齿轮箱设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮箱设计

作为风力发电机组主传动关键部件,齿轮箱位于风轮和发电机之间传递动力提高转速,是一种在无规律变向载荷和瞬间强冲击载荷作用下工作的重载齿轮传动装置。

特别需要指出的是,在狭小的机舱空间内减小部件的外形尺寸和减轻重量十分重要,因此齿轮箱设计必须保证在满足可靠性和预期寿命的前提下,使结构简化并且重量最轻

一、设计要求齿轮箱作为传递动力的部件,在运行期间同时承受动、静载荷。其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。为此要建立整个机组的动态仿真模型,对启动、运行、空转、停机、正常启动和紧急制动等各种工况进行模拟,针对不同的机型得出相应的动态功率曲线,利用专用的设计软件进行分析计算,求出零部件的设计载荷,并以此为依据,对齿轮箱主要零部件作强度计算。

按照GB/T 19073-2003,对于齿轮箱的使用系数(即动载荷放大因子,考虑原动机和工作机的载荷波动对齿轮传动影响的系数。)推荐如下: 给定载荷谱计算时,通常先确定等效载荷,齿轮箱使用系数KA=1;无法得到载荷谱时,则采用经验数据,对于三叶片风力发电机组取KA=1.3。

风力发电机组增速箱的主要承载零件是齿轮,其轮齿的失效形式主要是轮齿折断和轮齿点蚀、剥落等。

轮齿折断

齿面点蚀

各种标准和规范都要求对齿轮的承载能力进行分析计算,常用的标准是GB/T3480或DIN3990(等效采用ISO6336)中规定的齿根弯曲疲劳和齿面接触疲劳校核计算,对轮齿进行极限状态分析。

齿轮箱设计时,应首先按主要失效形式进行强度计算,确定其主要尺寸,然后对其他失效形式进行必要的校核,软齿面闭式传动通常因齿面点蚀而失效,故

通常先按齿面接触强度设计公式确定传动的尺寸,然后验算轮齿弯曲强度,硬齿面闭式轮齿传动抗点蚀能力强,故可先按弯曲强度设计公式确定模数等尺寸,然后验算齿面接触强度。

二、齿轮传动设计参数的选择:

1. 齿形角α(分度圆压力角)的选择

根据实践经验,如果没有特别要求,建议采用20°标准齿形角。

2.模数m的选择

在满足轮齿弯曲强度的条件下,选用较小的模数可以增大齿轮副的重合度,减小滑动率,也可以减小齿轮切削量,降低制造成本。但随之而来的因制造和安装的质量问题会增大轮齿折断的危险性,实际使用常常选用较大模数。模数的选择应符合GB/T1357的规定或按照经验数据,取

m =(0.015~0.02)a 。 a 是齿轮传动的中心距。

3.齿数z

受齿轮根切的限制,小齿轮有最少齿数的要求。对于尺寸一定的齿轮,齿数增加和模数减小可明显提高传动质量,故在满足轮齿弯曲强度的条件下,应尽量选用较多齿数。

4.螺旋角β

β角太小,将失去斜齿轮的优点;取大值,可增大重合度,使传动平稳性提高,但会引起很大的轴向力,一般取β=8°~15°。人字齿轮可取大一些,例如取β=25°~40°。对于普通圆柱齿轮传动,低速级转速低扭矩大,可采用直齿轮;中间级通常取β=8°~12°;

高速级为减小噪音,可取较大的β角,如10°~15°。

5.齿宽 b 齿宽是决定齿轮承载能力的主要尺寸之一,但齿宽越大,载荷沿齿宽分布不均的现象越严重。齿轮应给定一个最小齿宽bmin,以保证齿轮足够的刚度。

相关文档
最新文档