实变函数期末考试卷A及参考答卷
实变函数期末考试题
实变函数期末考试题考试题目:本次实变函数期末考试题旨在考察学生对实变函数的理解、分析和应用能力。
考试时间为120分钟,共分为两部分,选择题和解答题。
请同学们仔细阅读每个问题,并在考试纸上作答。
祝各位同学好运!第一部分:选择题选择题共有10道题,每题4分,共40分。
请在A、B、C、D四个选项中选择正确答案,并填涂在答题纸上。
1. 设函数f(x) = x^2 + 2x - 1,那么f'(x)的导函数是:A. 2x + 2B. 2x + 1C. 2x - 1D. 2x + 22. 实变函数f(x) = e^x,则f''(x)的导函数是:A. e^xB. e^x - 1C. e^x + 1D. e^x + e^x3. 设函数f(x) = 3x^2 + 5,那么f(0)的值为:A. 5B. 3C. 0D. 84. 函数f(x) = |x - 2|的定义域为:A. (2, +∞)B. (-∞, 2)C. [2, +∞)D. (-∞, +∞)5. 函数f(x) = log(2x - 1)的定义域为:A. (1/2, +∞)B. (-∞, 1/2)C. [1/2, +∞)D. (-∞, +∞)6. 函数f(x) = sin(2x)的最小正周期为:A. πB. 2πC. π/2D. π/47. 函数f(x) = arctan(x)的值域为:A. (-∞, +∞)B. (-π/2, π/2)C. (-π/4, π/4)D. [0, π/2)8. 设函数f(x) = ln(x),则f'(x)的导数为:A. 1/xB. xC. x - 1D. 1/(x - 1)9. 函数f(x) = x^3在闭区间[0, 1]上的最大值为:A. 27B. 9C. 1D. 310. 函数f(x) = sqrt(x)在闭区间[0, 4]上的最小值为:A. 0B. 1C. 2D. 4第二部分:解答题解答题共有3道题,共60分。
实变函数测试题与答案
实变函数测试题与答案实变函数测试题⼀,填空题1. 设1,2n A n ??=, 1,2n =, 则lim nn A →∞= .2. ()(),,a b -∞+∞,因为存在两个集合之间的⼀⼀映射为.3. 设E是2R 中函数1c o s ,00,0xy x x ?≠?=?? =?的图形上的点所组成的集合,则E '= ,E ?= .4. 若集合nE R ?满⾜E E '?, 则E 为集.5. 若(),αβ是直线上开集G 的⼀个构成区间, 则(),αβ满⾜: , .6. 设E 使闭区间[],a b 中的全体⽆理数集, 则mE = .7. 若()n mE f x →()0f x ??=?, 则说{}()n f x 在E 上.8. 设nE R ?, 0n x R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上⼏乎处处有限的可测函数列,, 则称{}()n f x 在E 上依测度收敛于()f x .10. 设()()n f x f x ?,x E∈, 则{}()n f x 的⼦列{}()jn fx , 使得.⼆, 判断题. 正确的证明, 错误的举反例. 1. 若,A B 可测, A B ?且A B ≠,则mA mB <.2. 设E 为点集, P E ?, 则P 是E 的外点.3. 点集11,2,,E n=是闭集. 4. 任意多个闭集的并集是闭集.5. 若n ER ?,满⾜*m E =+∞, 则E 为⽆限集合.三, 计算证明题 1. 证明:()()()A B C A B A C --=-2. 设M 是3R 空间中以有理点(即坐标都是有理数)为中⼼, 有理数为半径的球的全体, 证明M 为可数集. 3. 设n E R ?,i E B ?且i B 为可测集, 1,2i =.根据题意, 若有2ln 1,(),0,1x x P f x x x P ?+ ∈?=? ∈-??. 求1(L)()f x dx ?.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3 x , ⽽在0P 的余集中长为13n的构成区间上取值为16n , ()1,2n =, 求10()f x dx ?.6. 求极限: 13230lim(R)sin 1n nx nxdx n x →∞+?.实变函数试题解答⼀填空题 1.[]0,2.2. ()()()tan ,,.2x x a x a b b aππ=--∈??-??3.{}1(,)cos ,0(0,)1x y y x y y x ??=≠≤??; ?.4. 闭集.5. (),.,.G G G αβαβ? ? ?6.7. ⼏乎处处收敛于()f x 或 a.e.收敛于()f x .8. 对000,(,)U x δδ?> 有{}()0E x -=?.9.lim ()()0n n mE f x f x σ→∞-≥= 10.()()n f x f x → a.e.于E .⼆判断题 1. F . 例如, (0,1)A =, []0,1B =, 则A B ?且A B ≠,但1mA mB ==. 2. F . 例如, 0(0,1)?, 但0不是(0,1)的外点.3. F . 由于{}0E E '=.4. F . 例如, 在1R 中, 11,1n F nn ??=-, 3,4n =是⼀系列的闭集, 但是3(0,1)n n F ∞==不是闭集.5. T . 因为若E 为有界集合, 则存在有限区间I ,I <+∞, 使得E I ?, 则**,m E m I I ≤=<+∞ 于*m E =+∞ .三, 计算证明题. 1. 证明如下:()()()()()()()()SSS S S A B C A B CAB C A B C A B A C A B A C --=- = = = =-2. M 中任何⼀个元素可以由球⼼(,,)x y z , 半径为r 唯⼀确定, x ,y , z 跑遍所有的r 跑遍所有的有理数. 因为有理数集于正有理数集为可数集都是可数集, 故M 为可数集. 3. 令1i i BB ∞==, 则i E B B ??且B 为可测集, 于是对于i ?, 都有i B E B E -?-, 故()()**0i m B E m B E ≤-≤-,令i →∞, 得到()*0m B E -=, 故B E -可测. 从⽽()E B B E =--可测. 4. 已知0mP =, 令[]0,1G P = -, 则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==.5. 将积分区间[]0,1分为两两不相交的集合: 0P , 1G , 2G , 其中0P 为Cantor 集,n G 是0P 的余集中⼀切长为1n的构成区间(共有12n -个)之并. 由L 积分的可数可加性,并且注意到题中的00mP =, 可得101111111()()()()()1()61126631112916nn P G P G n n P G n n n n n nn n n n f x dx f x dx f x dxf x dx f x dxf x dx dxmG ∞=∞=∞=-∞∞==∞==+ =+ =+ =0+=? =?=∑∑?∑∑∑6. 因为323sin 1nx nx n x +在[]0,1上连续, 13 230(R)sin 1nx nxdx n x+?存在且与13230(L)sin 1nx nxdx n x+?的值相等. 易知 32232323211sin .11122nx nx nx nx n x n x n x x x≤≤?≤+++ 由于12x在()0,1上⾮负可测,且⼴义积分112dx x收敛,则12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+, ()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++?? = ?+?? ==.。
实变函数A卷(解答).docx
华屮师范大学2002——2003学年第二学期期(中、末)考试试卷(A、R卷)课程名称实变函数课程编号42111300 任课教师_________题型判断题叙述题简答题解答题总分分值151********得分一、判断题(判断正确、错课,并改正。
共5题,共5X3=15分)1、可数个冇限集的并集是可数集。
.(X )改正:可数个有限集的并集不一定是可数集。
2、存在开集使具余集仍为开集。
(V )co3、若可测集列E“单调递减,则m A E n = limrnE, o( X )n=\ ns改正:若可测集列乞单调递减,且存在〃0,使加£心<008则m A E n = lim mE n <>n=\n—4、若E是可测集,/(兀)是£上的实函数,则/(x)在E上可测的充要条件是:0 实数a,b(a<b) , E[x\a<f<b]都是可测集。
