案为:4π.17.解:设该扇形的圆心角为n2,则=12π,解得:n=120,故答案为:120.18.解:连结AB、BC,如图,∵A点坐标为(a,a),∴点A在直线y=x上,作BH⊥直线y=x于H,∵∠AOB=45°,∴△BOH为等腰直角三角形,∴BH=OB=2,∵直线AC与⊙B相切,切点为C,∴BC⊥AC,∴∠ACB=90°,∴AC==,当AB最小时,AC的值最小,而点A在H点时,AB最小,此时AB=BH=2,∴AC的最小值为==.故答案为.三.解答题(共7小题)19.(1)证明:连接OD、CD,∵CE是⊙O的直径,∴∠EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直平分CD,∴OD=OC,∴OD=OE,∴∠OED=∠ODE,∵DE∥OA,∴∠ODE=∠AOD,∠DEO=∠AOC,∴∠AOD=∠AOC,∵AC是切线,∴∠ACB=90°,在△AOD和△AOC中∴△AOD≌△AOC(SAS),∴∠ADO=∠ACB=90°,∵OD是半径,∴AB是⊙O的切线;(2)解:连接OD,CD,∵BD是⊙O切线,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵CE是⊙O的直径,∴∠CDE=90°,∴∠ODC+∠ODE=90°,∴∠BDE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠BDE=∠OCD,∵∠B=∠B,∴△BDE∽△BCD,∴∴BD2=BE•BC,设BE=x,∵BD=4,EC=6,∴42=x(x+6),解得x=2或x=﹣8(舍去),∴BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴AD=AC,设AD=AC=y,在Rt△ABC中,AB2=AC2+BC2,∴(4+y)2=y2+82,解得y=6,∴AC=6,故AC的长为6.20.解:(1)直线DE与⊙O相切,连结OD.∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线;(2)过O作OG⊥AF于G,∴AF=2AG,∵∠BAC=60°,OA=2,∴AG=OA=1,∴AF=2,∴AF=OD,∴四边形AODF是菱形,∴DF∥OA,DF=OA=2,∴∠EFD=∠BAC=60°,∴EF=DF=1.。

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。

人教版九年级上册数学 第24章:圆 单元检测试题(附答案)

人教版九年级上册数学  第24章:圆 单元检测试题(附答案)
(2)如图2,在⊙O中:
∵AC=CD,
∴OC⊥AD(垂径定理)
∴AD=2KD,∠HCK=∠DCK
又∵∠DKC=∠OHC=90°
∴△OCH∽△DCK

∴ =9.6
∴AD=2KD=19.2.
(3)如图3
作FM⊥AC于M,作DN⊥AC于N,显然四边形AGEF为平行四边形,设平行四边形AGEF的面积为y、EM=x、DN=a(a为常量),
A.三点确定一个圆B.圆的切线垂直于过切点的半径
C.平分弦的直径垂直于弦,并且平分弦所对的两条弧D.长度相等的弧是等弧
4.如图, 是 的直径,弦 交 于点 , , , ,则 的长为( )
A. B. C. D.12
5.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为8π,则此扇形的半径为()
19.如图, 、 、 、 是 上四点,且 ,求证: .
20.如图,在 中, 是 的直径, 是 的弦, 的中点 在直径 上.已知 , .
(1)求 的半径;(2)连接 ,过圆心 向 作垂线,垂足为 ,求 的长.
参考答案
一、选择1.B2.D3.B4.C5.D6.A7.D8.C9.B10.B
二、填空11.213.12. . 14.5015.60°
人教版九年级上册数学
第二十四章圆单元测试题
一、单选题
1.如图, 在以 为直径的半圆 上, 是 的内心, , 的延长线分别交半圆 于点 , , ,则 的长为().
A.5B. C. D.5
2.如图, 是 的直径,点 、 在 上, , ,则 ()
A.70°B.60°C.50°D.40°
3.下列说法正确的是()
A.1个B.2个C.3个D.4个
二、填空题

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题一.选择题(共10小题)1.到定点的距离等于定长的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆2.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ADC=65°,则∠ABD的度数为()A.55°B.45°C.25°D.30°3.⊙O的半径为5,点A在直线l上.若OA=5,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相离4.圆锥的母线长为5,底面半径为3,则它的侧面积为()A.6πB.12πC.15πD.30π5.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°6.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π7.如图,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,则⊙O的半径为()A.5.5B.6C.7.5D.88.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒点P位于点C的位置,……,则第2019秒点P所在位置的坐标为()A.(,)B.(﹣,﹣)C.(0,﹣1)D.(,﹣)9.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A 内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>810.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π二.填空题(共8小题)11.已知一个圆的周长为12.56厘米,则这个圆的半径是厘米.(π取3.14)12.在平面直角坐标系中,O为坐标原点,A(3,4)是⊙O上一点,B是⊙O内一点,请你写出一个符合要求的点B的坐标:.13.已知75°的圆心角所对的弧长为5π,则这条弧所在圆的半径是.14.如图,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且AD=2,BC=5,则△ABC的周长为.15.排水管的截面为如图所示的⊙O,半径为5m,已知现在水面位于圆心O下方,且水面宽AB=6m,如果水面上涨后,水面宽为8m,那么水面上涨了m.16.如图,在⊙O中,,∠1=30°,的度数为.17.如图,四边形ABCD内接于⊙O,∠AOC=140°,则四边形ABCD的外角∠CDM=°.18.如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为.三.解答题(共8小题)19.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)20.如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.21.如图,AB是圆O的直径,∠ACD=30°,(1)求∠BAD的度数.(2)若AD=4,求圆O的半径.22.如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M.求证:DM是⊙O的切线.23.如图,正方形ABCD内接于⊙O,M为的中点,连接AM,BM.(1)求证:;(2)求的度数.24.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.25.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a (a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,判断直线DE与图形G的位置关系,并说明理由.26.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.参考答案与试题解析一.选择题(共10小题)1.解:圆可以看做是所有到定点O的距离等于定长r的点的集合.故选:C.2.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠C=∠ABD=90°﹣∠ADC=90°﹣65°=25°.故选:C.3.解:∵⊙O的半径为5,OA=5,∴点O到直线l的距离≤5,∴直线l与⊙O的位置关系是相切或相交.故选:C.4.解:它的侧面积=×2π×3×5=15π.故选:C.5.解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.6.解:该莱洛三角形的周长=3×=3π.故选:C.7.解:连接DO并延长DO交圆O于点F,连接BD,AF,BF,∵∠DAE=∠DFB,∠AED=∠FBD=90°,∴∠ADC=∠FDB,∴∠ADF=∠CDB,∴,∴AF=BC=12,∵∠DAF=90°,∴DF=,∴⊙O的半径为7.5.故选:C.8.解:2019÷8=252…3,即第2019秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(﹣,﹣),故选:B.9.解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.10.解:∵∠C=90°,∴∠A+∠B=90°,设∠A=α,∠B=β,则α+β=90°,∵∠C=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.二.填空题(共8小题)11.解:∵圆的周长为12.56厘米,∴圆的半径为12.56÷2÷3.14=2厘米,故答案为:2.12.解:连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(0,0)答案不唯一.故答案为:(0,0)答案不唯一.13.解:设这条弧所在圆的半径为r,则=5π,解得,r=12,答:这条弧所在圆的半径为12,故答案为:12.14.解:△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∴AF=AD=2,BD=BE,CF=CE,∴BD+CF=BE+CE=BC=5,∴△ABC的周长=AD+DB+BC+CF+AF=AD+AF+BC+(BD+CF)=14,故答案为:14.15.解:过O点作OC⊥AB,连接OB,如图所示:∴AB=2BC,在Rt△OBC中,BC2+OC2=OB2,∵OB=5m,BC=3m,∴OC===4m,∵MN∥AB,∴OC⊥MN于D,连接ON,同理OD===3,∴CD=1,当MN与AB在圆心的两侧时,CD=3+4=7,故水面上涨了1m或7m,故答案为:1或7.16.解:∵在⊙O中,,∴∠AOC=∠BOD,∴∠1+∠BOC=∠2+∠BOC,∴∠1=∠2=30°,∴的度数为30°,故答案为:30°17.解:∵∠B+∠ADC=180°,∠ADC+∠CDM=180°,∴∠B=∠CDM,∵∠B=∠AOC=70°,∴∠CDM=70°,故答案为70.18.解:连接OA、OB,如图所示:∵正六边形ABCDEF内接于⊙O,∴∠AOB==60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=OB=3,故答案为:3.三.解答题(共8小题)19.解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===4,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.20.证明:∵AC=BC,∴∠A=∠B,∴=,∴﹣=﹣,即=,∴AD=BE.21.解:(1)∵AB是圆O的直径,∴∠ADB=90°,∵∠B=∠C=30°,∴∠BAD=60°;(2)∵∠B=30°,∠ADB=90°,∴AB=2AD,∵AD=4,∴AB=8,∴圆O的半径为4.22.证明:连接OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠ODB=∠B,∴∠ODB=∠C,∴OD∥AC,∵DM⊥AC,∴∠CMD=90°,∴∠ODM=∠CMD=90°,∴OD⊥DM,∵点D在⊙O上,∴DM是⊙O的切线.23.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴=,∵M为的中点,∴=,∴+=+,∴;(2)解:连接OM,OA,OB,∵正方形ABCD内接于⊙O,∴∠AOB=90°,∴∠AOM=∠BOM=(360°﹣90°)=135°,∴的度数时135°.24.解:(1)如图1,延长DO交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥BC,∵AC为⊙O的直径,∴AB⊥BC,∴AB∥OD;(2)连接DO并延长交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥CB,∴CF=BC=4,∵DE⊥AC,∴∠DEO=∠OFC=90°,∵∠DOE=∠COF,OC=OD,∴△DOE≌△COF(AAS),∴OF=OE=OA﹣3,∵OC2=OF2+CF2,∴OC2=(OC﹣3)2+42,∴OC=,∴⊙O的半径为.25.(1)证明:如图1中,由题意图形G是△ABC使得外接圆(⊙O),∵∠ABD=∠CBD,∴=,∴AD=CD.(2)解:结论:DE是⊙O的切线.理由:如图2中,连接OD.∵AD=CM,∴=,∵=,∴=,∵BC⊥DM,∴BC是⊙O的直径,∴OB=OD,∴∠OBD=∠ODB,∵∠ABD=∠DBO,∴∠ABD=∠ODB,∴AB∥OD,∵DE⊥AB,∴DE⊥OD,∴DE是⊙O的切线.26.(1)证明:∵四边形ABCD是菱形,∴AD=AB,AD∥BC,∵∠A=60°,∴∠ADB=∠DBC=180°﹣60°﹣60°=60°,即∠EBF=ABD=60°,∴∠ABE=∠DBF=60°﹣∠DBE,即∠DBF=∠ABE;(2)解:过B作BQ⊥DC于Q,则∠BQC=90°,∵四边形ABCD是菱形,∠A=60°,AB=6,∴DC∥AB,∠C=∠A=60°,BC=AB=6,∴∠ADC=120°,∴∠QBC=30°,∴CQ=BC=3,BQ=CQ=3,∵∠A=60°,∠CDB=120°﹣60°=60°,∴∠A=∠CDB,∵AB=BD,∴在△ABM和△DBN中∴△ABM≌△DBN(ASA),∴S△ABM =S△DBN,∴阴影部分的面积S=S扇形DBC﹣S△DBC=﹣=60π﹣9.。

