高中数学概率与统计
高中数学统计与概率
高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。
4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。
(最全)高中数学概率统计知识点总结
高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。
高中数学中的概率与统计公式整理
高中数学中的概率与统计公式整理概率与统计是高中数学中的重要内容,它们在我们日常生活中的应用非常广泛。
在学习概率与统计时,整理公式是非常重要的,它可以帮助我们更好地理解和应用这些知识。
本文将整理一些高中数学中常用的概率与统计公式,帮助大家更好地掌握这一知识点。
一、概率公式1. 事件的概率公式:对于一个事件A,它的概率可以用如下公式表示:P(A) = 事件A发生的次数 / 总的可能次数2. 互斥事件的概率公式:如果两个事件A和B是互斥事件(即两个事件不能同时发生),则它们的概率可以用如下公式表示:P(A或B) = P(A) + P(B)3. 相互独立事件的概率公式:如果两个事件A和B是相互独立事件(即一个事件的发生不受另一个事件的影响),则它们的概率可以用如下公式表示:P(A且B) = P(A) × P(B)4. 条件概率公式:如果事件B已经发生,事件A的概率可以用如下公式表示:P(A|B) = P(A且B) / P(B)5. 贝叶斯公式:如果事件A和事件B是两个相关事件,且P(B) ≠ 0,则事件B发生的条件下事件A发生的概率可以用如下公式表示:P(A|B) = P(B|A) × P(A) / P(B)二、统计公式1. 样本均值的计算公式:对于一组样本数据x1, x2, ..., xn,它们的均值可以用如下公式表示:x = (x1 + x2 + ... + xn) / n2. 总体均值的计算公式:对于一组总体数据x1, x2, ..., xn,它们的均值可以用如下公式表示:μ = (x1 + x2 + ... + xn) / N3. 样本方差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的方差可以用如下公式表示:s^2 = [(x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2] / (n - 1)4. 总体方差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的方差可以用如下公式表示:σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / N5. 样本标准差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:s = √[s^2]6. 总体标准差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:σ = √[σ^2]7. 正态分布的概率计算公式:对于一个服从正态分布的随机变量X,它的概率密度函数可以用如下公式表示:f(x) = (1 / (σ√(2π))) × e^(-((x - μ)^2) / (2σ^2))以上是高中数学中常用的概率与统计公式的整理。
高中数学概率与统计知识点
高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
高中数学概率与统计知识点总结
高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。
一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。
在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。
1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。
样本空间中的元素称为样本点。
事件是指样本空间的子集,即某些样本点的集合。
1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。
互斥事件是指两个事件不可能同时发生的事件。
1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。
概率的取值范围在0到1之间,且所有可能事件的概率之和为1。
二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。
2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。
在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。
2.2 频率概率频率概率适用于大量重复试验的情况。
频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。
2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。
3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。
排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。
高中数学公式大全概率计算与统计分析的公式推导
高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。
本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。
一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。
对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。