(X )改正:若£是可测集,/(Q是E上的实函数,则/(x)在E上可测的充耍条件是: 0实数a, E[x\f>a]都是可测集。
5、若E是可测集, /(兀)是E上的非负可测函数,则于(兀)在E上一定可积。
改正:若E是可测集, /(X)是E上的非负可测函数,则/(x)在E上不一定可积。
二.叙述题(共5题,共5X3=15分)1、集合的对等。
答:设A、B是两个集合,若A、BZ间存在一一对应,则称A与B对等。
2、可测集。
答:设E u R”,如果对任意T uR”,总有mV=/77*(Tn£) + m*(Tn£c),则称E为可测集。
3、可测集与几型集的关系。
答:设E为可测集,则存在人型集F,使F uE且加E二加F、加(E — F) = O。
4、叶果洛夫定理。
答:设mE < +oo , { f n(x))为E上儿乎处处有限的可测函数列,/(兀)也为E上儿乎处处有限的可测函数,如果AU)^/(x) a.e.于E,则对任意£>0,存在可测了集E£^E 使在E&上,f n (兀)一致收敛于/*(兀),而m{E-E G)< 8 o5、九(兀)在可测集E上依测度收敛于/(兀)的定义。
实变函数期末考试题库
《实变函数》期末考试试题汇编目录《实变函数》期末考试模拟试题(一) (2)《实变函数》期末考试模拟试题(二) (7)《实变函数》期末考试模拟试题(三) (13)《实变函数》期末考试模拟试题(四) (18)《实变函数》期末考试模拟试题(五) (27)《实变函数》期末考试模拟试题(六) (30)《实变函数》期末考试模拟试题(七) (32)《实变函数》期末考试模拟试题(八) (36)《实变函数》期末考试模拟试题(九) (41)《实变函数》期末考试模拟试题(十) (47)《实变函数》期末考试题(一) (57)《实变函数》期末考试题(二) (63)《实变函数》期末考试模拟试题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A )(A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃= (C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆ 2、若n E R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP = 4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D ) (A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是n R 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠ 二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE > 2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E > (C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积 (B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积 (D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导 三、填空题(将正确的答案填在横线上)1、设X 为全集,A ,B 为X 的两个子集,则\A B=C A B ⋂ 。
实变函数(复习资料,带答案)
---《实变函数》试卷一一、单项选择题( 3 分×5=15 分)1、下列各式正确的是()( A) lim A n A k ;(B) lim A nn 1 k n A k ;n n 1 k n n( C) lim A n A k ;( D) lim A nn 1 k A k ;n n 1 k n n n2、设 P 为 Cantor 集,则下列各式不成立的是()(A)P c (B)mP 0(C)P'P(D)P P3、下列说法不正确的是()(A)凡外侧度为零的集合都可测( B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n ( x) 是 E 上的a.e.有限的可测函数列 , 则下面不成立的是()(A)若f n(x) f ( x) ,则f n( x) f ( x)(B)sup f n ( x) 是可测函数(C)inf f n (x) 是可测函数 ; ( D)若n nf n (x) f (x) ,则 f (x) 可测5、设 f(x) 是[ a,b]上有界变差函数,则下面不成立的是()(A) f (x) 在 [ a, b] 上有界(B)f ( x) 在 [ a,b] 上几乎处处存在导数(C)f'( x)在[ a, b]上 L 可积 (D)bf '(x)dx f (b) f (a)a二.填空题 (3 分× 5=15 分 )1、(C s A C s B) ( A ( A B))_________2、设 E 是 0,1 上有理点全体,则oE' =______, E =______, E =______.3、设 E 是 R n中点集,如果对任一点集T 都,则称 E是L可测的4、f ( x)可测的 ________条件是它可以表成一列简单函数的极限函数 . (填“充分”,“必要”,“充要”)5、设f (x)为 a, b 上的有限函数,如果对于a, b 的一切分划,使_____________________________________则,称f ( x)为a, b 上的有界变差函数。
《实变函数》试卷及参考答案
《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。
实变函数期末考试卷A卷资料
(3)因为 xnxnxxnnxnxxnnx2121sin121222132221)(xF 显然)(xF在]1,0[上可积。于是由Lebesgue控制收敛定理,有 0sin1)(limsin1)(lim10322211032221dxnxxnnxLdxnxxnnxRnn 2. 设为有理数,的无理数;为小于的无理数为大于xxxxxxf,01,;1,)(2试计算]2,0[)(dxxf。 解:因为有理数集的测度为零,所以 2)(xxf ..ea 于]1,0[, xxf)( ..ea 于]2,1[。 于是 ]2,1[]1,0[]2,0[)()()(dxxfdxxfdxxf dxxdxx211026112331 四、证明题(每题8分,共40分) 1. 证明:)()(11nnnnAAAA
Hale Waihona Puke 实变函数 一、 判断题(每题2分,共20分) 1.若A是B的真子集,则必有BA。 (×) 2.必有比a小的基数。 (√) 3.一个点不是E的聚点必不是E的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若E,则0*Em。 (×) 6.任何集nRE都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(xf在可测集E上可测,则)(xf在E的任意子集上也可测。(×) 10.)(xf在E上可积必积分存在。 (×) 1.设E为点集,EP,则P是E的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设nE是一列可测集,且1,1,2,,nnEEn则1()lim().nnnnmEmE(× ) 4.单调集列一定收敛. (√ ) 5.若()fx在E上可测,则存在F型集,()0FEmEF,()fx在F上连续.( × )
证明:)(1nnAA(AnnA1c) )(1cnnAA =)(1cnnAA )(1nnAA 2. 设M是直线上一族两两互不相交的非空开区间组成的集合,证明M是至多可列集。 证明:由有理数集的稠密性可知,每一个开区间中至少有一个有理数,从每个开区间中取定一个有理数,组成一个集合A。因为这些开区间是互不相交的,所以此有理数集A与开区间组成的集合M是一一对应的。则A是有理数集的子集,故至多可列,所以M也是至多可列集。 3. 证明:若0Em,则E为可测集。 证明:对任意点集T,显然成立着 )()(cETmETmTm。 另一方面,因为0Em,而EET,所以EmETm)(,于是)(ETm0。又因为cETT,所以)(cETmTm,从而 )()(cETmETmTm。 总之,)()(cETmETmTm。故E是可测集。 4. 可测集E上的函数)(xf为可测函数充分必要条件是对任何有理数r,集合])([rxfE是可测集。