人教版九年级数学上《第二十四章圆》单元测试题含答案

人教版九年级数学上《第二十四章圆》单元测试题含答案

第二十四章 圆一、填空题(每题3分,共18分)1.如图24-Z -1所示,在⊙O 中,若∠A =60°,AB =3 cm ,则OB =________ cm.图24-Z -12.如图24-Z -2,AB 是⊙O 的直径,∠AOC =130°,则∠D =________°.图24-Z -23.如图24-Z -3所示,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿的半径为________厘米.图24-Z -34.如图24-Z -4,P A ,PB 分别切⊙O 于A ,B 两点,C 是AB ︵上的一点,∠P =40°,则∠ACB 的度数为________.图24-Z-45.如图24-Z-5,把半径为4 cm的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm(结果保留根号).图24-Z-56.如图24-Z-6,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A,B,C,如果AB=1,那么曲线CDEF的长为________.图24-Z-6二、选择题(每题4分,共32分)7.如图24-Z-7,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()图24-Z-7A.40°B.50°C.80°D.100°8.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是() A.相交B.相切C.相离D.不能确定9.如图24-Z -8,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接OC .若∠BCD =50°,则∠AOC 的度数为( )图24-Z -8A .40°B .50°C .80°D .100°10.一个扇形的半径为2,扇形的圆心角为48°,则它的面积为( ) A.8π15 B.4π15 C.16π15 D.π211.已知圆锥的底面积为9π cm 2,母线长为6 cm ,则圆锥的侧面积是( ) A .18π cm 2 B .27π cm 2 C .18 cm 2 D .27 cm 212.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过( )A .12 mmB .12 3 mmC .6 mmD .6 3 mm13.如图24-Z -9,半圆的直径BC 恰与等腰直角三角形ABC 的一条直角边完全重合,若BC =4,则图中阴影部分的面积是( )图24-Z -9A .2+πB .2+2πC .4+πD .2+4π12.如图24-Z -10,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )图24-Z -10A.252π B .13π C .25π D .25 2 三、解答题(共50分)15.(10分)如图24-Z -11,在⊙O 中,AB ︵=AC ︵,∠ACB =60°.求证:∠AOB =∠BOC =∠AOC .图24-Z -1116.(12分)如图24-Z-12,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.图24-Z-1217.(12分)已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图24-Z-13①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图24-Z -1318.(16分)如图24-Z -14,AB 是以BC 为直径的半圆O 的切线,D 为半圆上一点,AD =AB ,AD ,BC 的延长线相交于点E .(1)求证:AD 是半圆O 的切线; (2)连接CD ,求证:∠A =2∠CDE ; (3)若∠CDE =27°,OB =2,求BD ︵的长.图24-Z -14教师详解详析【作者说卷】本试卷的重点是圆的基本概念、与圆有关的位置关系及应用.难点是如何构建垂径定理模型解决问题,切线的判定与性质的综合应用,亮点是既注重解决生活中的实际问题,又培养学生认真读题的习惯.知识与 技能圆的相 关性质 垂径定理 及其应用与圆有关的 位置关系题号1,2,4,7,9,153,168知识与技能 扇形、弧长、圆锥 综合运用 题号 5,6,10,11,13,1417,181.32.25 [解析] ∵AB 是⊙O 的直径,∠AOC =130°, ∴∠BOC =180°-∠AOC =50°, ∴∠D =12∠BOC =25°.故答案为25. 3.134[解析] 如图所示,设该圆的半径为x 厘米,已知弦长为6厘米,根据垂径定理,得AB =3厘米.根据勾股定理,得OA 2-OB 2=AB 2,即x 2-(x -2)2=32,解得x =134.4.110° [解析] 如图所示,连接OA ,OB ,∵PA ,PB 是切线, ∴∠OAP =∠OBP =90°,∴∠AOB =360°-90°-90°-40°= 140°, ∴∠ADB =70°.又∵圆内接四边形的对角互补,∴∠ACB =180°-∠ADB =180°-70°=110°.5.2 3 [解析] 设圆锥的底面圆半径为r cm ,高为h cm ,则2πr =4π,r =2,根据勾股定理,得h =16-4=2 3.故答案是2 3.6.4π [解析] lCD ︵=120π×1180=2π3,lDE ︵=120π×2180=4π3,lEF ︵=120π×3180=2π,所以曲线CDEF 的长=2π3+4π3+2π=4π.7.D8.A [解析] ∵⊙O 的半径为3,圆心O 到直线l 的距离为2, 又∵3>2,即d <r ,∴直线l 与⊙O 的位置关系是相交.9.C [解析] ∵CD 为⊙O 的切线,∴∠OCD =90°. ∵∠BCD =50°,∴∠OCB =40°. ∵OB =OC ,∴∠OBC =∠OCB =40°, ∴∠AOC =2∠OBC =80°.故选C .10.A [解析] 根据扇形面积公式:S =n πr 2360=48π×4360=8π15.故选A .11.A [解析] 因为圆锥的底面积为9π cm 2,所以圆锥的底面圆的半径为3 cm ,圆锥的底面周长为6π cm ,根据扇形面积公式得S =12lR =12×6π×6=18π(cm 2).12.A [解析] 如图,已知圆的半径r 为12 mm ,△OBC 是等边三角形,所以BC =12 mm ,所以正六边形的边长最大不超过12 mm .故选A .13.A [解析] 如图,连接DO.∵△ABC 为等腰直角三角形,∴∠CBA =45°,∴∠DOC =90°.利用分割的方法,得到阴影部分的面积等于三角形BOD 的面积加扇形COD 的面积,所以阴影部分的面积=12×2×2+90360π×22=2+π.14.A [解析] 如图,连接BD ,B ′D.∵AB =5,AD =12, ∴BD =52+122=13, ∴BB′︵的长l =90×π×13180=132π.∵BB″︵的长l′=90×π×12180=6π,∴点B 在两次旋转过程中经过的路径的长是132π+6π=252π.故选A . 15.证明:∵AB ︵=AC ︵,∴AB =AC ,∴△ABC 是等腰三角形.∵∠ACB =60°,∴△ABC 是等边三角形,∴AB =BC =CA ,∴∠AOB =∠BOC =∠AOC.16.解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =16,∴DE =12CD =8. ∵BE =4,∴OE =OB -BE =OD -4.在Rt △OED 中,OE 2+DE 2=OD 2,即(OD -4)2+82=OD 2,解得OD =10.∴⊙O 的直径是20.(2)∵弦CD ⊥AB ,∴∠OED =90°,∴∠EOD +∠D =90°.∵∠M =∠D ,∠EOD =2∠M ,∴∠EOD +∠D =2∠M +∠D =3∠D =90°,∴∠D =30°.17.解:(1)如图①,连接AC ,∵AB 是⊙O 的直径,AT 是⊙O 的切线,∴AT ⊥AB ,即∠TAB =90°.∴∠T=90°-∠ABT=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠ABT=40°,∴∠CDB=∠CAB=40°.(2)如图②,连接AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°.∵OA=OD,∴∠ODA=∠OAD=65°.∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=15°.18.解:(1)证明:连接OD,BD.∵AB是以BC为直径的半圆O的切线,∴AB⊥BC,即∠ABO=90°.∵AB=AD,∴∠ABD=∠ADB.∵OB=OD,∴∠ABD +∠DBO =∠ADB +∠BDO ,即∠ABO =∠ADO =90°.又∵OD 是半圆O 的半径,∴AD 是半圆O 的切线. (2)证明:由(1)知∠ADO =∠ABO =90°,∴∠A =360°-∠ADO -∠ABO -∠BOD =180°-∠BOD =∠DOC. ∵AD 是半圆O 的切线,∴∠ODE =90°,∴∠ODC +∠CDE =90°.∵BC 是⊙O 的直径,∴∠ODC +∠BDO =90°,∴∠BDO =∠CDE.∵∠BDO =∠OBD ,∴∠DOC =2∠BDO ,∴∠DOC =2∠CDE ,∴∠A =2∠CDE.(3)∵∠CDE =27°,∴∠DOC =2∠CDE =54°,∴∠BOD =180°-54°=126°.∵OB =2,∴BD ︵的长=126×π×2180=75π.。

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷含答案

人教版九年级数学(上)第二十四章《圆》单元检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列说法错误的是A.直径是弦B.最长的弦是直径C.垂直于弦的直径平分弦D.经过三点可以确定一个圆2.如图,已知☉O的半径为7,弦AB的长为12,则圆心O到AB的距离为A.√5B.2√5C.2√7D.√133.已知☉O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是A.相交B.相切C.相离D.无法确定4.如图,☉O的半径OC=5 cm,直线l⊥OC,垂足为点H,且l交☉O于A,B两点,AB=8 cm,当l与☉O相切时,l需沿OC所在直线向下平移A.1 cmB.2 cmC.3 cmD.4 cm5.如图,在△ABC中,已知AB=AC=5 cm,BC=8 cm,点D是BC的中点,以点D为圆心作一个半径为3 cm的圆,则下列说法正确的是A.点A在☉D外B.点A在☉D上C.点A在☉D内D.无法确定6.如图,☉O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切☉O于点Q,则PQ的最小值为A.√13B.√5C.3D.27.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为A.(60°,4)B.(45°,4)C.(60°,2√2)D.(50°,2√2)8.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N,若☉O的半径为r,则Rt△MBN 的周长为A.rB.3r2rC.2rD.529.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为A.13π cmB.14π cmC.15π cmD.16π cm10.如图,在△ABC中,AB=8 cm,BC=4 cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的点C'处,那么AC边扫过的图形(图中阴影部分)面积是A.20π cm2B.(20π+8) cm2C.16π cm2D.(16π+8) cm2二、填空题(本大题共4小题,每小题5分,满分20分)11.一个直角三角形的两边长分别为3,4,则这个三角形外接圆的半径长为2或2.5.12.如图是考古学家发现的古代钱币的一部分,合肥一中的小明正好学习了圆的知识,他想求其外圆半径,连接外圆上的两点A,B,并使AB与内圆相切于点D,作CD⊥AB交外圆于点C.测得CD=10 cm,AB=60 cm,则这个钱币的外圆半径为50cm.13.如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是2√3.14.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为√3;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4√3.其中正确的序号是①③.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.AB=24 cm,CD=8 cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12,OD=x-8,根据勾股定理,得x2=122+(x-8)2,解得x=13.∴圆的半径为13 cm.⏜上一点,且∠BPC=60°.试16.如图,已知CD是☉O的直径,弦AB⊥CD,垂足为点M,点P是AB判断△ABC的形状,并说明你的理由.解:△ABC为等边三角形.⏜=BC⏜,∴AC=BC,理由如下:∵AB⊥CD,CD为☉O的直径,∴AC又∵∠BPC=∠BAC=60°,∴△ABC为等边三角形.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.⏜的度数;(1)若∠A=25°,求BD(2)若BC=9,AC=12,求BD的长.解:(1)延长BC交☉O于点N,∵在△ABC中,∠C=90°,∠A=25°,∴∠B=65°,∴∠B所对的弧BDN的度数是130°,⏜的度数是180°-130°=50°.∴BD(2)延长AC交☉O于点M,在Rt△BCA中,由勾股定理得AB=√AC2+BC2=√122+92=15,∵BC=9,AC=12,∴CM=CE=BC=9,AM=AC+CM=21,AE=AC-CE=3,由割线定理得AD×AB=AE×AM,∴(15-BD)×15=21×3,解得BD=54.518.如图,在△ABC中,AB=AC,内切圆O与边BC,AC,AB分别相切于点D,E,F.(1)求证:BF=CE;(2)若∠C=30°,CE=2√3,求AC.解:(1)∵AF,AE是☉O的切线,∴AF=AE.又∵AB=AC,∴AB-AF=AC-AE,即BF=CE.(2)连接AO,OD.∵O是△ABC的内心,∴OA平分∠BAC.∵☉O是△ABC的内切圆,D是切点,∴OD⊥BC.又∵AC=AB,∴A,O,D三点共线,即AD⊥BC.∵CD,CE是☉O的切线,∴CD=CE=2√3.在Rt△ACD中,由∠C=30°,设AD=x,则AC=2x,由勾股定理得CD2+AD2=AC2,即(2√3)2+x2=(2x)2,解得x=2.∴AC=2x=2×2=4.五、(本大题共2小题,每小题10分,满分20分)19.如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.(1)求证:△EFB≌△ADE;(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.解:(1)连接FA ,∵∠FEB=90°,∴EF ⊥AB , ∵BE=AE ,∴BF=AF ,∵∠FEA=∠FEB=90°,∴AF 是☉O 的直径,∴AF=DE , ∴BF=ED ,在Rt △EFB 与Rt △ADE 中,{BE =AE ,BF =DE ,∴Rt △EFB ≌Rt △ADE.(2)∵Rt △EFB ≌Rt △ADE ,∴∠B=∠AED ,∴DE ∥BC ,∵ED 为☉O 的直径,∴AC ⊥AB ,∵EF ⊥AB ,∴EF ∥CD ,∴四边形FCDE 是平行四边形,∴E 到BC 的距离最大时,四边形FCDE 的面积最大,即点A 到DE 的距离最大,∴当A 为ED ⏜的中点时,点A 到DE 的距离最大是2,∴四边形FCDE 的最大面积=4×2=8.20.如图,点P 是正方形ABCD 内的一点,连接PA ,PB ,PC.将△PAB 绕点B 顺时针旋转90°到△P'CB 的位置.(1)设AB 的长为a ,PB 的长为b (b<a ),求△PAB 旋转到△P'CB 的过程中边PA 所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC 的长.解:(1)∵将△PAB绕点B顺时针旋转90°到△P'CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP'=π(a2-b2).4(2)连接PP',根据旋转的性质可知△APB≌△CP'B,∴BP=BP'=4,P'C=PA=2,∠PBP'=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32.又∵∠BP'C=∠BPA=135°,∴∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,即△PP'C是直角三角形,PC=√P'P2+P'C2=6.六、(本题满分12分)21.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC.①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.解:(1)如图①,连接OC ,∵OC=OA ,CD=OA ,∴OC=CD ,∴∠ODC=∠COD , ∵CD 是☉O 的切线,∴∠OCD=90°,∴∠ODC=45°.(2)如图②,连接OE.∵CD=OA ,∴CD=OC=OE=OA ,∴∠1=∠2,∠3=∠4. ∵AE ∥OC ,∴∠2=∠3.设∠ODC=∠1=x ,则∠2=∠3=∠4=x ,∴∠AOE=∠OCD=180°-2x.①AE=OD.理由如下:在△AOE 与△OCD 中,{OA =OC ,∠AOE =∠OCD ,OE =CD ,∴△AOE ≌△OCD (SAS),∴AE=OD.②∠6=∠1+∠2=2x. ∵OE=OC ,∴∠5=∠6=2x.∵AE ∥OC ,∴∠4+∠5+∠6=180°,即x+2x+2x=180°,∴x=36°,∴∠ODC=36°.七、(本题满分12分)22.如图,已知∠xOy=90°,线段AB=10,若点A 在Oy 上滑动,点B 随着线段AB 在射线Ox 上滑动(A ,B 与O 不重合),Rt △AOB 的内切圆☉K 分别与OA ,OB ,AB 切于点E ,F ,P.(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.(2)当AE=4时,求☉K的半径r.(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.解:(1)不会发生变化的是△AOB的外接圆半径.理由如下:∵∠AOB=90°,∴AB是△AOB的外接圆的直径.∵AB的长不变,∴△AOB的外接圆半径不变.(2)设☉K的半径为r,☉K与Rt△AOB相切于点E,F,P,连接EK,KF,∴∠KEO=∠OFK=∠O=90°,∴四边形EOFK是矩形.又∵OE=OF,∴四边形EOFK是正方形,∴OE=OF=r,∵☉K是Rt△AOB的内切圆,切点分别为点E,F,P,∴AE=AP=4,PB=BF=6,∴(4+r)2+(6+r)2=100,解得r=-12(不符合题意),r=2.(3)设AO=b,OB=a,∵☉K与Rt△AOB三边相切于点E,F,P,∴OE=r=a+b-10,即2(b-x)+10=a+b,∴10-2x=a-b,∴100-40x+4x2=a2+b2-2ab.2∵S=1ab,∴ab=2S,∵a2+b2=102,∴100-40x+4x2=100-4S,2∴S=-x2+10x=-(x-5)2+25.∴当x=5时,S最大,即AE=BF=5,∴OA==5√2.√2八、(本题满分14分)23.如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.(1)求证:AM=QN.(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.解:(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,可得AP=AQ,∠PAQ=60°,∴△APQ为等边三角形,∴PA=PQ,∠APQ=60°,由点M绕点P按逆时针方向旋转60°到点N,可得PM=PN,∠MPN=60°,∴∠APM=∠QPN,则△APM≌△QPN(SAS),∴AM=QN.(2)存在.理由如下:如图2,由(1)中的证明可知△APM≌△QPN,∴∠AMP=∠QNP,∵直线QN与以点P为圆心,以PN的长为半径的圆相切,∴∠AMP=∠QNP=90°,即PN⊥QN.在Rt△APM中,∠PAB=45°,PA=2,∴AM=√2.(3)由(1)知△APQ是等边三角形,∴PA=PQ,∠APQ=60°.∵以点P为圆心,以PN的长为半径的圆经过点Q,∴PN=PQ=PA.∵PM=PN,∴PA=PM,∵∠PAB=45°,∴∠APM=90°,∴∠MPQ=∠APM-∠APQ=30°.∵∠MPN=60°,∴∠QPN=90°,∴劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角∠QPN=90°,半径为PN=PM=PA=2.∴劣弧NQ与两条半径所围成的扇形的面积=90π·22360=π.。