2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。
对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。
2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。
对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。
高中数学概率与统计题型解答方法
高中数学概率与统计题型解答方法概率与统计是高中数学中的一门重要课程,它涵盖了许多与概率、统计相关的数学题型。
在掌握基础知识的基础上,采用正确的解答方法,可以更好地应对这些题型。
本文将介绍几种常见的概率与统计题型,以及相应的解答方法。
一、事件概率1.求事件的概率求事件的概率是概率与统计中最基础的题型。
对于一个随机试验,事件A发生的概率可以用下列公式表示:P(A) = 事件A的可能性数 / 总的可能性数2.互斥事件的概率互斥事件是指两个事件不可能同时发生的情况。
假设A和B是两个互斥事件,则它们的概率可以用下列公式表示:P(A∪B) = P(A) + P(B)3.独立事件的概率独立事件是指两个事件的发生与否互不影响的情况。
如果A和B是两个独立事件,则它们的概率可以用下列公式表示:P(A∩B) = P(A) × P(B)二、排列与组合1.排列问题排列是指从若干个不同元素中选取若干个元素按照一定的顺序进行排列。
对于从n个元素中选取k个元素进行排列的问题,可以使用下列公式进行计算:A(n,k) = n! / (n-k)!2.组合问题组合是指从若干个不同元素中选取若干个元素进行组合,不考虑其顺序。
对于从n个元素中选取k个元素进行组合的问题,可以使用下列公式进行计算:C(n,k) = n! / (k! × (n-k)!)三、概率分布1.离散型随机变量的概率分布离散型随机变量的概率分布可以通过列出其取值以及相应的概率来表示。
当给定每个取值对应的概率后,可以计算出该随机变量的期望值、方差等。
2.连续型随机变量的概率分布连续型随机变量的概率分布可以通过概率密度函数来表示。
在解答问题时,常常需要计算某个取值范围内的概率,可以通过计算概率密度函数下的面积来实现。
四、抽样与推断1.简单随机抽样简单随机抽样是指从总体中随机地选取n个样本进行调查或实验。
在进行统计推断时,可以根据样本数据来估计总体参数。
2.抽样分布抽样分布是指统计量的分布。
高中数学概率与统计知识点总结
概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。
高中数学《概率与统计》重要公式
高中数学《概率与统计》重要公式1.n个互斥事件发生的概率和公式为P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
2.独立事件A,B同时发生的概率为P(A·B)= P(A)·P(B)。
3.n个独立事件同时发生的概率为P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。
4.等可能性事件的概率为P(A)= m/n。
5.n次独立重复试验中某事件恰好发生k次的概率为C(n,k)P^k(1-P)^(n-k)。
6.互斥事件A,B分别发生的概率的和为P(A+B)=P(A)+P(B)。
7.离散型随机变量的分布列具有两个性质:(1) Pi>=0(i=1,2.) (2) P1+P2+。
=1.8.数学期望具有两个性质:(1) E(aX+b)=aE(X)+b (2) 若X~B(n,p),则E(X)=np。
9.若随机变量X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则E(X)=1/p。
10.方差公式为2D(X)=(x1-E(X))^2P1+(x2-E(X))^2P2+。
+(xn-E(X))^2Pn。
11.方差具有三个性质:(1) D(aX+b)=a^2D(X) (2) 若X~B(n,p),则D(X)=np(1-p) (3) 若X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则D(X)=q/p^2.12.方差与期望的关系为D(X)=E(X^2)-(E(X))^2.13.标准差为σ(X)=sqrt(D(X))。
14.标准正态分布密度函数为f(x)=1/sqrt(2π)e^(-x^2/2),其中x属于实数集。
15.正态分布密度函数为f(x)=(1/(σsqrt(2π)))e^(-((x-μ)^2)/(2σ^2)),其中μ和σ(σ>0)为参数,分别表示个体的平均数与标准差。
高中数学概率和统计知识点
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m; 等可能事件概率的计算步骤:计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)kk n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.离散型随机变量的期望与方差随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;(Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归 1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。
高中数学知识点第十二章-概率与统计