实变函数试题库参考答案 (2)
《实变函数》试题题库参考答案一、选择题1、D2、C3、D4、D5、A6、B7、C8、A9、B 10、C 11、C 12、D 13、C 14、B 15、C 16、D 17、A 18、D 19、C 20、A 21、B 22、C 23、B 24、C 25、A 26、C 27、D 28、D 29、B 30、D 31、A 32、B 33、C 34、A 35、B 36、D 37、C 38、B 39、C 40、B 41、B 42、D 43、B 44、A 45、A 46、D 47、D 48、B 49、A 50、B 51、A 52、D 53、C 54、D 55、B 56、A 57、D 58、C 59、A 60、D 61、A 62、B 63、D 64、C 65、C 66、D 67、B 68、A 69、B 70、C 71、D 72、C 73、C 74、B 75、A 76、B 77、A 78、C 79、C 80、D 81、B 82、A 83、B 84、C 85、C 86、B 87、C 88、D 89、A 90、A二、填空题1、n 2 ;2、c ;3、c ;4、c ;5、c ;6、c ;7、{x:对于任意的I ∈α,有αA x ∈};8、{x:存在I ∈α,使得αA x ∈};9、ααA C s I∈⋃;10、ααA C s I ∈⋂;11、n kn k A ∞=∞=⋃⋂1;12、n kn k A ∞=∞=⋂⋃1;13、211)(∑=nk k x ;14、|})()({|sup ],[t y t x b a x -∈;15、2112})({∑∞=-k k k y x ;16、21222211})(){(y x y x -+-;17、21233222211})()(){(y x y x y x -+-+-;18、21244233222211})()()(){(y x y x y x y x ++-+-+-;19、}1:),{(22≤+=y x y x E ;20、}1:),,{(222≤++z y x z y x ;21、}1:),{(22=+y x y x ; 22、}1:),{(22≤+y x y x ;23、}1:),,{(222=++z y x z y x ; 24、}1:),,{(222=++z y x z y x ; 25、2;26、0;27、1;28、)},({inf ,y x d By A x ∈∈;29、)},({sup ,y x d Ay A x ∈∈;30、1;31、∑∞=1||infi i I ;32、n n mS ∞→lim ;33、)(a f E >可测;34、0>∀σ有 ∞=<1i i I E ;35、C B D A ⊂⊂⊂;36、||x ;37、可测函数;38、点态收敛与一致收敛;39、)(*||E I m I --;40、次可数可加性;41、可测函数;42、可测函数;43、单调性;44、 ∞=1i i G (i G 开);45、推广;46、测度;47、)(*)(**CE T m E T m T m +=;48、 ∞=1n n F ,(n F 闭集);49、常数;50、可测函数,连续函数;51、n n mS ∞→lim ;52、零测集; 53、可测函数;54、依测度; 55、0; 56、0; 57、0; 58、0; 59、0;60、0三、判断题 1、( √ )理由: 集合具有无序性 2、( × )理由: 举一反例, 比如: 取A={1}, B={2} 3、( √ )理由: 空集Φ是任意集合的子集. 4、( × )理由:符号⊂表示集合间的关系,不能表示元素和集合的关系. 5、( × )理由:Φ表示没有任何元素的集合,而{Φ}表示单元素集合,这个元素是Φ6、( × )理由: Φ表示没有任何元素的集合,而{0}表示单元素集合,这个元素是07、( √ )理由: 根据内点的定义, 内点一定是聚点8、( × )理由: 举一反例,比如: E=(0,1),元素1不是E的外点,但却属于E的余集分9、( √ )理由: 有内点的定义可得.10、( √ )理由: 有内点的定义可得.11、( × )理由: 举例说明,比如: E=(0,1),元素1是E的边界点,但属于E.12、( × )理由: 举一反例,比如: E=(0,1),元素1是E的内点,但不属于E13、(×)理由: 因有若]1,0[]1,0)([-可测⊂E,E不可测,而EE14、(√)理由: 因)eaggf=>=≠E>f()(E()()gg(agaff>E==≠E>((())()f))g)(g((a两可测集的并可测。
(完整版)实变函数期末考试卷A及参考答卷
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就试卷 共 8 页 第 2 页得到列维定理的结论:。
成人教育《实变函数 》期末考试复习题及参考答案
一、单项选择题1.下列命题或表达式正确的是 DA .}{b b ⊂B .2}2{=C .对于任意集合B A ,,有B A ⊂或A B ⊂D .φφ⊂ 2.下列命题不正确的是 AA .若点集A 是无界集,则+∞=A m *B .若点集E 是有界集,则+∞<E m *C .可数点集的外测度为零D .康托集P 的测度为零 3.下列表达式正确的是 DA.}0),(m ax {)(x f x f -=+B .)()()(x f x f x f -++= C.)()(|)(|x f x f x f -+-=D .}),(min{)]([n x f x f n = 4.下列命题不正确的是 BA .开集、闭集都是可测集B .可测集都是Borel 集C .外测度为零的集是可测集D .σF 型集,δG 型集都是可测集 5.下列集合基数为a (可数集)的是 CA .康托集PB .)1,0(C .设i n nx x x x x A R A |),,,({,21 ==⊂是整数,},,2,1n i =D .区间)1,0(中的无理数全体二、计算题1. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰.解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰2. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰三、判断题 1. 若,A B 可测, A B ⊂且A B ≠,则mA mB <.(×)2. 设E 为点集, P E ∉, 则P 是E 的外点. (×)3. 点集11,2,,E n⎧⎫=⎨⎬⎩⎭的闭集.(×) 4. 任意多个闭集的并集是闭集.(×) 5. 若n ER ⊂,满足*m E =+∞, 则E 为无限集合.(√)6.非可数的无限集为c 势集。
实变函数测试题与答案
实变函数测试题与答案实变函数测试题一、填空题1.设 $A_n=\begin{pmatrix} 1/n \\ 1/(n+1) \\ \cdots \\ 1/(2n) \end{pmatrix}$,则 $\lim\limits_{n\to\infty}A_n=\begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$。
2.$(a,b)$ 与 $(-\infty,+\infty)$ 之间存在两个集合之间的一一映射,因此它们的基数相同。
3.设 $E$ 是函数 $y=f(x)$ 的图形上的点所组成的集合,则$E=\{(x,f(x)):x\in\mathbb{R}\}$。
4.若集合 $E\subset\mathbb{R}$ 满足 $E'\subset E$,则$E$ 是闭集。
5.若 $(\alpha,\beta)$ 是直线上开集 $G$ 的一个构成区间,则 $(\alpha,\beta)$ 是连通集。
6.设 $E$ 是闭区间 $[a,b]$ 中的全体无理数集,则$m(E)=b-a$。
7.若 $\{f_n(x)\}$ 在 $E$ 上几乎处处有限且可测,$f(x)$ 在 $E$ 上几乎处处有限且可测,并且$\lim\limits_{n\to\infty} f_n(x)=f(x)$,则 $\{f_n(x)\}$ 在 $E$ 上依测度收敛于 $f(x)$。
8.XXX{R}$,$x$ 是 $E$ 的聚点,$f(x)$ 是实变函数,则存在 $\{x_n\}\subset E$,使得 $\lim\limits_{n\to\infty}x_n=x$ 且 $\lim\limits_{n\to\infty} f(x_n)$ 存在。