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章圆》单元测试题一.选择题(共10小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.如图,已知⊙C的半径为2,圆外一点O满足OC=3.5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为()A.2B.2.5C.3D.3.53.⊙O的半径为3,圆心O到直线l的距离为3,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切4.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9πB.18πC.24πD.36π5.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20D.9°6.如图,△ABC是正三角形,曲线ABCDEF…叫做“正三角形的渐开线”,其中弧CD,弧DE,弧EF,…圆心依次按A,B,C循环,它们依次相连接,如果AB=1,那么曲线CDEF的长是()A.8πB.6πC.4πD.2π7.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.8.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示的位置,第2秒中P点位于点C的位置,……,则第2018秒点P所在位置的坐标为()A.(,)B.(0,1)C.(0,﹣1)D.(,﹣)9.如图,已知直线y=x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26B.24C.22D.2010.已知扇形的半径为3,圆心角为60°,则扇形的面积等于()A.B.πC.D.二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.如图,在平面直角坐标系中,已知点A(2,0),B(2﹣a,0),C(2+a,0)(a>0),若点P在以D(5,6)为圆心,2为半径的圆上运动,且始终满足∠BPC=90°,则a的取值范围是.13.若半径为6cm的圆中,一段弧长为3πcm,则这段弧所对的圆心角度数为.14.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,则△ABC的面积为.15.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.16.如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数.17.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.18.一个边长为4的正四边形的半径是.三.解答题(共8小题)19.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD 能通过这个隧道吗?请说明理由.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,若EC=BC,且∠1=∠2.求证:DC =BC.21.如图,⊙O的两条弦AB,CD交于点E,OE平分∠BED.(1)求证:AB=CD.(2)若∠BED=60°,EO=2,求BE﹣AE的值.22.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.24.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.25.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD =BC.26.Rt△ABC中,∠C=90°,点E在AB上,BE=AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)参考答案与试题解析一.选择题(共10小题)1.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.2.解:连接OP,PC,OC,∵OP≥OC﹣PC=3.5﹣2=1.5,∴当点O,P,C三点共线时,OP最小,最小值为1.5,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=3,故选:C.3.解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.故选:B.4.解:圆锥的侧面积=×2π×3×6=18π.故选:B.5.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.6.解:∵∠CAD,∠DBE,∠ECF是等边三角形的外角,∴∠CAD=∠DBE=∠ECF=120°AC=1∴BD=2,CE=3∴弧CD 的长=×2π×1弧DE 的长=×2π×2弧EF 的长=×2π×3∴曲线CDEF =×2π×1+×2π×2+×2π×3=4π. 故选:C .7.解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =8,∴BD =CD =4,∠BDO =90°,由勾股定理得:OD ===3, ∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4, 故选:D .8.解:作PE ⊥OA 于E ,∵OP =1,∠POE =45°,∴OE =PE =,即点P 的坐标为(,), 则第2秒P 点为(0,1),根据题意可知,第3秒P 点为(﹣,),第4秒P 点为(﹣1,0),第5秒P 点为(﹣,﹣),第6秒P 点为(0,﹣1),第7秒P 点为(,﹣),第8秒P 点为(1,0), 2018÷8=252……2,∴第2018秒点P 所在位置的坐标为(0,1),故选:B .9.解:过D作DM⊥AB于M,连接BD,如图,由题意:B(8,0),C(0,﹣6),∴OB=8,OC=6,BC=10,则由三角形面积公式得,×BC×DM=×OB×DC,∴10×DM=64,∴DM=6.4,∴圆D上点到直线y=x﹣6的最小距离是6.4﹣2=4.4,∴△ABC面积的最小值是×10×4.4=22,故选:C.10.解:扇形的面积==,故选:A.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵A(2,0),B(2﹣a,0),C(2+a,0),∴AB=AC=a,∵∠BPC=90°,∴PA=AB=BC=a,∵DA==3,∴点P为直线AD与圆的交点重合时,a取最大和最小值,即3﹣2≤a≤3+2.故答案为3﹣2≤a≤3+2.13.解:圆心角的度数为3π×180°÷6π=90°.故答案为:90°.14.解:设CE=x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC∴S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12;故答案为:12.15.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.16.解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°17.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.18.解:连接OA、OB,如图所示,∵四边形ABCD是正四边形,∴∠AOB==90°,∴△AOB是等腰直角三角形,∴OA=OB=AB=2;故答案为:2.三.解答题(共8小题)19.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m∴一辆高3米,宽1.9米的卡车能通过隧道.20.证明:∵EC=BC,∴∠CBE=∠CEB,∴∠1+∠CBD=∠2+∠BAC,∵∠1=∠2,∴∠CBD=∠BAC,∵∠BAC=∠BDC,∴∠CBD=∠BDC,∴BC=CD.21.(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图,∵OE平分∠BED,且OM⊥AB,ON⊥CD,∴OM=ON,∴AB=CD;(2)解:∵∠BED=60°,OE平分∠BED,∴∠BEO=∠BED=30°,∵OM⊥AB,∴∠OME=90°,∵OE=2,∴∴=1,∴==,∵OM⊥AB,∴BM=AM,∴BE﹣AE=BM+EM﹣(AM﹣EM)=2EM=2.22.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.23.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)24.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.25.解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵AC=BD,∴OC=OD,在△OCB和△ODA中,∴△OCB≌△ODA(SAS),∴AD=BC.26.(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠DAC=∠ODA,∵OD=OA,∴∠OAD=∠ODA,∴∠OAD=∠DAC,∴AD平分∠ABC.(2)连接OF.∵AE是直径,∴∠AFE =90°,∵EF ∥BC ,∴==,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形,∴DM =CF =AF ,∵OM =DM =OD =OE , ∴∠OEM =30°,∴∠EOF =120°,∵BE =AE =2,∴OE =2,∴OM =1,EM =,EF ﹣2,∴S 阴=S 扇形OEF ﹣S △OEF =﹣×2×1=﹣.。

第24章《圆》单元复习测试题(含答案)

第24章《圆》单元复习测试题(含答案)