高中数学知识点第十二章-概率与统计 考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样. (2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B(n ·p ),其中n ,p 为参数,并记p)n b(k;qp C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布. ②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1 ==-k p q k 于是我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0CC C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 ⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a =⋅==+-.⑶超几何分布与二项分布的关系. 设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n 0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n =+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为n n 2211.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p +q = 1)⑷二项分布:∑=⋅-⋅=-np q pk n k n k E k n k)!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f .(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)( x Φ.比如5.00793.0)5.0(=-Φσμ则σμ-5.0必然小于0,如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通 常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).S 阴=0.5S a =0.5+S。
高中数学中的概率与统计数据分析
高中数学中的概率与统计数据分析概率与统计数据分析在高中数学中的应用概率与统计数据分析是高中数学中重要的一个分支。
它涉及到确定事件发生的可能性,并通过收集和分析数据来帮助我们做出更准确的预测。
本文将探讨概率与统计数据分析在高中数学中的应用,并重点介绍概率、统计、数据分析以及它们之间的关系。
一、概率的基本概念与应用概率是描述一个事件发生可能性的数值。
在数学中,概率用数字的形式表示一个事件发生的可能性大小,其范围从0到1。
在高中数学中,概率经常用来解决各种问题,比如掷骰子、扑克牌等。
例如,我们可以通过掷骰子的实验来了解概率的应用。
当骰子是均匀的,并且没有其他偏倚因素时,每个数字出现的可能性是相等的。
因此,一个骰子掷出1的概率是1/6,掷出2的概率也是1/6,依此类推。
概率可以通过数学公式来计算。
例如,当事件A和事件B相互独立时,事件A和事件B同时发生的概率可以通过将它们单独的概率相乘来计算。
这种计算方法在概率树中也可以直观地表示出来。
二、统计的基本概念与应用统计是收集、整理、分析和解释数据的过程。
在数学中,统计广泛应用于各个领域,包括经济学、社会学、医学等。
在高中数学课程中,学生通常会学习统计的基本概念和方法。
统计数据通常通过收集样本数据来获取总体的信息。
样本数据是从总体中选取的部分数据,通过对样本数据进行分析来推断总体的特征。
例如,我们可以通过随机抽样的方法调查1000名学生的身高,然后通过对这些数据进行统计分析,推断全校学生的平均身高。
统计数据包括描述性统计和推论统计。
描述性统计用于总结、描述和解释数据,比如计算平均值、中位数、众数等。
推论统计则是根据样本数据推断总体特征的方法,例如通过置信区间和假设检验来得出结论。
三、数据分析的基本概念与应用数据分析是通过收集、整理和分析数据来提取有用信息的过程。
在高中数学中,数据分析经常与概率和统计一起使用,以帮助我们理解和解释实际问题。
数据分析可以通过图表和图形来呈现。
高中数学概率与统计( 排列组合)
排列组合一 、分类、分步原理(一)分类原理:12n N m m m =+++.分类原理题型比较杂乱,须累积现象。
几种常见的现象有:1.开关现象:要根据开启或闭合开关的个数分类.2.数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数. 3.球赛得分:根据胜或负场次进行分类. (二)分步原理:12n N m m m =⨯⨯⨯.两种典型现象: 1.涂颜色(1)平面图涂颜色:先涂接触区域最多的一块(2)立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举. 2.映射按步骤用A 集合的每一个元素到B 集合里选一个元素,可以重复选.二 、排列、组合(一)常规题型求情况数1.直接法:先排(选)特殊元素,再排(选)一般元素。
捆绑法,插空法.2.间接法:先算总情况数,再排除不符合条件的情况数. (二)七种常考非常规现象1.小数量事件需要分类列举:凡不可使用公式且估计情况数较少,要分类一一列举 2.相同元素的排列:用组合数公式选出位置把相同元素放进去,不用排顺序 3.有序元素的排列:用组合数公式选出位置把有序元素放进去,不用排顺序 4.剩余元素分配:有互不相同的剩余元素需要分配时,用隔板法。