9.若 $\{f_n(x)\}$ 在 $E$ 上几乎处处有限且可测,$f(x)$ 在 $E$ 上几乎处处有限且可测,并且对于任意$\sigma>0$,都有 $\lim\limits_{n\to\infty} m\{x\in E:|f_n(x)-f(x)|\geq\sigma\}=0$,则 $\{f_n(x)\}$ 在 $E$ 上依测度收敛于$f(x)$。
实变函数(复习资料,带答案)
实变函数(复习资料,带答案)《实变函数》试卷一一、单项选择题(3分X 5=15分)1、下列各式正确的是( )(A)limA n A k;(B) lim 代A;n nlkn n nlkn(C)limA n ik A k;( D) l imA n 人;n nikn n nikn2、设P为Cantor集,则下列各式不成立的是( )(A)P c (B) mP 0 (C) P' P (D) P P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n(x)是E上的ae?有限的可测函数列,则下面不成立的是()(A)若f n(x) f(x),则f n(x) f (x) (B)sup f n(x)是可测函数(C) inf f n(x)是可测函数;(D)若nnf n(x) f(x),则f(x)可测5、设f(x)是[a,b]上有界变差函数,则下面不成立的是( )(A) f(x)在[a,b]上有界(B) f(x)在[a,b]上几乎处处存在导数b (C) f'(x)在[a, b]上L 可积(D) f'(x)dx f(b) f(a)a二.填空题(3分X 5=15分)E f(x)1、 ___________________________________ (C s A C s B) (A (A B))2、设E是0,1上有理点全体,则' o—E = _____ , E = _____ , E = _____3、设E是R n中点集,如果对任一点集T都___________________________________ 则称E是L可测的4、f(x)可测的_________ 件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设f (x)为a,b上的有限函数,如果对于a, b的一切分划,使 _______________________________________ 则称f (x)为a,b上的有界变差函数。
实变函数试题库参考答案
《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数 B、0,1 之间的实数全体 C 、[0, 1]上的实函数全体 D、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数} B、{全体整数} C 、{全体小个子} D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数} C、{x:x >1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数} B、{全体整数} C 、{x :x>1} D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x:x 〉1} D、{全体实数}6、下列对象不能构成集合的是:( )A、{全体实数} B 、{全体大人} C 、{x:x 〉1} D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C、(—∞, +∞)D、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B、(-1, 0) C 、[0, 1] D、[—1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A、(0, 1) B 、[0, 1] C 、[0, 1]D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A、[1, 2] B 、(1, 2) C、 (0, 3)D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(—1, 1) B 、[0, 1] C 、ΦD 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD、(0, ∞)16、设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A、(0, 1) B 、(0, n 1) C 、{0}D 、Φ17、设)1,0(12n A n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n 1) C 、(0, n )D 、(0, ∞)18、设)1,0(12n A n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim () A 、Φ B 、(0, n 1) C 、(0, n)D 、(0, ∞)19、设A 、B 、C 是三个集合, 则A-(A -B)= ( )A、B B、A C 、A ⋂BD、A ⋃B 20、设A 、B 、C 是三个集合, 则A-(B⋃C )= ()A 、(A —B)⋂(A-C ) B、(A-B)⋃(A -C )C 、A⋂BD、A ⋂C21、设A 、B 、C 是三个集合, 则A—(B ⋂C)= ( )A 、(A -B)⋂(A-C )B 、(A —B )⋃(A-C ) C 、A ⋂BD 、A⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( ) A、B C A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃ D 、B A C s ⋂23、设A 、B 、S是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B -C) = ( )A 、 A ⋃C -BB 、 A-B -C C、 (A —B)⋃(A ⋂C)D 、 C -(B -A)25、集合E 的全体内点所成的集合称为E的 ( )A 、开核 B、边界 C 、导集 D、闭包26、集合E的全体聚点所成的集合称为E 的 ( )A 、开核 B、边界 C、导集 D 、闭包27、集合E的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E —E ’所成的集合是 ( )A 、开核B 、边界C 、外点 D、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核 B、边界 C 、导集 D 、闭包30、设点P是集合E的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E的孤立点 C、P是E的内点 D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G的构成区间: ( )A 、(0, 1) B、(21, 1) C、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A、(0, 1) B 、(0, 2) C、(—1, 21) D 、(—1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G的构成区间: ( )A 、(0, 1) B、(3, 4) C 、(0, 4) D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A、(0, 1) B 、(0, 3) C 、(0, 4) D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(—1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B、A'⊂B'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B、 A'⋃B ’=C'C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B、C '⊂ A’⋂B ’ C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C的孤立点}40、设CA 是A的余集,则下列命题正确的是:( )A 