九年级数学第二十四章《圆》单元复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分)1.已知AB是半径为6的圆的一条弦,则AB的长不可能是()A.8 B.10 C.12 D.142.已知⊙O的半径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断3.在圆内接四边形ABCD中,∠A=80°,则∠A的对角∠C=()A.20°B.40°C.80°D.100°4.如题4图,在⊙O中,AB=AC.若∠B=75°,则∠A的度数为()题4图A.15°B.30°C.75°D.60°5.如题5图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=36°,则∠D的度数为()题5图A.72°B.54°C.45°D.36°6.已知半径为9的扇形的弧长为6π,该扇形的面积为()A.18πB.27πC.36πD.54π7.如题7图,点I为△ABC的外心,且∠BIC=150°,则∠A的度数为()题7图A.70°B.75°C.140°D.150°8.如题8图,AB是⊙O的直径,P A切⊙O于点A,连接PO并延长,交⊙O于点C,连接AC.若AB =8,∠P=30°,则AC=()A .43B .42C .4D .39.小英家的圆形镜子被打碎了,她拿了如题9图(网格中的每个小正方形边长为1)所示的一块碎片到玻璃店,配制成形状、大小与原来 一致的镜面,则这个镜面的半径是( )A .2B .5C .22D .310.如题10图,将矩形ABCD 绕点A 逆时针旋转90°得到矩形AEFG ,点D 的旋转路径为DG .若AB =2,BC =4,则阴影部分的面积为( )A .π2B .8π3C .4π3+43D .4π3+23二、填空题(本大题7小题,每小题4分,共28分)11.已知⊙O 的半径为5cm ,点P 在⊙O 内,则OP ________5cm.(填“>”“<”或“=”) 12.如题12图,⊙O 的半径为6,OA 与弦AB 的夹角是30°,则弦AB 的长是__________.13.如题13图,从⊙O 外一点P 引⊙O 的两条切线P A ,PB ,切点分别是A ,B ,若P A =6cm ,C 是AB 上一动点(点C 与A ,B 两点不重合),过点C 作⊙O 的切线,分别交P A ,PB 于点D ,E ,则△PED 的周长是________cm.14.如题14图,正五边形ABCDE 内接于⊙O ,点F 在DE 上,则∠CFD =________.题14图15.用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面(接缝处忽略不计),则这个圆锥的底面圆的半径为________.16.如题16图,AB 是⊙O 的弦,AB =8,C 是⊙O 上一动点,且∠ACB =45°.若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是________.题16图17.如题17图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B ,直线MN 与l 1相交于点M ,与l 2相交于点N ,⊙O 的半径为1,∠1=60°,直线MN 从图中位置向右平移.下列结论:①l 1和l 2的距离为2;②MN =433 ;③当直线MN 与⊙O 相切时,∠MON =90°;④当AM +BN =433 时,直线MN 与⊙O 相切.其中正确的结论是____________.(填序号)题17图三、解答题(一)(本大题3小题,每小题6分,共18分)18.如题18图,点A ,B ,C ,D 在⊙O 上,BD =AC .求证:AB =CD .题18图19.用铁皮制作如题19图所示的圆锥形容器盖,求这个容器盖所需铁皮的面积(结果保留π),并求制作容器盖的扇形的圆心角.题19图20.如题20图,在△ABC 中,AB =AC .(1)求作一点P ,使得点P 为△ABC 外接圆的圆心;(保留作图痕迹,不要求写作法) (2)在(1)的条件下,连接AP ,BP ,延长AP 交BC 于点D ,若∠BAC =50°,求∠PBC 的度数.题20图四、解答题(二)(本大题3小题,每小题8分,共24分)21.如题21图,隧道的截面由半圆和矩形构成,矩形的长BC为12m,宽AB为3m,若该隧道内设双行道,现有一辆货运卡车高8m,宽2.3m,则这辆货运卡车能否通过该隧道?请说明理由.题21图22.如题22图,已知△ABC内接于⊙O,AD为⊙O的直径,点C在劣弧AB上(不与点A,B重合),设∠DAB=α,∠ACB=β,小明同学通过画图和测量得到以下近似数据:α30°35°40°50°60°80°β120°125°130°140°150°170°试判断α与β之间的关系,并给出证明.题22图23.在如题23图所示的网格中,每个小正方形的顶点叫格点,且边长均为1,△ABC的三个顶点均在格点上,以点A为圆心的EF与BC相切于点D,分别交AB,AC于点E,F.(1)求△ABC三边的长;(2)求图中由线段EB,BC,CF及EF所围成的阴影部分的面积.题23图五、解答题(三)(本大题2小题,每小题10分,共20分)24.如题24图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E,D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①AB是⊙O的切线;②∠EDC=∠FDC.(2)求CD的长.题24图25.阅读以下材料,并回答问题:若一个三角形两边平方的和等于第三边平方的两倍,我们称这样的三角形为奇异三角形.(1)命题“等边三角形一定是奇异三角形”是________命题;(填“真”或“假”)(2)在△ABC中,∠C=90°,△ABC的内角∠A,∠B,∠C所对边的长分别为a,b,c,且b>a,若Rt △ABC 是奇异三角形,求a ∶b ∶c 的值;(3)如题25图,已知AB 是⊙O 的直径,C 是⊙O 上一点(点C 与点A ,B 不重合),D 是ADB 的中点,点C ,D 在直径AB 的两侧,若存在点E ,使得AE =AD ,CB =CE .求证:△ACE 是奇异三角形.题25图参考答案1.D 2.A 3.D 4.B 5.B 6.B 7.B 8.A 9.B 10.D 11.< 12.63 13.12 14.36° 15.1 16.42 17.①②③④ 18.证明:∵BD =AC ,∴BD =AC .∴BD -AD =AC -AD ,即AB =CD .∴AB =CD .19.解:由图可知圆锥的底面圆的直径为80 cm ,母线长为50 cm , ∴圆锥的底面圆的周长为80π cm.∴圆锥形容器盖的侧面展开图的弧长为80π cm. ∴面积为 12 ×80π×50=2 000π(cm 2).设制作容器盖的扇形的圆心角为n °. ∴n π×50180=80π.解得n =288.答:这个容器盖所需铁皮的面积为2 000π cm 2,制作容器盖的扇形的圆心角为288°. 20.解:(1)如答题20图,点P 即为△ABC 外接圆的圆心.答题20图(2)∵点P 为△ABC 外接圆的圆心,AB =AC ,∠BAC =50°, ∴AD ⊥BC ,∠BAP =∠CAP =25°,P A =PB . ∴∠BPD =2∠BAP =50°,∠BDP =90°. ∴∠PBD =90°-50°=40°,即∠PBC =40°.21.解:这辆货运卡车能通过该隧道.理由如下:如答题21图,设点O 为AD 的中点,在AD 上取点G ,使得OG =2.3,过点G 作GF ⊥BC 于点F ,延长FG 交半圆于点E ,则GF =AB =3,半圆的半径OE =12 AD =12BC =6.答题21图∴EG =OE 2-OG 2 =62-2.32 ≈5.54.∴EF =EG +GF ≈5.54+3=8.54>8. ∴这辆货运卡车能通过该隧道. 22.解:β-α=90°.证明:如答题22图,连接BD .答题22图∵AD 为⊙O 的直径,∴∠DBA =90°. ∵∠DAB =α,∴∠D =90°-α. ∵B ,D ,A ,C 四点共圆, ∴∠ACB +∠D =180°. ∵∠ACB =β,∴β+90°-α=180°.∴β-α=90°.23.解:(1)由图可得AB =22+62 =210 ,AC =62+22 =210 , BC =42+82 =45 .(2)由(1)得AB 2+AC 2=(210 )2+(210 )2=(45 )2=BC 2. ∴∠BAC =90°. 如答题23图,连接AD ,则AD ⊥BC ,BD =DC =12BC =25 .答题23图∴AD =AB 2-BD 2 =(210)2-(25)2 =25 . ∴S 阴=S △ABC -S 扇形AEF =12 AB ·AC -90π360 ·AD 2=20-5π.24.(1)证明:①如答题24图,连接OC .∵OA =OB ,CA =CB ,∴OC ⊥AB . ∵OC 为⊙O 的半径, ∴AB 是⊙O 的切线.②∵OA =OB ,CA =CB ,∴∠AOC =∠BOC . ∴EC =FC .∴∠EDC =∠FDC .答题24图(2)解:如答题24图,过点O 作ON ⊥DF 于点N ,延长DF 交AB 于点M . ∵ON ⊥DF ,OD =OF ,DF =6, ∴DN =NF =12 DF =3,∠DON =∠FON .在Rt △ODN 中,OD =12 DE =5,DN =3,∴ON =OD 2-DN 2 =4.∵∠AOC =∠BOC ,∠DON =∠FON , ∴∠BOC +∠FON =12 ×180°=90°.∴∠OCM =∠CON =∠MNO =90°. ∴四边形OCMN 是矩形.∴CM =ON =4,MN =OC =12DE =5.在Rt △CDM 中,CM =4,DM =DN +MN =8, ∴CD =DM 2+CM 2 =82+42 =45 . 25.(1)解:真. (2)解:∵∠C =90°,∴a 2+b 2=c 2.①∵Rt △ABC 是奇异三角形,且b >a ,∴a 2+c 2=2b 2.② 由①②,得b =2 a ,c =3 a .∴a ∶b ∶c =1∶2 ∶3 . (3)证明:如答题25图,连接BD .答题25图∵AB是⊙O的直径,∴∠ACB=∠ADB=90°.在Rt△ACB中,AC2+CB2=AB2,在Rt△ADB中,AD2+BD2=AB2.∵点D是ADB的中点,∴AD=BD.∴AD=BD.∴AB2=AD2+BD2=2AD2.∴AC2+CB2=2AD2.又CB=CE,AE=AD,∴AC2+CE2=2AE2.∴△ACE是奇异三角形。

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)