5.迈步与网格现象:要看一共走几步,把特殊的几步选出来,有几种选法就有几种情况. 6.立体几何与解析几何现象:多数用排除法求情况数 7.平均分组现象:先用分步原理选出每一组的元素,再除以因为平均分组算重复的倍数,平均分n 组,就除以nn A ,有几套平均分组就除几个xx A .(三)排列数,组合数公式运算的考察1.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 2. 组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 3. 组合数的两个性质(1)mn C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .4. 排列数与组合数的关系m mn nA m C =⋅! . 【题型体系】一、分类计数原理与分步计数原理 (一)选(排)人选(排)物1.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.482.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A .24种B .18种C .12种D .6种3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (二).染色1.用五种不同的颜色给图中的四个区域涂色,如果每一个涂一种颜色,相邻的区域不能同色,那么涂色的方法有__________种。
高中数学-公式-概率与统计
概率一、基本知识在一定的条件下必然要发生的事件,叫做必然事件;在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。
在大量重复进行同一试验时,事件A 发生的频率nm 总是接近于某个常数,在它附近摆动,这是就把这个常数叫做事件A 的概率,记作P(A)。
一次试验连同其中可能出现的每一个结果称为一个基本事件,通常试验中的某一事件A 由几个基本事件组成。
如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是n 1。
如果某个事件A 包含的结果有m 个,那么事件A 的概率P(A)= n m . 事件A 与B 不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
一般地,如果事件A 1、A 2、……A n 中的任何两个都是互斥事件,那么就说事件A 1、A 2、……A n 彼此互斥。
事件A 与A 中必有一个发生,这种其中必有一个发生的互斥事件叫做对立事件。
如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P(A+B)=P(A)+P(B)。
一般地,如果事件A 1、A 2、……A n 彼此互斥,那么事件A 1+A 2+……+A n (即A 1、A 2、……A n 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即P(A 1+A 2+……+A n )= P(A 1)+ P(A 2)+ ……+ P(A n )。
对立事件的概率的和等于1,即1)()()(=+=+A A P A P A P 。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)=P(A)P(B)。
一般地,如果事件A 1、A 2、……A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即)()()()(2121n n A P A P A P A A A P =。
高一必修二数学统计与概率
高一必修二数学统计与概率摘要:一、统计与概率的基本概念1.统计学的定义与作用2.概率论的定义与作用3.统计与概率的关系二、数据的收集与整理1.数据的来源与分类2.数据的收集方法3.数据的整理与展示三、描述性统计分析1.频数与频率分布2.图表法3.统计量度四、概率的基本概念与运算1.随机事件与样本空间2.概率的公理化定义3.概率的运算五、条件概率与独立性1.条件概率2.独立性3.贝叶斯公式六、随机变量及其分布1.随机变量的定义与性质2.离散型随机变量3.连续型随机变量七、数学期望与方差1.数学期望2.方差与标准差3.协方差与相关系数正文:在我国高中数学课程中,必修二数学统计与概率是高一阶段的重要内容。
本章主要介绍统计与概率的基本概念、数据的收集与整理、描述性统计分析、概率的基本概念与运算、条件概率与独立性、随机变量及其分布以及数学期望与方差等方面的知识。
首先,统计学是一门研究如何收集、整理、分析、解释以及展示数据的方法论,它具有广泛的应用,如在科学研究、企业管理、政府决策等方面都发挥着重要作用。
概率论则是一门研究随机现象的理论,通过研究随机现象发生的可能性,可以对未来事件进行预测。
统计与概率之间存在密切的联系,统计学中的许多方法都基于概率论的理论。
数据的收集与整理是统计分析的基础。
数据来源于各种渠道,包括实验数据、观测数据和调查数据等。
数据的整理主要包括数据的分类、排序、汇总等操作,而数据的展示则有图表法、描述性统计量度等方法。
描述性统计分析是统计学的一个重要分支,主要通过频数与频率分布、图表法以及统计量度等方法来概括和描述数据的基本特征。
在概率论部分,我们学习随机事件与样本空间、概率的公理化定义以及概率的运算等基本概念。
条件概率与独立性是概率论中的重要内容,通过学习这部分知识,我们可以更好地处理复杂事件之间的概率关系。
此外,贝叶斯公式是一种在概率论中广泛应用的计算工具,它可以帮助我们根据已知信息来更新对未知事件的概率估计。
高中数学中的概率与统计
高中数学中的概率与统计概率和统计是高中数学中非常重要的两个概念。
概率是用来描述事件发生的可能性,而统计则是通过对数据的收集、整理和分析来得出结论。
本文将从概率和统计的基本概念、应用以及解决实际问题等方面进行论述。
一、概率的基本概念概率是指事件发生的可能性。
在高中数学中,我们常用“P(A)”来表示事件A发生的概率。
概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。
1.1 事件的分类在概率中,事件可以分为互斥事件和非互斥事件。
互斥事件是指两个事件不能同时发生,而非互斥事件则可以同时发生。
1.2 概率的计算对于互斥事件,可以通过求和法则来计算概率。
若事件A和事件B 互斥,则P(A或B) = P(A) + P(B)。
而对于非互斥事件,可以通过减法法则来计算概率。
若事件A和事件B非互斥,则P(A或B) = P(A) + P(B) - P(A和B)。