、 )()(CA A C = B、)(CA A ∂=∂ C 、C(A ’)=(C A)' D 、CA A C =)( 41、设A-B=C , 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B、C B A =- C、A’-B '=C'D 、{A的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4—1-2) 下列命题错误的是:( )A 、A 是闭集B 、A'是闭集C 、A ∂是闭集D 、 A 是闭集 43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集 B、闭集 C 、既非开集又非闭集 D、无法判断44、若A 是开集,B是闭集,则A-B是:( )A 、开集B 、闭集 C、既非开集又非闭集 D、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B、闭集 C 、既非开集又非闭集 D、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A、开集 B 、闭集 C、既非开集又非闭集 D、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A、0 B 、1 C 、2 D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥* C、E m E m **< D、E m E m **≤ 51、下列说法正确的是( ) A、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f + C、|)(|x f D 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0 B、1 C 、2 D 、356、下列说法不正确的是( )A 、E的测度有限,则E 必有界B 、E的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a 。
实变函数期末考试卷A
实变函数期末考试卷A附件一东 南 大 学 考 试 卷(A 卷)课程名称 实变函数 考试学期 11-12-2 得分 适用专业 数学系 考试形式 闭卷 考试时间长度 120分钟 (开卷、半开卷请在此写明考试可带哪些资料) 卷无一. (10分)试叙述可数集的定义,并分别给出一个可数集合和一个不可数集的例子。
二. (10 分)叙述勒贝格外测度的定义,并证明可数集的外测度为零.三. (10分)设E 是可测集,证明存在E 的一列单调增加的闭子集列1E,n n F F +⊂⊂n 1,∀≥ 使得 n mE=lim nmF →∞.四. (10 分)(1)试给出有界闭区间上有界函数Riemann 可积的充分必要条件。
(2)给出一个Lebesgue 可积但Riemann 不可积的例子。
五. (10分)(1) 叙述依测度收敛的定义。
(2) 若在E 上,()()n f x f x ⇒, ()()n g x g x ⇒, 证明()f x 和()g x 在E 上几乎处处相等。
六.(10分)叙述有界变差函数和绝对连续函数的定义,并分别给出一个例子。
七.(10分)设n f (x)在 E 上Lebesgue 可积。
如果lim |()|0nE n f x dx →∞→⎰, 证明存在子列kn {f }在E 上几乎处处收敛于零。
八. (10分)(1)试叙述Fatou 引理;(2)求下列极限: 20arctan()lim 1n nx dxx +∞→∞+⎰九.设()f x 在[,]a b 上Lebesgue 可积。
(1) 若()x φ是[,]a b 上的有界可测函数,证明()()f x x φ在[,]a b 上是Lebesgue 可积的。
(2) 如果对[,]a b 上的任意有界可测函数()x φ,总有()()0baf x x dx φ=⎰成立. 证明()f x 在[,]a b 上几乎处处为零。
(3) 如果对任意连续函数()x φ总有 ()()0b a f x x dx φ=⎰成立,证明上述(2)中结论仍然成立。
实变函数期末考试卷A及参考答卷
实变函数期末考试卷A及参考答卷Document number:NOCG-YUNOO-BUYTT-UU986-1986UT2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)试卷共 8 页第 1 页考生考试诚信承诺书在我填写考生信息后,表示我已阅读和理解《龙岩学院考试纪律与违纪处分办法》的有关规定,承诺在考试中自觉遵规守纪,如有违反将接受处理;我保证在本科目考试中,本人所提供的个人信息是真实、准确的。
考生签名:实变函数期末考试卷(A )2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分) 1 我们将定义在可测集qE ⊂上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -,即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
实变函数测试题与参考答案
实变函数试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n =,则lim n n A →∞= . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂,则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间,则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集,则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦,则说{}()n f x 在E 上 .8. 设nE R ⊂,0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,若0σ∀>,有 ,则称{}()n f x 在E 上依测度收敛于()f x . 10. 设()()n f x f x ⇒,x E ∈,则∃{}()n f x 的子列{}()jn fx ,使得.二,判断题.正确的证明,错误的举反例. 1. 若,A B 可测,A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集,P E ∉,则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭的闭集. 4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞,则E 为无限集合. 三,计算证明题1.证明:()()()A B C A B A C --=-2.设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M 为可数集.3.设nE R ⊂,i E B ⊂且i B 为可测集,1,2i =.根据题意,若有()()*0,i m B E i -→ →∞,证明E 是可测集.4. 设P 是Cantor 集,()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求10(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x ,而在0P 的余集中长为13n 的构成区间上取值为16n ,()1,2n =,求1()f x dx ⎰.6. 求极限:13230lim(R)sin 1n nx nxdx n x →∞+⎰.实变函数试题解答一填空题 1.[]0,2.2.{}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭;∅.3.闭集.4.b a -.5.几乎处处收敛于()f x 或a.e.收敛于()f x .6.对000,(,)U x δδ∀> 有{}()0E x -=∅.7.()()n f x f x → a.e.于E . 二判断题1. F .例如,(0,1)A =,[]0,1B =,则A B ⊂且A B ≠,但1mA mB ==.2. F .例如,0(0,1)∉,但0不是(0,1)的外点.3. F .由于{}0E E '=⊄.4. F .例如,在1R 中,11,1n F n n ⎡⎤=-⎢⎥⎣⎦,3,4n =是一系列的闭集,但是3(0,1)n n F ∞==不是闭集.5. T .因为若E 为有界集合,则存在有限区间I ,I <+∞,使得E I ⊂,则**,m E m I I ≤=<+∞ 于*m E =+∞ .三,计算证明题. 1.证明如下:2. M 中任何一个元素可以由球心(,,)x y z ,半径为r 唯一确定,x ,y ,z 跑遍所有的正有理数,r 跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M 为可数集.3. 令1i i B B ∞==,则i E B B ⊂⊂且B 为可测集,于是对于i ∀,都有i B E B E -⊂-,故()()**0i m B E m B E ≤-≤-,令i →∞,得到()*0m B E -=,故B E -可测.从而()E B B E =--可测.4. 已知0mP =,令[]0,1G P =-,则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰. 5. 将积分区间[]0,1分为两两不相交的集合:0P ,1G ,2G ,其中0P 为Cantor 集,n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并.由L 积分的可数可加性,并且注意到题中的00mP =,可得6. 因为323sin 1nx nx n x +在[]0,1上连续,13230(R)sin 1nx nxdx n x+⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等.易知由于12x 在()0,1上非负可测,且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+,()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。
实变函数试题库参考答案
实变函数试题库参考答案(共37页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=E x E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、.一致收敛59、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( ) A 、0 B 、1 C 、2 D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对 69、下列说法正确的是( ) A 、x x f sec )(=在)4,0(π上无界B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x xx f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数 73、()=-)2,1()1,0( m ( ) A 、1、 B 、2 C 、3 D 、4 74、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对 75、下列说法正确的是( ) A 、21)(x x f =在(0, 1)有限、 B 、21)(xx f =在]1,21[无界C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f - 78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( ) A 、1 B 、2 C 、3 D 、4 80、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和. 81、下列说法正确的是( ) A 、31)(x x f =在)1,21(无界 B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x xx f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x xx f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f - 84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上.收敛于.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积 87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积 88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( )A 、 0B 、 1/3C 、2/3D 、 1 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 17、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃=9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂=10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃=11、若}{n A 是任意一个集合列, 则=∞→n n A lim12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)= 17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂= 22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂= 24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '= 25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) = 26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) = 27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) = 29、一个非空集合A 的直径的定义为)(A δ= 30、设A = [0, 1] ⋂Q, 则)(A δ=31、nR E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。
实变函数期末试题
2006-2007学年第二学期04本实变函数期末试题一、填空:(共10分)1.如果 则称E 是自密集,如果 则称E 是开集,如果E E ⊂'则称E 是 ,E E E '= 称为E 的 .2.设集合G 可表示为一列开集}{i G 之交集: ∞==1i iGG ,则G称为 .若集合F 可表示为一列闭集}{i F 之并集: ∞==1i iFF ,则F称为 .3.(Fatou 引理)设}{n f 是可测集qR E ⊂上一列非负可测函数,则 .4.设)(x f 为],[b a 上的有限函数,如果对于],[b a 的一切分划b x x x a T n =<<<= 10:,使⎭⎬⎫⎩⎨⎧-∑=-ni i i x f x f 11|)()(|成一有界数集,则称)(x f 为],[b a 上的 ,并称这个数集的上确界为)(x f 在],[b a 上的 ,记为 .二、选择填空:(每题4分,共20分) 1.下列命题或表达式正确的是A .}{b b ⊂B .2}2{=C .对于任意集合B A ,,有B A ⊂或A B ⊂D .φφ⊂2.下列命题不正确的是A .若点集A 是无界集,则+∞=A m *B .若点集E 是有界集,则+∞<E m *C .可数点集的外测度为零D .康托集P 的测度为零 3.下列表达式正确的是}0),(max{)(x f x f -=+B .)()()(x f x f x f -++=)()(|)(|x f x fx f -+-=D .}),(min{)]([n x f x f n =4.下列命题不正确的是A .开集、闭集都是可测集B .可测集都是Borel 集C .外测度为零的集是可测集D .σF 型集,δG 型集都是可测集5.下列集合基数为a (可数集)的是A .康托集PB .)1,0(C .设i n n x x x x x A R A |),,,({,21 ==⊂是整数,},,2,1n i = D .区间)1,0(中的无理数全体三、(20分)叙述并证明鲁津(Lusin )定理的逆定理四、(20分)设R E '⊂,)(x f 是E 上..e a 有限的可测函数, 证明:存在定义在R '上的一列连续函数}{n g ,使得..)()(lim e a x f x g n n =∞→于E五、(10分)证明01sin)(lim sin 2220071=+-∞→⎰dx exn nxnx R nxn六、(10分)设)(x f 是满足Lipschitz 条件的函数,且..0)(e a x f ≥'于],[b a ,则)(x f 为增函数七、(10分)设f 是],[b a 上的有界变差函数,证明2f 也是],[b a上的有界变差函数2006—2007学年第二学期04本实变函数期末试题A 类评分标准一、填空题:(共10分)1、E E '⊂,0E E ⊂(或0E E =) 闭集,闭包 2、δG 型集,σF 型集3、dx x f dx x f n En n n E )(lim)(lim ⎰⎰∞→∞→≤4、有界变差函数,全变差,)(f V ba二、选择填空:(每小题4分,共20分)1、D2、A3、D4、B5、C三、(20分)定理:设..)(e a x f 有限于E ,若对于任意的0>δ,总有闭集E F ⊂δ,使δδ<-)(F E m ,且)(x f 在δF 上连续,则f是E 上的可测函数. (5分)证 对任意的正整数n ,存在闭集E F n ⊂使nF E m n 1)(<-,且f 在n F 上连续,从而f 在n F 上可测(5分)设∞==1k kFF ,则F 是可测集,且,2,1,=-⊂-n F E F E n ,于是,2,1,1)()(=<-≤-n nF E m F E m nf F E m ⇒=-⇒0)(在FE -上可测(5分)由于F F E E )(-=,只须证f 在F 上可测,事实上,对任意的R a ∈,][][1a f F a f F n n >=>∞=][a f F >⇒是可测集f ⇒在F 上可测f ⇒在E 上可测 (5分)四、(20分)证明 f 在E 上可测,由Lusin 定理,对任何正整数n ,存在E 的可测子集n E ,使得nE E m n 1)(<-,同时存在定义在R '上的连续函数)(x n ϕ,使得当n E x ∈时有)()(x f x n =ϕ (7分)所以对任意的0>σ,成立nn E E f E -⊂≥-]|[|σϕ,,2,1=n(3分),2,1,1)(]|[|=<-≤≥-⇒n nE E m f mE n n σϕ]|[|lim =≥-⇒∞→σϕn n f mE 因此f n ⇒ϕ(5分)由 F.Riesz 定理,存在}{n ϕ的子列}{kn ϕ,使..)()(lim e a x f x k n k =∞→ϕ于E ,记)()(x g x k n k =ϕ,则..)()(lim )(lim e a x f x g x g k k n n ==∞→∞→于E(5分)五、(10分)证明 设nxn exn nxnx x f sin 2220071sin)(-+=则)(x f n 在]1,0[上连续,因而R 可积L ⇒可积,且01sinlim)(lim sin 222007=+=-∞→∞→nxn n n exn nxnx x f ]1,0[∈x(5分)取ex F 21)(=,则)(|)(|x F x f n ≤,而+∞<=1])1,0([m由Lebesgue 有界收敛定理⎰⎰⎰===⇒∞→∞→0)()()(lim )()(lim ]1,0[]1,0[1dx l dx x f L dx x f R n n n n ο (5分)六、(10分)证 因为f 满足Lipschitz 条件,所以f 是绝对连续函数,对任意的2121],,[,x x b a x x <∈,由牛顿—莱布尼兹公式dx f a f x f x a'+=⎰1)()(1(1)dx f a f x f x a'+=⎰2)()(2(2)(5分)(2)—(1)⎰≥'=-⇒0)()(2112dx f x f x f x x)()(12x f x f ≥⇒)(x f ⇒是],[b a 上的单调函数 (5分)七、(10分)证 f 是有界变差函数,因而是有界函数,于是m f ≤||,],[b a x ∈ (3分)对],[b a 的任意分划bx x x a T n =<<<= 10:有∑=--ni i i x f x f 1122|)()(||)()(||)()(|111-=--+=∑i i ni i i x f x f x f x f∑=--≤ni i i x f x f M11|)()(|2)(2f V M b a≤ (5分)因此2f也是],[b a 上的有界变差函数(2分)。
实变函数期末考试卷A卷之欧阳家百创编
实变函数一、欧阳家百(2021.03.07)二、 判断题(每题2分,共20分)1.若A 是B 的真子集,则必有B A <。
(×)2.必有比a 小的基数。
(√)3.一个点不是E 的聚点必不是E 的内点。
(√)4.无限个开集的交必是开集。
(×)5.若φ≠E ,则0*>E m 。
(×)6.任何集n R E ⊂都有外测度。
(√)7.两集合的基数相等,则它们的外测度相等。
(×)8.可测集的所有子集都可测。
(×)9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。
(×)10.)(x f 在E 上可积必积分存在。
(×)1.设E 为点集,E P ∉,则P 是E 的外点.( × )2.不可数个闭集的交集仍是闭集. ( × )3.设{}n E 是一列可测集,且1,1,2,,n n E E n +⊂=则1()lim ().n n n n m E m E ∞→∞==(× )4.单调集列一定收敛. (√ )5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ⊂-=,()f x 在F 上连续.( × )二、填空题(每空2分,共20分)1.设B 是1R 中无理数集,则=B c 。
2.设1,1,,31,21,1R n A ⊂⎭⎬⎫⎩⎨⎧= ,则=0A φ,='A }0{。
3.设 ,2,1,0),11,11(=++-=n n n A n ,则=⋃∞=n n A 0)1,1(-,=⋂∞=n n A 1}0{。
4.有界变差函数的不连续点构成的点集是 至多可列 集。
5.设E 是]1,0[上的Cantor 集,则=mE 0。
6.设A 是闭集,B 是开集,则B A \是闭 集。
7.闭区间],[b a 上的有界函数)(x f Rimann 可积的充要条件是)(x f 是],[b a 上的几乎处处的连续函数 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011—2012学年第1学期数计学院09级数学与应用数学专业(1、2班)《实变函数》期末考试卷(A)试卷共8 页第 1 页实变函数期末考试卷(A)2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分)1 我们将定义在可测集q E ⊂¡上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:试卷 共 8 页 第 2 页()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx fx x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()f x =,()f x =。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =L ).ϕ在E 上的L 积分定义为:()Ex dx ϕ=⎰,这个积分值可能落在区间中,但只有当时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()Ef x dx =⎰,这个积分值可能落在区间中,但只有当时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -, 即()Efx dx +⎰和()E f x dx -⎰的值;但只有当时才能说f 是L 可积的,这时将它的积分定义为:()Ef x dx =⎰。
5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:;如果再添上条件和就得到列维定理的结论:。
6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足()()lim n n f x f x a e →∞=g g 于E 或n f f ⇒两个条件之一。