人教新版九年级上学期第24章《圆》单元测试卷(含详解)一.选择题1.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧,④圆内接四边形对角互补其中错误的结论有()A.1个B.2个C.3个D.4个2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cmC.5.5cm D.2.5cm或5.5cm4.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=65°,则∠DAO+∠DCO =()A.90°B.110°C. 120°D.165°5.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是()A.πB. +C.D. +6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值为()A.1 B.C.D.7.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm8.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB =4,F为BC的中点,则图中阴影部分的面积为()A.B.C.D.9.如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°10.如图,AB是⊙O的弦,作OC⊥OA交⊙O的切线BC于点C,交AB于点D.已知∠OAB=20°,则∠OCB的度数为()A.20°B.30°C.40°D.50°11.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为()A.B.πC.D.312.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定二.填空题13.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.14.(1)已知一个直角三角形的面积为12cm2,周长为12cm,那么这个直角三角形外接圆的半径是cm,内切圆半径是cm.(2)等边△ABC的边长为10cm,则它的外接圆的半径是cm,内切圆半径是cm.15.在圆内接四边形ABCD中,弦AB=AD,AC=2016,∠ACD=60°,则四边形ABCD的面积为.16.已知⊙O的半径为1cm,弦AB=cm,AC=cm,则∠BAC=.17.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD 上的一个动点,当CD=6时,AP+BP的最小值为.三.解答题18.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,若∠P=30°.(1)求∠B的度数;(2)若PC=2,求BC的长.19.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D 作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为2,CF=1,求的长(结果保留π).20.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.21.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD能通过这个隧道吗?请说明理由.22.如图,AB是⊙O的直径,AC⊥AB,E为⊙O上的一点,AC=EC,延长CE交AB的延长线于点D.(1)求证:CE为⊙O的切线;(2)若OF⊥AE,OF=1,∠OAF=30°,求图中阴影部分的面积.(结果保留π)23.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2.(1)求直径AB的长;(2)求阴影部分图形的周长和面积.24.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点,CE交AB于点H,且AH=AC,AF平分线∠CAH.(1)求证:BE∥AF;(2)若AC=6,BC=8,求EH的长.25.如图所示,△ABC内接于⊙O,AC是直径,D在⊙O上,且AC平分∠BCD,AE∥BC,交CD于E,F在CD的延长线上,且AE=EF.连接AF.(1)求证:AF是⊙O的切线;(2)连接BF交AE于G,若AB=12,AE=13,求AG的长.参考答案一.选择题1.解:①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;③平分弦的直径垂直于弦;并且平分弦所对的弧,错误,此弦不是直径;④圆内接四边形对角互补;正确;故选:C.2.解:∵∠AOC=140°,∴∠BOC=40°,∵∠BOC与∠BDC都对,∴∠D=∠BOC=20°,故选:A.3.解:当点P在圆内时,最近点的距离为3cm,最远点的距离为8cm,则直径是11cm,因而半径是5.5cm;当点P在圆外时,最近点的距离为3cm,最远点的距离为8m,则直径是5cm,因而半径是2.5cm.故选:D.4.解:∵OA=OB=OC,∴∠ABO=∠BAO,∠OBC=∠OCB,∵∠ABC=65°=∠ABO+∠OBC,∴∠BAO+∠BCO=65°,∵∠ADC=65°,∴∠DAO+∠DCO=360°﹣(∠ADC+∠BAO+∠BCO+∠ABC)=360°﹣(65°+65°+65°)=165°,故选:D.5.解:∵AB为直径,∴∠ACB =90°,∵AC =BC =,∴△ACB 为等腰直角三角形,∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形,∴S △AOC =S △BOC ,OA =,∴S 阴影部分=S 扇形OAC ==π.故选:A . 6.解:∵正六边形的任一内角为120°, ∴∠1=30°(如图),∴a =2cos ∠1=,∴a =2. 故选:D .7.解:∵PA 为⊙O 的切线,A 为切点, ∴∠PAO =90°,在直角△APO 中,OA ==2,∵AB ⊥OP ,∴AD =BD ,∠ADO =90°,∴∠ADO =∠PAO =90°,∵∠AOP =∠DOA ,∴△APO ∽△DAO ,∴=,即=, 解得:AD =3(cm ),∴BD =3cm .故选:B .8.解:如图,取AB 的中点O ,连接AF ,OF . ∵AB 是直径,∴∠AFB =90°,∴AF ⊥BF ,∵CF =BF ,∴AC =AB ,∵四边形ABCD 是菱形,∴AB =BC =AC ,∴△ABC 是等边三角形,∴AE =EC ,易证△CEF ≌△BOF ,∴S 阴=S 扇形OBF ==,故选:D .9.解:连接AC ,如图,∵BC 是⊙O 的直径,∴∠BAC =90°,∵∠ACB =∠ADB =70°,∴∠ABC =90°﹣70°=20°.故答案为20°.故选:A .10.解:连接OB,∵BC是⊙O的切线,∴∠OBC=90°,∵OA=OB,∴∠OAB=∠OBA=20°,∴∠DBC=70°,∵∠AOC=90°,∴∠ODA=∠BDC=70°,∴∠OCB=40°,故选:C.11.解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=3,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,∴的弧长为=π,故选:B.12.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.二.填空题(共5小题)13.解:设这个圆锥的底面圆的半径为r,根据题意得2πr=,解得r=5,所以圆锥的高==.故答案为.14.解:(1)如果设这个直角三角形的直角边是a,b,斜边是c,那么由题意得:S=ab=12,a+b+c=12,△∴ab=24,a+b=12﹣c,根据勾股定理得a2+b2=c2,(a+b)2﹣2ab=c2,(12﹣c)2﹣48=c2,解得c=,所以直角三角形外接圆的半径是cm;设内切圆的半径是r,则×12r=12,解得:r=cm.故答案是:,;(2)连接OC和OD,如图:由等边三角形的内心即为中线,底边高,角平分线的交点所以OD⊥BC,∠OCD=30°,OD即为圆的半径.又由BC=10cm,则CD=5cm在直角三角形OCD中:=tan30°代入解得:OD=CD=,则CO=×10=;故答案为:,.15.解:过A作AE⊥BC于E,AF⊥CD于F.∵∠ADF+∠ABC=180(圆的内接四边形对角之和为180),∠ABE+∠ABC=180,∴∠ADF=∠ABE.∵∠ABE=∠ADF,AB=AD,∠AEB=∠AFD,∴△AEB≌△AFD,∴四边形ABCD的面积=四边形AECF的面积,AE=AF.又∵∠E=∠AFC=90°,AC=AC,∴Rt△AEC≌Rt△AFC(HL).∵∠ACD=60°,∠AFC=90°,∴∠CAF =30°,∴CF =1008,AF =,∴四边形ABCD 的面积=2S △ACF =2×CF ×AF =88144.故答案为:88144.16.解:当圆心O 在弦AC 与AB 之间时,如图(1)所示,过O 作OD ⊥AC ,OE ⊥AB ,连接OA ,由垂径定理得到:D 为AB 中点,E 为AC 中点,∴AE =AC =cm ,AD =AB =cm ,∴cos ∠CAO =,cos ∠BAO ==, ∴∠CAO =45°,∠BAO =30°,此时∠BAC =∠CAO +∠BAO =45°+30°=75°;当圆心在弦AC 与AB 一侧时,如图(2)所示,同理得:∠BAC =∠CAO ﹣∠BAO =45°﹣30°=15°,综上,∠BAC =15°或75°.故答案为:15°或75°.17.解:作点A 关于CD 的对称点A ′,连接A ′B ,交CD 于点P ,则PA +PB 最小, 连接OA ′,AA ′.∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=3,∴A′B=.∴PA+PB=PA′+PB=A′B=3.故答案为:3.三.解答题(共8小题)18.解:(1)∵PA是⊙O的切线,∴OA⊥PA,∴∠P=30°,∴∠POA=60°,∴∠B=∠POA=×60°=30°,(2)如图,连接AC,∵AB是⊙O的直径,∴∠ACB=90°且∠B=30°,∴BC=AC,设OA=OB=OC=x,在Rt△AOP中,∠P=30°,∴PO=2OA,∴2+x=2x,x=2.即OA=OB=2.又在Rt△ABC中,∠B=30°,∴AC=AB=×4=2,∴BC=tan60°•AC=AC=2.19.(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:连接BE,∵AB是直径,∴BE⊥AC,∵DF⊥AC,∴==,∵FC=1,∴EC=2,∵OD=AC=2,∴AC=4,∴AE=EC=2,∴AB=BC,∵AB=AC=4,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵OD∥AC,∴∠BOD=∠BAC=60°,∴的长:=.20.(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠AED=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.21.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m ∴一辆高3米,宽1.9米的卡车能通过隧道.22.(1)证明:连接OE,∵AC=EC,OA=OE,∴∠CAE=∠CEA,∠FAO=∠FEO,∵AC⊥AB,∴∠CAD=90°,∴∠CAE+∠EAO=90°,∴∠CEA+∠AEO=90°,即∠CEO=90°,∴OE⊥CD,∴CE为⊙O的切线;(2)解:∵∠OAF=30°,OF=1∴AO=2;∴AF=即AE=;∴;∵∠AOE=120°,AO=2;∴;=.∴S阴影23.解:(1)设CD交AB于E.∵∠BOC=2∠CDB,∠CDB=30°,∴∠COB=60°,∵OC=OB,∴△BOC是等边三角形,∴∠CBO=60°,∵CD⊥AB,CD=2,∴CE=ED=,∴OC=EC÷os30°=2,∴AB=2OC=4.(2)连接BC,OD,∵∠CBO=∠BOD=60°,∴BC∥OD,∴S△BCD =S△BCO,∴S阴=S扇形OBC==π,阴影部分的周长=2+2+=2+2+π.24.(1)证明:∵AH=AC,AF平分线∠CAH∴∠HAF=∠CAF,AF⊥EC,∴∠HAF+∠ACH=90°∵∠ACB=90°,即∠BCE+∠ACH=90°,∴∠HAF=∠BCE,∵E为的中点,∴,∴∠EBD=∠BCE,∴∠HAF=∠E BD,∴BE∥AF;(2)解:连接OH、CD.∵BC为直径,∴∠BDC=90°,∵∠ACB=90°,AC=6,BC=8,∴AB=,∵AH=AC=6∴BH=AB﹣AH=10﹣6=4,∵∠EBH=∠ECB,∠BEH=∠CEB∴△EBH∽△ECB,∴,EB=2EH,由勾股定理得BE2+EH2=BH2,即(2EH)2+EH2=42,∴EH=.25.证明:(1)∵AC平分∠BCD∴∠ACB=∠ACD,∵AE∥BC∴∠ACB=∠CAE=∠ACD∴AE=CE,且AE=EF∴AE=CE=EF∴△CAF是直角三角形∴∠CAF=90°∴AF是⊙O的切线(2)连接AD,∵AC是直径∴∠ABC=90°=∠ADC∵∠ACB=∠ACD,AC=AC,∠ABC=∠ADC=90°∴△ABC≌△ADC(AAS)∴AB=AD=12,BC=CD在Rt△AED中,DE==5∵AE=CE=EF=13∴CF=2EF,CD=BC=CE+DE=18,∵AE∥BC∴=∴EG=9∴AG=AE﹣EG=13﹣9=4人教版九年级上册第24章数学圆单元测试卷(含答案)(1)一、知识梳理(一)点、直线与圆的位置关系:(可用什么方法判断?) 1.2.已知圆O 的半径为8cm ,若圆心O 到直线l 的距离为8cm ,那么直线l 和圆O 的位置关系是( )A .相离B .相切C .相交D .相交或相离(二)圆心角、弧、弦之间的关系 1.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等 2.(三)圆周角定理及其推理1.如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= cm 。

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)

人教版数学九年级上册第24章《圆》单元综合练习卷(含详细答案)一.选择题1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为()A.2B.4 C.2D.4.83.下列说法正确的是()A.菱形的对角线垂直且相等B.到线段两端点距离相等的点,在线段的垂直平分线上C.点到直线的距离就是点到直线的垂线段D.过三点确定一个圆4.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.60πcm2B.65πcm2C.120πcm2D.130πcm25.如图,已知钝角△ABC内接于⊙O,且⊙O的半径为5,连接OA,若∠OAC=∠ABC,则AC 的长为()A.5B.C.5D.86.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.77.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.8.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.29.边长相等的正方形与正六边形按如图方式拼接在一起,则∠ABC的度数为()A.10°B.15°C.20°D.30°10.如图,在⊙O的内接正六边形ABCDEF中,OA=2,以点C为圆心,AC长为半径画弧,恰好经过点E,得到,连接CE,OE,则图中阴影部分的面积为()A.﹣4B.2π﹣2C.﹣3D.﹣211.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=28°,则∠ACB的度数是()A.28°B.30°C.31°D.32°12.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6 D.3≤C≤6二.填空题13.已知圆锥底面圆的半径为5,高为12,则圆锥的侧面积为(结果保留π).14.如图,点A,B,C,D是⊙O上的四个点,点B是弧AC的中点,如果∠ABC=70°,那∠ADB=.15.如图,MN为⊙O的直径,MN=10,AB为⊙O的弦,已知MN⊥AB于点P,AB=8,现要作⊙O的另一条弦CD,使得CD=6且CD∥AB,则PC的长度为.16.如图,AB是⊙O的直径,点C、D在⊙O上,若∠DCB=110°,则∠AED=.17.如图,AB是⊙O的直径,点C、D在⊙O上,∠AOC=70°,AD∥OC,则∠ABD=.18.如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是.三.解答题19.已知等边△ABC内接于⊙O,D为弧BC的中点,连接DB、DC,过C作AB的平行线,交BD的延长线于点E.(1)求证:CE与⊙O相切;(2)若AB长为6,求CE长.20.如图,AB是⊙O的直径,弦CD与AB交于点E,过点B的切线BP与CD的延长线交于点P,连接OC,CB.(1)求证:AE•EB=CE•ED;(2)若⊙O的半径为3,OE=2BE,=,求线段DE和PE的长.21.如图,△ABC内接于⊙O,∠ACB=60°,BD是⊙O的直径,点P是BD延长线上一点,且PA是⊙O的切线.(1)求证:AP=AB;(2)若PD=,求⊙O的直径.22.如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.(1)求证:CE=AE;(2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.23.如图,已知AB为⊙O的直径,C为⊙O上异于A、B的一点,过C点的切线于BA的延长线交于D点,E为CD上一点,连EA并延长交⊙O于H,F为EH上一点,且EF=CE,C F 交延长线交⊙O于G.(1)求证:弧AG=弧GH;(2)若E为DC的中点,sim∠CDO=,AH=2,求⊙O的半径.24.在等边△ABC中,BC=8,以AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线.(2)求弧DE的长度;(3)求EF的长.25.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:∵AB为直径,∴∠ACB=90°,∴BC===3,∵OD⊥AC,∴CD=AD=AC=4,在Rt△CBD中,BD==2.故选:C.3.解:A、菱形的对角线垂直但不一定相等,故错误;B、到线段两端点距离相等的点,在线段的垂直平分线上,正确;C、点到直线的距离就是点到直线的垂线段的长度,故错误;D、过不在同一直线上的三点确定一个圆,故错误,故选:B.4.解:这个圆锥的侧面积=×2π×5×13=65π(cm2).故选:B.5.解:连接OC,如图,设∠OAC=α,则∠OAC=∠ABC=α,∠AOC=2∠ABC=2α,∵OA=OC,∴∠OCA=∠OAC=α,∴α+2α+α=180°,解得α=45°,∴∠AOC=90°,∴△AOC为等腰直角三角形,∴AC=OA=5.故选:A.6.解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:C E=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.7.解:∵∠ACB=90°,∠CAB=30°,BC=3,∴AB=2BC=6,∴AC===3,∵O、H分别为AB、AC的中点,∴OB=AB=3,CH=AC=,在Rt△BCH中,BH==,∵旋转角度为120°,∴阴影部分的面积=﹣=π.故选:A.8.【解答】解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.9.解:由题意得:正六边形的每个内角都等于120°,正方形的每个内角都等于90°,故∠BAC=360°﹣120°﹣90°=150°,∵AB=AC,∴∠ABC=∠ACB==15°.故选:B.10.解:连接OB、OC、OD,S 扇形CAE ==2π,S △AOC ==,S △BOC ==,S 扇形OBD ==,∴S 阴影=S 扇形OBD ﹣2S △BOC +S 扇形CAE ﹣2S △AOC =﹣2+2π﹣2=﹣4; 故选:A .11.解:连接OB ,如图,∵AB 为切线,∴OB ⊥AB ,∴∠ABO =90°,∴∠AOB =90°﹣∠A =90°﹣28°=62°,∴∠ACB =∠AOB =31°.故选:C .12.解:根据对称性可知,△GKI ,△HLJ 是等边三角形.阴影部分是正六边形,边长为GK的.∵GK 的最大值为2,GK 的最小值为3,∴阴影部分的正六边形的边长的最大值为,最小值为1,∴图中阴影部分的周长C 的取值范围为:4≤C ≤6.故选:C.二.填空题(共6小题)13.解:∵圆锥的底面半径为5,高为12,∴圆锥的母线长为13,∴它的侧面积=π×13×5=65π,故答案为:65π.14.解:∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ADC=180°﹣70°=110°.∵点B是弧AC的中点,∴弧AB=弧BC.∴∠ADB=∠BDC.∴∠ADB=∠ADC=×110°=55°.故答案为55°.15.解:当AB、CD在圆心O的两侧时,如图,连接OA、OC,∵AB∥CD,MN⊥AB,∴AP=AB=4,MN⊥CD,∴CQ=CD=3,在Rt△OAP中,OP==3,同理:OQ=4,则PQ=OQ+OP=7,∴PC===,当AB、CD在圆心O的同侧时,PQ=OQ﹣OP=1,∴PC===;故答案为:或.16.解:连接BE,如图,∵AB是⊙O的直径,∴∠AEB=90°,∵∠DEB+∠DCB=180°,∴∠DEB=180°﹣110°=70°,∴∠AED=∠AEB﹣∠DEB=90°﹣70°=20°.故答案为20°17.解:∵AD∥OC,∴∠BAD=∠AOC=70°,∵AB是⊙O的直径,∴∠D=90°,∴∠ABD=90°﹣70°=20°.故答案为20°.18.解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4﹣,故答案为:4﹣.三.解答题(共7小题)19.(1)证明:连接OC,OB,∵△ABC是等边三角形,∴∠A=∠A BC=60°,∵AB∥CE,∴∠BCE=∠ABC=60°,∵OB=OC,∴∠OBC=∠OCB=30°,∴∠OCE=∠OCB+∠BCE=30°+60°=90°,∴CE与⊙O相切;(2)∵四边形ABDC是圆的内接四边形,∴∠A+∠BDC=180°,∴∠BDC=120°,∵D为弧BC的中点,∴∠DBC=∠BCD=30°,∴∠BEC=180°﹣∠EBC﹣∠BCE=90°,∵AB=BC=6,∴.20.(1)证明:连接AC、BD,如图,∵∠CAE=∠CDB,∠ACE=∠BDE,∴△ACE∽△BDE,∴AE:DE=CE:BE,∴AE•EB=CE•ED;(2)∵OE+BE=3,OE=2BE,∴OE=2,BE=1,∴AE=5,∴CE•DE=5×1=5,∵=,∴CE=DE,∴DE•DE=5,解得DE=,∴CE=3.∵PB为切线,∴PB2=PD•PC,而PB2=PE2﹣BE2,∴PD•PC=PE2﹣BE2,即(PE﹣)(PE+3)=PE2﹣1,∴PE=321.(1)证明:连接OA,如图,∵∠AOB=2∠ACB=2×60°=120°,而OA=OB,∴∠OAB=∠OBA=30°,∠AOP=60°,∵PA是⊙O的切线,∴OA⊥PA,∴∠OAP=90°,∴∠P=90°﹣60°=30°,∴∠ABP=∠P,∴AB=AP;(2)解:设⊙O的半径为r,在Rt△OPA中,∵∠P=30°,∴OP=2OA,即r+=2r,解得r=,∴⊙O的直径为2.22.证明(1)∵AB=AC,AC=CD∴∠ABC=∠ACB,∠CAD=∠D∵∠ACB=∠CAD+∠D=2∠CAD∴∠ABC=∠ACB=2∠CAD∵∠CAD=∠EBC,且∠ABC=∠ABE+∠EBC∴∠ABE=∠EBC=∠CAD,∵∠ABE=∠ACE∴∠CAD=∠ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;理由如下:如图,连接OE∵OA=OE,OE=OC,AE=CE∴△AOE≌△EOC(SSS)∴∠AOE=∠COE,∵∠ABC=60°∴∠AOC=120°∴∠AOE=∠COE=60°,且OA=OE=OC∴△AOE,△COE都是等边三角形∴AO=AE=OE=OC=CE,∴四边形AOCE是菱形故答案为:60°②如图,过点C作CN⊥AD于N,∵AE=,AB=,∴AC=CD=2,CE=AE=,且CN⊥AD ∴AN=DN在Rt△ACN中,AC2=AN2+CN2,①在Rt△ECN中,CE2=EN2+CN2,②∴①﹣②得:AC2﹣CE2=AN2﹣EN2,∴8﹣3=(+EN)2﹣EN2,∴EN=∴AN=AE+EN==DN∴DE=DN+EN=故答案为:23.(1)证明:如图,连接AC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B+∠CAO=90°,∵CD为⊙O的切线,∴∠ECA+∠ACO=90°,∵OC=OA,∴∠ACO=∠OAC,∴∠ECA=∠B,∵EF=CE,∴∠ECF=∠EFC,∵∠ECF=∠ECA+∠ACG,∠EFC=∠GAF+∠G,∵∠ECA=∠B=∠G,∴∠ACG=∠GAF=∠GCH,∴;(2)解:∵CH是⊙O的直径,∴∠CAH=90°,∵CD是⊙O的切线,∴∠ECO=90°,设CO=2x,∵sim∠CDO==,∴DO=6x,∴CD==4,∵E为DC的中点,∴CE==2,EH==2,∵∠ECH=∠CAH,∠CHA=∠EHC,∴△CAH∽△ECH,∴,∴CH2=AH•EH,∴AH=,∵AH=2,∴,∴x=3,∴⊙O的半径CO=2x=6.24.(1)证明:连接DO,∵△AB C是等边三角形,∴∠A=∠C=60°,∵OA=OD,∴△OAD是等边三角形,∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,即OD⊥DF,∵OD为半径,∴DF为⊙O的切线;(2)解:连接OC,OE,∵在等边△ABC中,OA=OB,∴CO⊥AB,∠OCB=∠OCA=30°,∴OB=BC==4,∵∠AOD=60°,同理∠BOE=60°,∴∠DOE=60°,∴弧DE的长度:=π;(3)解:∵△OAD是等边三角形,∴AD=AO=AB=4,∴CD=AC﹣AD=4,Rt△CDF中,∠CDF=30°,∴CF=CD=2,DF=2,连接OE,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE=4,∴EF=BC﹣CF﹣BE=8﹣2﹣4=2.25.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.人教版九年级上册第24章数学圆单元测试卷(含答案)(5)一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD.3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P,PA =P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x轴相切、与y 轴相离 D .与x 轴、y 轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 75第4题图A B C D O PB .D .A .C .第6题图O P Q D B AC第7题图R8.如图,A ⊙、B ⊙、C ⊙、D ⊙、E ⊙相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )A .πB .1.5πC .2πD .2.5π 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________.13.如图,△㎝,则AC 的长等于_______㎝。

人教版初三上《第24章圆》单元测试题(有答案)(数学)

人教版初三上《第24章圆》单元测试题(有答案)(数学)

单元测试(四) 圆(满分:120分 考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.已知⊙O 的半径是5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于(C)A. 2B. 3 C .2 2 D .2 33.如图,⊙O 是△ABC 的外接圆,连接OB ,OC.若OB =BC ,则∠BAC 等于(C)A .60°B .45°C .30°D .20°4.如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D)A .32°B .60°C .68°D .64°5.如图,C ,D 是以线段AB 为直径的⊙O 上两点.若CA =CD ,且∠ACD =40°,则∠CAB =(B)A .10°B .20°C .30°D .40°6.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则AC ︵的长(B)A .2πB .Π C.π2D.π37.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm ,则这块扇形铁皮的半径是(A)A .40 cmB .50 cmC .60 cmD .80 cm8.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,连接OD ,CB ,AC ,∠DOB =60°,EB =2,那么CD 的长为(D)A. 3 B .2 3 C .3 3 D .4 39.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知AD =6 cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△AMN),则剪下的△AMN 的周长是(B)A .9 cmB .12 cmC .15 cmD .18 cm10.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是(D)A .Π B.5π4C .3+πD .8-π二、填空题(每大题共5个小题,每小题3分,共15分)11.如图,在矩形ABCD 中,AB =3,AD =4.若以点A 为圆心,4为半径作⊙A ,则点A ,点B ,点C ,点D 四点中在⊙A 外的是点C .12.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为14.如图,AP为⊙O的切线,P为切点.若∠A=20°,C,D为圆周上的两点,且∠PDC=60°,则∠OBC 等于65°.15.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF的面积为3π,则菱形OABC的边长为3.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本大题共2小题,每小题5分,共10分)(1)如图,在△AOC中,∠AOC=90°,以点O为圆心,OA为半径的圆交AC于点B,且OB=BC,求∠A 的度数.解:∵OA=OB,OB=BC,∴∠A=∠OBA,∠BOC=∠C,又∵∠OBA=∠BOC+∠C,∴∠A=2∠C.∵△AOC中,∠AOC=90°,∴∠A+∠C=90°,即3∠C=90°.∴∠C=30°,∠A=60°.(2)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.解:∵AB 为⊙O 的直径, ∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°, ∴∠B =25°.∴∠BAD =90°-∠B =65°.17.(本题6分)如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于D ,CE ⊥OB 于E ,求证:AD =BE. 证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO =∠CEO =90°. 在△COD 和△COE 中, ⎩⎪⎨⎪⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS). ∴OD =OE. ∵AO =BO , ∴AD =BE.18.(本题7分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,那么直径CD 的长为多少寸?”请你求出CD 的长.解:设直径CD 的长为2x ,则半径OC =x ,OE =x -1.∵CD 为⊙O 的直径,弦AB ⊥CD 于E ,AB =10, ∴AE =BE =12AB =12×10=5.连接OB ,则OB =x ,根据勾股定理,得x 2=52+(x -1)2, 解得x =13,CD =2x =2×13=26(寸).19.(本题9分)如图,在平面直角坐标系中,已知点A(1,3),B(3,3),C(4,2). (1)请在图中作出经过A ,B ,C 三点的⊙M ,并写出圆心M 的坐标; (2)若D(1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).20.(本题9分)如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母; (2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图,⊙C 为所求.(2)∵⊙C 切AB 于D ,∴CD ⊥AB.∴∠ADC =90°.∴∠DCE =90°-∠A =90°-30°=60°.∴∠BCD =90°-∠ACD =30°. 在Rt △BCD 中,BC =3,∴BD =12BC =32,CD =BC 2-BD 2=332.∴DE ︵的长为60·π·332180=32π.21.(本题9分)如图,⊙O 的直径AB =12 cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD. (1)求证:点P 为BD ︵的中点;(2)若∠C =∠D ,求四边形BCPD 的面积.解:(1)证明:连接OP ,交BD 于E.∵CP 与⊙O 相切于点P ,∴PC ⊥OP.∴∠OPC =90°. ∵BD ∥CP ,∴∠OEB =∠OPC =90°. ∴BD ⊥OP.∴点P 为BD ︵的中点.(2)∵∠C =∠D ,∠POB =2∠D ,∴∠POB =2∠C. ∵∠CPO =90°,∴∠C =30°.∵BD ∥CP ,∴∠C =∠DBA.∴∠D =∠DBA. ∴BC ∥PD.∴四边形BCPD 是平行四边形. ∵PO =12AB =6,∴PC =6 3.∵∠ABD =∠C =30°,∴OE =12OB =3.∴PE =3.∴四边形BCPD 的面积为PC·PE =63×3=183(cm 2).22.(本题12分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.解:(1)证明:连接OB ,∵E 是弦BD 的中点,∴BE =DE ,OE ⊥BD, BF ︵=DF ︵=12BD ︵.∴∠BOE =∠A ,∠OBE +∠BOE =90°.∵∠DBC =∠A ,∴∠BOE =∠DBC.∴∠OBE +∠DBC =90°.∴∠OBC =90°,即BC ⊥OB. ∵OB 为⊙O 的半径, ∴BC 是⊙O 的切线.(2)∵OB =6,BC =8,BC ⊥OB ,∴OC =OB 2+BC 2=10.∵△OBC 的面积为12OC·BE =12OB·BC ,∴BE =OB·BC OC =6×810=4.8.∴BD =2BE =9.6,即弦BD 的长为9.6.23.(本题13分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A ,B ,C ,D 均为⊙O 上的点,则有∠C =∠D.小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,7),点B 的坐标为(0,3),点C 的坐标为(3,0). ①在图1中作出△ABC 的外接圆(保留必要的作图痕迹,不写作法);②若在x 轴的正半轴上有一点D ,且∠ACB =∠ADB ,则点D 的坐标为(7,0);(2)如图2,在平面直角坐标系xOy 中,点A 的坐标为(0,m),点B 的坐标为(0,n),其中m>n>0,点P 为x 轴正半轴上的一个动点,当∠APB 达到最大时,直接写出此时点P 的坐标. 解:(1)①如图.(2)当以AB 为弦的圆与x 轴正半轴相切时,作CD ⊥y 轴,连接CP ,CB. ∵点A 的坐标为(0,m),点B 的坐标为(0,n), ∴点D 的坐标是(0,m +n 2),即BC =PC =m +n2.在Rt △BCD 中,BC =m +n 2,BD =m -n2,∴则CD =BC 2-BD 2=mn. ∴OP =CD =mn.∴点P 的坐标是(mn ,0).。

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.如图,AB是⊙O的直径, BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm长为半径作圆.则图中阴影部分的面积为()A.(2﹣π)cm2B.(π﹣)cm2C.(4﹣2π)cm2D.(2π﹣2)cm2 6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,在矩形AB CD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4 B.C.5 D.二.填空题11.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是.12.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是.13.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.15.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF⊥AB 于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.16.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P 到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三.解答题17.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.18.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD的面积.19.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O 分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是的中点,连接OF并延长交CD于点E,连接BD,BF.(1)求证:BD∥OE;(2)若OE=3,tan C=,求⊙O的半径.参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.解:∵=,∴∠ABC=∠AOC=×80°=40°,故选:C.3.解:∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选:A.4.解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.5.解:连接AD,∵△ABC是正三角形,BD=DC,∴∠B=60°,AD⊥BC,∴AD=AB=2,∴图中阴影部分的面积=×4×2﹣×3=(4﹣2π)cm2故选:C.6.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.7.解:∵点P的坐标是(3,4),∴OP==5,而⊙O的半径为5,∴OP等于圆的半径,∴点P在⊙O上.故选:C.8.解:∵若直线L与⊙O只有一个交点,即为点P,则直线L与⊙O的位置关系为:相切;若直线L与⊙O有两个交点,其中一个为点P,则直线L与⊙O的位置关系为:相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.9.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.10.解:如图,连结EO并延长交AD于F,连接AO,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,∵∠B=∠DAB=90°,OE⊥BC,∴四边形ABEF为矩形,∴EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,故选:D.二.填空题(共6小题)11.解:四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为:60°.12.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.解:连接AC .∵四边形ABCD 是菱形,∴∠B =∠D =60°,AB =AD =DC =BC =1, ∴∠BCD =∠DAB =120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形, ∴AC =AD =1,∵AB =1,∴△ADC 的高为,AC =1,∵扇形BEF 的半径为1,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G , 在△ADH 和△ACG 中,,∴△ADH ≌△ACG (ASA ),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =﹣×1×=﹣.故答案为﹣. 14.解:∵AB 是直径,∴∠ACB =90°,∵∠A =∠CDB =30°,∴BC =AB =1,故答案为1.15.解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.16.解:如图,∵AB是直径,∴∠C=90°.又∵BC=6cm,AC=8cm,∴根据勾股定理得到AB==10cm.则AP=(10﹣2t)cm,AQ=t.∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2.5.①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC.故=,即=,解得t=.②如图2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得t=.综上所述,当t=s或t=时,△APQ为直角三角形.故答案是: s或s.三.解答题(共7小题)17.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∴BC•AC=40,∵BC2+AC2=100,∴BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴=,∴AD=BD,∵直角△ABD中,AD=BD,则AD=BD=AB=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC===6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).19.(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长==π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.23.(1)证明:∵OB=OF,∴∠1=∠3,∵点F是的中点,∴∠1=∠2.∴∠2=∠3,∴BD∥OE;(2)解:连接OD,如图,∵直线CD是⊙O的切线,∴OD⊥CD,在Rt△OCD中,∵tan C==,∴设OD=3k,CD=4k.∴OC=5k,BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,在Rt△ODE中,∵OE2=OD2+DE2,∴(3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙O的半径的长.。

2015-2016年人教版九年级数学上第24章圆单元测试题含答案

2015-2016年人教版九年级数学上第24章圆单元测试题含答案

C.相切 D. 外切
8.如图,正六边形 ABCDEF内接于⊙O,半径为 4,则这个正六边形的边心距 OM
和 的长分别为( )
A.2,
B.2 ,π
C. ,
D. 2 ,
9.下列说法不正确的是( ). A.任何一个三角形都有外接圆 。 B.等边三角形的外心是这个三角形的中心 C.直角三角形的外心是其斜边的中点。D.一个三角形的外心不可能在三角形 的外部
6.⊙O 的半径为 5cm,点 A 到圆心 O 的距离 OA=3cm,则点 A 与圆 O 的位置关系
为( )
A.点 A 在圆上 B. 点 A 在圆内 C.点 A 在圆外 D.无法确定
7.已知⊙O 的直径是 10,圆心 O 到直线 l 的距离是 5,则直线 l 和⊙O 的位置
关系是( )
A.相离
B.
相交
3
22、(8 分)如图, AD 为 ABC 外接圆的直径, AD BC ,垂足为点 F , ABC 的平分线交 AD 于点 E ,连接 BD , CD .
(1) 求证: BD CD ; (2) 请判断 B , E , C 三点是否在以 D 为圆心,以 DB 为半径的圆上?并 说明理由.
1
18、已知如图, PA、 PB 切⊙O 于 A、 B , MN 切⊙O 于 C ,交 PB 于 N ;
若 PA=7.5cm ,则△ PMN 的周长是

A M
P
C
O
NB
19. 如图,△ABC中,∠ABC=50º,∠ACB=75º,点 O 是△ABC的内心,
则∠BOC的度数为
.
20、如图,在扇形 AOB中, AOB=90,半径 OA=6.将扇形 AOB沿过点 B 的直线

人教版九年级上册第24章数学圆单元测试卷(含答案)(4)

人教版九年级上册第24章数学圆单元测试卷(含答案)(4)

人教版九年级上册第24章数学圆单元测试卷(含答案)(4)一.选择题1.下列有关圆的一些结论,其中正确的是()A.任意三点可以确定一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦,并且平分弦所对的弧D.圆内接四边形对角互补2.用直角三角板检查半圆形的工件,下列工件哪个是合格的()A.B.C.D.3.已知⊙O的半径为2,点P在⊙O内,则OP的长可能是()A.1 B.2 C.3 D.44.如图.BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.505.今年寒假期间,小明参观了中国扇博物馆,如图是她看到的纸扇和团扇.已知纸扇的骨柄长为30cm,扇面有纸部分的宽度为18cm,折扇张开的角度为150°,若这两把扇子的扇面面积相等,则团扇的半径为()A.B.C.D.6.已知正六边形的边心距是,则正六边形的边长是()A.4B.C.D.7.如图,AB是圆O的直径,点C在BA的延长线上,直线CD与圆O相切于点D,弦DF⊥AB于点E,连接BD,CD=BD=4,则OE的长度为()A.B.2 C.2D.48.如图,四边形ABCD是菱形,点B,C在扇形AEF的弧EF上,若扇形ABC的面积为,则菱形ABCD的边长为()A.1 B.1.5 C.D.29.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点.若∠BOC=50°,则∠D的度数()A.105°B.115°C.125°D.85°10.如图,在Rt△ABC中,∠ACB=90°,以点C为圆心的圆与边AB相切于点D.交边BC 于点E,若BC=4,AC=3,则BE的长为()A.0.6 B.1.6 C.2.4 D.511.如图,在平行四边形ABCD中,AB=4,AD=2,分别以A、B为圆心,AD、BC为半径画弧,交AB于点E,交CD于点F,则图中阴影部分图形的周长之和为()A.2+πB.4+πC.4+2πD.4+4π12.如图,AB为半圆O的直径,BC⊥AB且BC=AB,射线BD交半圆O的切线于点E,DF⊥CD交AB于F,若AE=2BF,DF=2,则⊙O的半径长为()A.B.4C.D.二.填空题13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为.15.一条弦把圆分成1:2两部分,那么这条弦所对的圆周角的度数为.16.如图,⊙O的直径AB垂直于弦CD,垂足为E,如果∠B=60°,AO=4,那么CD的长为.17.如图点A是半圆上一个三等分点(靠近点N这一侧),点B是弧AN的中点,点P是直径MN上的一个动点,若⊙O半径为3,则AP+BP的最小值为.三.解答题18.如图,E是Rt△ABC的斜边AB上一点,以AE为直径的⊙O与边BC相切于点D,交边AC 于点F,连结AD.(1)求证:AD平分∠BAC.(2)若AE=2,∠CAD=25°,求的长.19.如图,四边形ABCD是平行四边形,点D在以AB为直径的QO上.(1)若直线CD是⊙O的切线,求∠BAD的度数;(2)在(1)的条件下,若⊙O的半径为1,求图中阴影部分的周长.20.如图,在平面直角坐标系xOy中,A(﹣8,0),B(0,6),∠ABO的角平分线交△ABO的外接圆⊙M于点D,连接OD,C为x正半轴上一点.(1)求⊙M的半径;(2)若OC=,求证:∠OBC=∠ODB;(3)若I为△ABO的内心,求点D到点I的距离.21.如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由;22.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连接AC,过点D 作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线;(3)若AB=12,AD=6,连接OD,求扇形BOD的面积.23.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.(1)求证:BD=CD;(2)若AB=4,∠BAC=45°,求阴影部分的面积.24.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.25.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EF=,求AF长.参考答案一.选择题1.解:A、不共线的三点确定一个圆,故本选项不符合题意;B、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项不符合题意;C、平分弦(不是直径)的直径垂直于弦,故本选项不符合题意;D、圆内接四边形对角互补,故本选项符合题意.故选:D.2.解:根据90°的圆周角所对的弦是直径得到只有C选项正确,其他均不正确;故选:C.3.解:∵⊙O的半径为6,点P在⊙O内,∴OP<2.故选:A.4.解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°﹣∠B=42°;故选:A.5.解:纸扇的扇面面积=﹣=315π,则团扇的半径==3(cm),故选:D.6.解:∵正六边形的边心距为2,∴OB=2,∠OAB=60°,∴AB===2,∴AC=2AB=4.故选:A.7.解:连结OD,如图,∵直线CD与⊙O相切于点D,∴OD⊥CD,∴∠ODC=90°,∵CD=BD=4,∴∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠DOE=∠B+∠ODB=2∠B,∴∠DOE=2∠C,在Rt△OCD中,∠DOE=2∠C,则∠DOE=60°,∠C=30°,∴OD=cot∠EOD•CD=×4=4,∵DF⊥AB,∴∠DEO=90°,在Rt△ODE中,OE=cos∠EOD•OD=×4=2,故选:B.8.解:∵四边形ABCD是菱形,∴AB=CB,∵AB=AC,∴AB=BC=AC,∴∠BAC=60°,∵=,∴AB=1.5,故选:B.9.解:连接BD,如图,∵AB是半圆的直径,∴∠ADB=90°,∵∠BDC=∠BOC=×50°=25°,∴∠ADC=90°+25°=115°.故选:B.10.解:在Rt△ACB中,AB==5,∵以点C为圆心的圆与边AB相切于点D∴CD⊥AB,∵CD•AB=AC•BC,∴CD==2.4,∵CE=CD=2.4,∴BE=BC﹣CE=4﹣2.4=1.6.故选:B.11.解:设∠A=n°,∵四边形ABCD是平行四边形,∴∠B=180°﹣n°,BC=AD=2,由题意得,AE=AD=2,BE=BC=2,∴图中阴影部分图形的周长之和=的长+的长+CD =+4+=4+2π,故选:C . 12.解:连接AD ,CF ,作CH ⊥BD 于H ,如图所示: ∵AB 是直径,∴∠ADB =90°,∴∠ADF +∠BDF =90°,∠DAB +∠DBA =90°, ∵∠BDF +∠BDC =90°,∠CBD +∠DBA =90°, ∴∠ADF =∠BDC ,∠DAB =∠CBD ,∴△ADF ∽△BDC ,∴==,∵∠DAE +∠DAB =90°,∠E +∠DAE =90°,∴∠E =∠DAB ,∴△ADE ∽△BDA ,∴=,∴=,即=,∵AB =BC ,∴AE =AF ,∵AE =2BF ,∴BC =AB =3BF ,设BF =x ,则AE =2x ,AB =BC =3x ,∴BE ==x ,CF ==, 由切割线定理得:AE 2=ED ×BE ,∴ED ===x ,∴BD =BE ﹣ED =,∵CH ⊥BD , ∴∠BHC =90°,∠CBH +∠BCH =∠CBH +∠ABE ,∴∠CBH=∠ABE,∵∠BAE=90°=∠BHC,∴△BCH∽△EBA,∴==,即==,解得:B H=x,CH=x,∴DH=BD﹣BH=x,∴CD2=CH2+DH2=x2,∵DF⊥CD,∴CD2+DF2=CF2,即x2+(2)2=()2,解得:x=,∴AB=3,∴⊙O的半径长为;故选:A.二.填空题(共5小题)13.解:圆锥的侧面积=×2π×3×7=21π.故答案为21π.14.解:∵∠BAC=80°,∴∠ABC+∠ACB=180°﹣80°=100°,∵点O是△ABC的内切圆的圆心,∴BO,CO分别为∠ABC,∠BCA的角平分线,∴∠OBC+∠OCB=50°,∴∠BOC=130°.故答案为:130°.15.解:如图,连接OA、OB.弦AB将⊙O分为1:2两部分,则∠AOB=×360°=120°;∴∠ACB=∠AOB=60°,∠ADB=180°﹣∠60=120°;故这条弦所对的圆周角的度数为60°或120°.故答案是:60°或120°16.解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=60°,∴∠A=30°,∴∠EOC=60°,∴∠OCE=30°∵AO=OC=4,∴OE=OC=2,∴CE==2,∵直径AB垂直于弦CD,∴CE=DE,∴CD=2CE=4,故答案为:4.17.解:作B点关于MN的对称点B′,连结OA、OB′、AB′,AB′交MN于P′,如图,∵P′B=P′B′,∴P′A+P′B=P′A+P′B′=AB′,∴此时P′A+P′B的值最小,∵点A是半圆上一个三等分点,∴∠AON=60°,∵点B是弧AN的中点,∴∠BPN=∠B′ON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′为等腰直角三角形,∴AB′=OA=3,∴AP+BP的最小值为3.故答案为3.三.解答题(共8小题)18.(1)证明:连接OD,如图,∵BC为切线,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠ODA=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC;(2)∵AD平分∠BAC,∠CAD=25°,∴∠FAE=2∠CAD=50°,∵AE=2,∴OE=1,∴的长为.19.解:(1)∵直线CD是⊙O的切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴OD⊥AB,∴∠AOD=90°,∵OD=OA,∴∠BAD=45°;(2)∵四边形ABCD是平行四边形,∴DC=AB=2,∠C=∠A=45°,过B作BE⊥CD于E,∴BE=OD=CE=1,∴CB=,∵的长==,∴图中阴影部分的周长=1+2++=3+.20.(1)解:∵∠AOB=90°,∴AB是⊙M的直径,∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∴AB==10,∴⊙M的半径OA=5;(2)证明:∵∠AOB=∠BOC=90°,∴tan∠OBC===,tan∠OAB===,∴∠OBC=∠OAB,∵∠ODB=∠OAB,∴∠OBC=∠ODB;(3)解:作∠BOE的平分线交BD于I,作IM⊥OB于M,如图所示:则IM∥OA,I为△ABO的内心,IM为△ABO的内切圆半径,OM=IM=(6+8﹣10)=2,∴BM=4,∴BI==2,∵IM∥OA,∴△BIM∽△BEO,∴=,即=,解得:EO=3,∴AE=OA﹣EO=5,BE===3,∴IE=BE﹣BI=,由相交弦定理得:BE×DE=AE×EO,即3DE=5×3,解得:DE=,∴DI=DE+IE=2;即点D到点I的距离为2.21.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44(m2),∴EN=(m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.22.证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线;(3)∵AB=12,AD=6,∴sin B===,∴∠B=60°,∴∠BOD=60°,==6π.∴S扇形BOD23.(1)证明:连结AD,∵AB为⊙O直径,∴AD⊥BC,又∵AB=AC,∴BD=CD;(2)解:连结OE,∵AB=4,∠BAC=45°,∴∠BOE=90°,BO=EO=2,∠AOE=90°,∴S阴=S△BOE+S扇形OAE=4+2π.24.(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴=,即点D为的中点;(2)解:∵OF⊥AC,∴AF=CF,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3,∴DF=OD﹣OF=5﹣3=2;(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,∵PC=PC′,∴PD+PC=PD+PC′=DC′,∴此时PC+PD的值最小,∵=,∴∠COD=∠AOD=80°,∴∠BOC=20°,∵点C和点C′关于AB对称,∴∠C′OB=20°,∴∠DOC′=120°,作OH⊥DC′于H,如图,则C′H=DH,在Rt△OHD中,OH=OD=,∴DH=OH=,∴DC′=2DH=5,∴PC+PD的最小值为5.25.证明:(1)如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)解:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠H FE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,∴△CDE≌△HFE(AAS),∴CD=HF.(3)解:由(2)得CD=HF,又CD=1,∴HF=1,∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,∴,即,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴Rt△OHE中,cos∠EOA=,∴Rt△EOA中,cos∠EOA=,∴,∴OA=,∴AF=.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒3.图中,不能由一个基本图形通过旋转而得到的是( )A .B .C .D . 4.在以下几种生活现象中,不属于旋转的是( )A .下雪时,雪花在天空中自由飘落B .钟摆左右不停地摆动C .时钟上秒针的转动D .电风扇转动的扇叶5.下列图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.等腰直角三角形C.平行四边形D.菱形 7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为( )A. B.C. D.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿 x 轴依次绕点A 、B 、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为( )A.(30,0)B.(32,0)C.(34,0)D.(36,0)9.如图,将ABC △绕点B 顺时针旋转60︒得到DBE ,点C 的对应点E 落在AB 的延长线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=10.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4,则以下四个结论中:①△BDE 是等边三角形; ②AE ∥BC ; ③△ADE 的周长是9; ④∠ADE=∠BDC .其中正确的序号是( )A .②③④B .①②④C .①②③D .①③④二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____; 12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.三、解答题:(共72分)17.如图,已知△ABC 的顶点A ,B ,C 的坐标分别是A (-1,-1),B (-4,-3),C (-4,-1).(1)作出△ABC 关于原点O 中心对称的图形△A ’B ’C ’;(2)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐标.18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.19.如图,在平面直角坐标系中,直线:3l y x =-+与x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.20.在Rt △ABC 中,∠ACB=90°,,点D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE .(1)求△ADE 的周长的最小值;(2)若CD=4,求AE 的长度.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.24.如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN(1)求证:AM⊥BN(2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;(3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当1BMBC n时,请求出四边形四边形ABCDAMEFSS的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省西华县东王营中学2015-2016学年度九年级数学人教版上册第24章圆单元测试题一.选择题(每题3分,共30分)1.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A.4个B.3个C.2个D.1个2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=() A.3cm B.4cm C.5cm D.6c m(2题图)(3题图)(4题图)(5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,πC.,D.2,9.下列说法不正确的是( ).A.任何一个三角形都有外接圆。

B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点。

D.一个三角形的外心不可能在三角形的外部10. 如图,⊙A、⊙B、⊙C、⊙D、⊙E的半径都是1,顺次连接这些圆心得到五边形ABCDE,则图中的阴影部分的面积之和为()A.πB.32π C.2π D.52π二、填空:(每题3分,共30分)11.如图,在一个宽度为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读书恰好是“2”和“10”(单位:cm),那么光盘的直径是cm.12.如图,点O为优弧ACB 所在圆的圆心,AOC108∠=,点D在AB的延长线上,BD BC=,则D∠= .13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.14.已知:如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°,则∠P的度数为度.15.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为__________.(结果保留π)16.圆内接正五边形ABCDE中对角线AC和BD相交于点P,则∠APB的度数。

17.如图,水平地面上有一面积为30πcm2的扇形AOB,半径OA=6cm,且OA与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为.18、已知如图,PA PB、切⊙O于A B、,MN切⊙O于C,交PB于N;DEABC108642ODBAOP若.=PA75cm,则△PMN的周长是.19.如图,△ABC中,∠ABC=50º,∠ACB=75º,点O是△ABC的内心,则∠BOC的度数为 .20、如图,在扇形AOB中,AOB=90,半径OA=6.将扇形AOB沿过点B的直线折叠,点O恰好落在弧上点D处,折痕交OA于点C,整个阴影部分的而积__________.三、解答题(共60分)21.(10分)如图,要把破残的圆片复制完整,已知弧上的三点A,B,C.(1)试确定BAC所在圆的圆心O(保留作图痕迹);(2)设△ABC是等腰三角形,底边BC=8 cm,腰AB=52cm,求圆片的半径R.22、(8分)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .(1) 求证:BD CD =;(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.23.(12分)(2015•永州)如图,已知△ABC 内接于⊙O,且AB=AC ,直径AD 交BC 于点E ,F 是OE 上的一点,使CF∥BD.(1)求证:BE=CE ;(2)试判断四边形BFCD 的形状,并说明理由;(3)若BC=8,AD=10,OE=3求CD 的长.AB CEF D24、(10分)如图,△ABC 内接于⊙O , CA=CB ,CD ∥AB 且与OA 的延长线交于点D .(1).判断CD 与⊙O 的位置关系并说明理由;(2).若∠ACB=120°,OA=2,求CD 的长;25.(8分)如图,在⊙O 中,AB 是直径,点D 是⊙O 上的一点,点C 是AD ︵的中点,弦CM 垂直AB 于点F ,连接AD ,交CF 于点P ,连接BC ,∠DAB =30°.(1)求∠ABC 的度数;(2)若CM =83,求AC ︵的长度.(结果保留π)26.(12分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.参考答案一、选择:1、B ,2、B ,3、D ,4、A ,5、A ,6、B ,7、C ,8、D,9、D ,10、B 。

二、填空:11、15, 12、27°, 13、70°,14、50°,15、68π,16、72°, 17、10π, 18、15cm, 19、117.5° 20、9π−12√3。

21.(1)分别作AB ,AC 的垂直平分线,并设它们交于点O ,则点O 即为所求.(2)∵ AB =AC ,∴∠AOB =∠AOC .连接OA ,OA 交BC 于点E .∴ BE =21BC =4.Rt△ABE 中, AE =22-BE AB =2.Rt△BEO 中,BO 2=EO 2+ BE 2,R 2=(R -2) 2+42,R =5.所以圆片半径长5 cm22、【答案】(1)证明:∵AD 为直径,AD BC ⊥,∴BD CD =.∴BD CD =. ............................ 3分(2)答:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. ....... 4分理由:由(1)知:BD CD =,∴BAD CBD ∠=∠.∵DBE CBD CBE ∠=∠+∠,DEB BAD ABE ∠=∠+∠,CBE ABE ∠=∠, ∴DBE DEB ∠=∠.∴DB DE =. .............................. 6分 由(1)知:BD CD =.∴DB DE DC ==.∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. …………………7分23. (1)证明:∵AD 是直径,∴∠ABD=∠ACD=90°,在Rt △ABD 和Rt △ACD 中,,∴Rt △ABD ≌Rt △ACD ,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE=4,∵OD=5,OE=3,∴DE=2在Rt△CED中,CD===2.24、(1).CD与⊙O相切.理由如下:如图,连接OC,∵CA=CB,∴OC⊥AB,∴AC BC∵CD∥AB,∴OC⊥CD,∵OC 是半径, ∴CD 与⊙O 相切.(4分)(2).∵CA=CB ,∠ACB=120°, ∴∠ABC=30°,∴∠DOC=60° ∴∠D=30°,∵OA=OC=2, ∴D0=4,∴CD==2(4分)25.解:(1)连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∵∠DAB =30°,∴∠ABD =90°-30°=60°.∵C 是AD ︵的中点,∴∠ABC =∠DBC =12∠ABD =30° (2)连接OC ,则∠AOC =2∠ABC =60°,∵CM ⊥直径AB 于点F ,∴CF =12CM =43,∴在Rt △COF 中,CO =233CF =233×43=8,∴AC ︵的长度为60π×8180=8π326.26.(1)证明:连接OD ,∵OB=OD ,∴∠ABC=∠ODB ,∵AB=AC ,∴∠ABC=∠ACB ,∴∠ODB=∠ACB ,∴OD ∥AC ,∵DF 是⊙O 的切线,∴DF ⊥OD ,∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE ,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.。

相关文档
最新文档