二、统计的基本概念统计是指通过对数据的收集、整理和分析来得出结论的过程。
在高中数学中,我们主要学习的是统计中的平均数、频率分布和抽样等概念。
2.1 平均数平均数是统计中最常见的概念之一。
我们可以通过求和然后除以总个数来计算平均数。
例如,对于一组数据x1, x2, ..., xn,其平均数可以表示为:(x1 + x2 + ... + xn) / n。
2.2 频率分布频率分布是将数据按照不同数值进行分类,并统计各个类别的个数。
通过绘制频率分布表或直方图,我们可以更直观地了解数据的分布状况。
2.3 抽样抽样是统计中常用的一种方法,它通过从总体中选择一部分样本进行调查和分析。
合理的抽样方法可以保证所得到的结论具有代表性。
三、概率与统计的应用概率和统计在现实生活中有着广泛的应用,以下通过几个具体的例子来说明。
3.1 古典概率的应用古典概率是一种基于样本空间和事件发生数的概率计算方法。
例如,在一组均匀的骰子中,计算掷出的点数为偶数的概率就是一个古典概率的应用。
高中数学公式大全概率计算与统计分析的实例公式
高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。
4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。
5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。
高中数学中的概率与统计概率密度
高中数学中的概率与统计概率密度引言:在高中数学中,概率和统计是重要的数学分支。
概率研究的是随机事件的可能性,而统计则涉及数据的收集、整理和分析。
概率密度函数是概率与统计中的一个关键概念,本文将深入探讨高中数学中的概率与统计概率密度。
一、概率的基本概念概率是研究随机事件发生的可能性的数学分支。
在高中数学中,我们常常通过实验和理论计算来确定概率。
实验是通过反复的观察和记录事件发生的次数来得到概率的估计。
而理论计算是基于事件发生的总数和所关心事件的可能性来计算概率。
二、概率的计算方法在概率的计算中,我们常常使用数学的方法来得到准确的概率值。
常见的计算方法包括:1.古典概率:基于事件的等可能性,通过计算事件发生的次数与总数的比值来得到概率。
2.频率概率:根据事件在大量实验中发生的频率来估计概率。
3.条件概率:考虑事件的已知条件,通过计算条件下事件发生的概率来得到概率值。
4.加法原理:用于计算多个事件同时发生的概率,通过求和的方式来得到概率的结果。
5.乘法原理:用于计算多个独立事件同时发生的概率,通过相乘的方式来得到概率的结果。
三、统计的基本概念统计是研究数据收集、整理和分析的数学分支。
统计学在生活和科学中起着重要的作用,帮助我们理解和解释大量的数据。
在高中数学中,统计主要包括数据的收集与整理、图表的绘制以及对数据的分析和解释。
四、概率密度函数的定义及性质概率密度函数是概率与统计中的一个关键概念。
它是用于描述连续随机变量概率分布的函数。
概率密度函数具有以下性质:1.非负性:概率密度函数的取值非负,即在定义域上的取值大于等于0。
2.归一性:概率密度函数的积分或求和等于1,即在整个定义域上的取值的总和等于1。
3.连续性:概率密度函数在定义域上连续,没有跳跃或断裂的点。
五、概率密度函数的应用概率密度函数在实际问题中有着广泛的应用。
它可以用于描述连续随机变量的概率分布,从而帮助我们分析和解决与概率与统计相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数
二
在绘制或应用频率分布直方图时,忽视纵轴的意义,在计算频率、平均 学
轮
复 习
值、中位数时容易导致错误.
3.混淆茎叶含义致误
在绘制茎叶图章地,易遗漏重复出现的数据,重复出现的数据要重复记
录,同时不能混淆茎叶图中茎与叶的含义.
返回导航
专题七 概率与统计
4.混淆概念致误
相关关系与函数关系区别在于:函数关系是一种确定的关系,相关关系是
x )2.
返回导航
专题七 概率与统计
(4)样本标准差
s=_____1n_[_x_1-___x__2+___x_2_-__x__2_+__…__+__x_n_-__x__2_] ____=
1n
ni=1
xi- x 2.
数
二 轮
注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、 学
复
习 方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估
中位数:样本数据中,将数据按大小排列,位于最中间的数据.如果数据的
个数为偶数,就取中间两个数据的平均数作为中位数.
数
二 轮 复
(2)样本平均数 x =1n(x1+x2+…+xn)=1ni=n1xi.
学
习
(3)样本方差 s2=___1n_[(_x_1-___x_)_2+__(_x_2_-__x_)_2+__…__+__(_x_n_-__x_)_2_] ________=1ni=n1 (xi-
返回导航
专题七 概率与统计
6.独立性检验
假设有两个分类变量 X 和 Y,它们的取值分别为{x1,x2}和{y1,y2},其样本
频数列联表(称为 2×2 列联表)为
y1
y2
总计
数 学
二
轮 复
x1
a
b
a+b
习
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
返回导航
专题七 概率与统计
则 K2=aa++bb+c+c+dda+adc-bb+c2d,
第一部分
专题强化突破
专题七 概率与统计
专题七 概率与统计
二 轮 复 习
数 学
返回导航
专题七 概率与统计
二 轮 复 习
数 学
返回导航
第一讲 统计与统计案例
专题七 概率与统计
高考考点
考点解读
抽样方法
1.分层抽样中利用抽样比确定样本容量、各层抽样的 个体数等 2.考查系统抽样的有关计算
1.频率分布直方图、茎叶图的绘制及识图,并利用图
(3)线性回归方程的求解及应用.