或 的结论:(1);(2)。
7 富比尼定理的表述过程比较长,但它给出了定义在两个可测子集,p qA B ⊂⊂ 上的笛卡尔积P qA B +⨯⊂¡上的可测函数()(),f P f x y =的积分可化为累次积分 ()()(),,A BABBAf P dP dx f x y dy dy f x y dx ⨯==⎰⎰⎰⎰⎰的条件却非常简单。
只要下列两个简单条件之一成立就行了:(1) ;(2)。
两个累次积分都存在且相等是()f P 在A B ⨯上可积的条件,但不是条件。
8 斯蒂尔切斯积分的定义是:。
二 多项选择题 下列各题中正确的结论有些可能不止一个,请把正确结论的编号填在左边的方括号内。
(每小题3分,满分15分) [ ] 1定义在pE ⊂¡上的实函数()f x 的正部()f x +和负部()f x -的取值情况有:(A )x E ∀∈,()f x +与()f x -不同时取正值,但可能同时为零;(B )x E ∀∈,()f x +与()f x -可能同时取正值,也可能同时为零;(C )E 上任意两个非负实函数都构成E 上第三个实函数的正部与负部; (D )E 上任意两个不同时取正值的非负函数都构成E 上第三个实函数的正部与负部。
[ ] 2 设12k E E E E =U UL U 是q ¡中有限个互不相交的可测集的并集,函数ϕ在i E 上的值恒等于常数i c (1,2,,i k =L ),则ϕ在E 上L 可积的充要条件有: (A )mE <+∞; (B )当i mE =+∞时0i c =; (C )12,,,k E E E L 均为测度有限集; (D )每个i i c mE 均为有限数。
[ ] 3 ()M E 中的非负函数f 都是积分确定的,这是因为:(A )()Ef x dx <+∞⎰;(B )()Ef x dx +⎰和()Ef x dx -⎰都是有限数; (C )()()00E fx f x dx --≡⇒=<+∞⎰;(D )()0.Ef x dx --∞≤<⎰ [ ] 4 [],a b 上的有界变差函数()f x 的任一个变差()()11ni i i f x f x -=-∑()01n a x x x b =<<<=L都不会超过全变差()baV f ,而且当[][]12,,a x a x ⊂时有()()12x x aaV f V f ≤.由这两条结论可以推知: (A )()f x 在[],a b 上的振幅()()[]{}()sup,,baf x f y x y a b V f -∈≤;(B )[],x a b ∀∈有()()()b af x f a V f ≤+;(C )有界变差函数一定可以表为两个增函数的差;(D )有界变差函数至多有可数个不连续点,不可导点构成零测度集。
[ ] 5 关于[],a b 上的绝对连续函数()F x 及其导数,下列结论正确的有:(A )用每个在[],a b 上L 可积的函数()f x 都可构造一个绝对连续函数 ()()x aF x f t dt =⎰,满足()()F x f x a e '=g g 于[],a b ;(B )每个绝对连续函数()F x 都在[],a b 上几乎处处有可积的导函数()F x ',而且满足牛氏公式()()()baF x dx F b F a '=-⎰;(C )每个在[],a b 上几乎处处有导数的函数()F x 都是绝对连续函数,同时满足牛氏公式()()()baF x dx F b F a '=-⎰;(D )在[],a b 上几乎处处有导数的有界函数()F x 不一定连续,但()F x 本身一定可积。
而它的导函数()F x '就不一定可积了。
即使可积也不一定满足牛氏公式。
三 设q E ⊂¡满足:0ε∀>,∃闭集F E ε⊂使()*m E F εε-<. 试证明E 是可测集。
(8分)试卷 共 8 页 第 4 页四 我们也可以这样来定义可测函数:定义在可测集q E ⊂¡上的实函数称为是可测的,如果它能表达成E 上一列简单函数的极限函数.现在请你用这个定义证明:E 上两个可测函数()(),f x g x 的乘积()()f x g x 还是E 上可测函数。
(7分)五 设(){}n f x 是q E ⊂¡上的L 可积函数列,并且正项级数()1n n Ef x dx∞=∑⎰收敛。
试证明函数项级数()1n n f x ∞=∑几乎处处收敛,它的和函数()()1n n S x f x ∞==∑在E 上L 可积,而且满足逐项积分公式:()()1n n EES x dx f x dx ∞==∑⎰⎰. (12分)试卷 共 8 页 第 5 页六 设f 是[],a b上的连续函数g 使 (12分)七 设(){}k f x 是pE ⊂¡上非负可测函数列, ()()lim k k f x f x →∞=,并且()()()12k f x f x f x ≥≥≥≥L L .若有某个()0k f x 在E 上L 上可积。
试证明()f x 也在E 上可积,并且()()lim k EEk f x dx f x dx →∞=⎰⎰. (10分)八 设()f x 在1E ⊂¡上L 可积,()0Ef x dx a =>⎰,试证明:()0,1μ∀∈,存在E的可测子集e 使()ef x dx μ=⎰ (12分)试卷 共 8 页 第 7 页实变函数期末考试卷(A)参考答卷2009级本科1、2班用 考试时间2012年01月 04日一 填空题(每小题3分,满分24分)1 我们将定义在可测集q E ⊂¡上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数:()()()(),0,0,0.f x x E f fx x E f +∈>⎧=⎨∈≤⎩当时当时 和()()()()0,0,,0.x E f fx f x x E f -∈>⎧=⎨-∈≤⎩当时当时分别称为f 的正部和负部。
请你写出()()(),,f x fx f x +-和()f x 之间的关系:()()()f x fx f x +-=-,()()()f x f x f x +-=+。
2 上题()M E 中有些元素ϕ被称为非负简单函数,指的是:12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ϕ≡(非负常数)(1,2,,i k =L ).ϕ在E 上的L 积分定义为:()1122k k Ex dx c mEc mE c mE ϕ=+++⎰L ,这个积分值可能落在区间[]0,+∞中,但只有当()Ex dx ϕ<+∞⎰时才能说ϕ是L 可积的。
3 若()f M E ∈是非负函数,则它的L 积分定义为:()()()(){}sup 0EEf x dx x dx E x f x ϕϕϕ=∀∈≤≤⎰⎰是简单函数,且有, 这个积分值可能落在区间[]0,+∞中,但只有当()Ex dx ϕ<+∞⎰时才能说f 是L 可积的。
4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f -至少有一个可积, 即()Efx dx +⎰和()E f x dx -⎰的值+∞不全为;但只有当f f +-和都可积时才能说f是L 可积的,这时将它的积分定义为:()()()EEE f x dx fx dx f x dx +-=-⎰⎰⎰.5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式:试卷 共 8 页 第 8 页()()lim lim nn E E n n fx dx f x dx →∞→∞≤⎰⎰;如果再添上条件()()()12n f x f x f x ≤≤≤≤L L 和()()lim n n f x f x →∞=就得到列维定理的结论: ()()lim n EEn f x dx f x dx →∞=⎰⎰.6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足()()lim n n f x f x a e →∞=g g 于E 或n f f ⇒两个条件之一。
或 ()(),n mE M n f x F x a e E <+∞≤⋅⋅而且存在正数使对任何自然数有于,就可得到勒贝格控制收敛的结论: (1)()()lim 0n En f x f x dx →∞-=⎰;(2)()()lim n EEn f x dx f x dx →∞=⎰⎰.7 富比尼定理的表述过程比较长,但它给出了定义在两个可测子集,p qA B ⊂⊂ 上的笛卡尔积P qA B +⨯⊂¡上的可测函数()(),f P f x y =的积分可化为累次积分()()(),,A BABBAf P dP dx f x y dy dy f x y dx ⨯==⎰⎰⎰⎰⎰的条件却非常简单。