返回导航
1
知识整合、易错警示
2
感悟真题、掌握规律
3
典题例析、命题探明
4
课时题组、复习练案
专题七 概率与统计
知识整合、易错警示
数 学
二
轮
复
习
返回导航
专题七 概率与统计
知识整合
1.抽样方法 三种抽样方法包括:__简__单__随__机__抽__样____、__系__统__抽__样____、__分__层__抽__样____.
编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行
体质测验.若46号学生被抽到,则下面4名学生中被抽到的是
(C )
A.8号学生
B.200号学生
C.616号学生
D.815号学生
数
学
二 轮
[解析] 根据题意,系统抽样是等距抽样,
复
习
所以抽样间隔为1100000=10.
学
二 轮
计算问题.
复
习
返回导航
专题七 概率与统计
5.回归分析
n
xi--x yi--y
i=1
r=
,叫作相关系数.
数
二 轮
n
xi--x 2
n
yi--y 2
学
复 习
i=1
i=1
相关系数用来衡量变量 x 与 y 之间的线性相关程度;|r|≤1,且|r|越接近于 1,
相关程度越高;|r|越接近于 0,相关程度越低.
若 K2>3.841,则有 95%的把握说两个事件有关;
二
轮 复
若 K2>6.635,则有 99%的把握说两个事件有关;
习
若 K2<2.706,则没有充分理由认为两个事件有关.
数 学
返回导航
专题七 概率与统计
易错警示
1.忽视两个比例关系致误
分层抽样中,易忽视每层抽取的个体的比例是相同的.
2.忽视纵轴意义致误
一种非确定关系.
5.认识错误致误
数
二
对于回归直线方程易误认为样本数据必在回归直线上,实际上回归直线必 学
轮
复 习
过样本点中心,可能所有的样本点都不在直线上.
返回导航
专题七 概率与统计
数
感悟真题、掌握规律
学
二
轮
复
习
返回导航
专题七 概率与统计
1.(2019·全国卷Ⅰ,6)某学校为了解1 000名新生的身体素质,将这些学生
2.统计图表
(1)在频率分布直方图中:
数
二
频率
学
轮
复 习
①各小矩形的面积表示相应各组的频率,各小矩形的高=__组__距__;②各小
矩形面积之和等于__1___;③中位数左右两侧的直方图面积___相__等___,因此可以
估计其近似值.
(2)茎叶图
返回导航
专题七 概率与统计
3.样本的数字特征
(1)众数:在样本数据中,出现次数最多的那个数据.
(1)掌握三种抽样的特点及相互联系,特别是系统抽样和分层抽样的应用.
(2)会用样本的频率分布估计总体分布,会用样本的数字特征估计总体的数字特
征.
数
二 轮
(3)了解回归分析及独立性检验的基本思想,认识其统计方法在决策中的应用.
学
复
习 预测2020年命题热点:
(1)频率分布直方图、茎叶图的绘制及应用.
(2)数字特征的求解及应用.
计总体的平均数与标准差、方差.
(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕
平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.
返回导航
专题七 概率与统计
4.变量间的相关关系
(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点
从整体上看大致分布在一条直线的附近,我们说变量 x 和 y 具有线性相关关系.
(2)用最小二乘法求回归直线的方程
设线性回归方程为^y=b^x+a^,则数学二 轮 复 习n
xi--x yi--y
b^=i=1
=____________________
n
xi--x 2
.
i=1
a^=-y -b^-x
返回导航
专题七 概率与统计
注意:回归直线一定经过样本的中心点(-x ,-y ),据此性质可以解决有关的 数
数
样本频率分布、数字特 解决实际问题
学
二 轮 复
征
2.茎叶图与数字特征相结合考查
习
3.平均数和方差的计算
线性回归分析与独立性 1.线性回归方程的求解及应用
检验在实际问题中的应 2.独立性检验的应用以及独立性检验与统计、概率
用
的综合问题
返回导航
专题七 概率与统计
备考策略
本部分内容在备考时应注意以下几个方面: