流体力学(第四章)
4工程流体力学 第四章流体动力学基础
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体力学第四章
• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
流体力学第四章:流体阻力及能量损失
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
流体力学第四章流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
3.湍流阻力与流速分布 (1)湍流阻力 在湍流中,流体内部不仅存在着因流层间的时均流 速不同而产生的粘滞切应力τ1,而且还存在着由于脉动使流体质 点之间发生动量交换而产生的惯性切应力τ2。
第四章 流动阻力与管路水力计算
(2)湍流速度分布 实验证明,流体在管道中作湍流运动时,过流 断面上的速度分布如图4-8所示。
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
3.圆管层流运动时的沿程阻力系数
第四章 流动阻力与管路水力计算
第四章 流动阻力与管路水力计算
解:v=Q/A=4Q/π=4×75×/π×m/s=0.96m/s 二、圆管湍流的沿程损失计算 实际工程中,除少数流动为层流外,绝大多数都属于湍流运动, 因此湍流的特征和运动规律在解决工程实际问题中有重要的作用。 1.湍流脉动现象与时均法
第四章 流动阻力与管路水力计算
均匀流动是指流速大小和方向均沿流程不变的流动。由于这种流 动只能发生在壁面(截面形状、大小、表面粗糙度等)不发生任 何变化的直管段上,所以在均匀流动时,只有沿程损失,没有局 部损失。为了寻找沿程损失的变化规律,需要先建立沿程损失和 沿程阻力之间的关系式,又称为均匀流动方程式。
第四章 流动阻力与管路水力计算
图4-8 湍流速度分布
第四章 流动阻力与管路水力计算
4.湍流沿程阻力系数的确定 由于湍流的复杂性,至今还不能完全通过理论推导的方法确定湍 流沿程阻力系数l,只能借助实验研究总结一些经验或半经验公式。 (1)尼古拉兹实验 为了得到l的变化规律,尼古拉兹在类似图4-2所 示的实验台上,采用人工粗糙管(管内壁上均匀敷有粒度相同的砂 粒)进行了大量实验。
流体力学第四章
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体力学第四章 水头损失
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
工程流体力学第4章流体在圆管中的流动
流体在圆管中的摩擦系数
定义
表示流体在圆管中流动时, 流体与管壁之间的摩擦力 与压力梯度之间的比值。
影响因素
流体的物理性质、管道的 粗糙度、流动状态等。
测量方法
通过实验测定,常用的实 验设备有摩擦系数计和流 阻仪等。
流体在圆管中的流动效率
定义
表示流体在圆管中流动的能量转 换效率,即流体在流动过程中所 消耗的能量与流体所具有的能量
流速分布受流体粘性和密度的影响, 粘性越大、密度越小,靠近管壁处流 速降低越快。
03
流体在圆管中的流动现象
流体阻力
01
02
03
定义
流体在流动过程中,由于 流体内部以及流体与管壁 之间的摩擦力而产生的阻 力。
影响因素
流体的物理性质、流动状 态、管道的形状和尺寸等。
减小阻力措施
选择适当的流速、优化管 道设计、使用减阻剂等。
之比。
影响因素
流体的物理性质、管道的形状和尺 寸、流动状态等。
提高效率措施
优化管道设计、改善流体物性、降 低流速等。
流体பைடு நூலகம்圆管中的流动稳定性
定义
表示流体在圆管中流动时,流体的速 度和压力等参数随时间的变化情况。
影响因素
流动稳定性控制
通过控制流体物性、流速和管道设计 等措施,保持流体在圆管中的流动稳 定性。
根据输送距离、流量和扬程要求,选择合适的水 泵。
输送效率
优化输送管道布局,降低流体阻力,提高输送效 率。
输送安全性
确保输送过程中不发生泄漏、堵塞等安全问题。
液压系统
液压元件
根据液压系统要求,选择合适的液压元件,如油泵、阀、油缸等。
系统稳定性
确保液压系统在各种工况下稳定运行,避免压力波动和振动。
流體力學第四章伯努利方程
第四章 伯努利方程4.1 伯努利方程4.1.1 理想流体沿流线的伯努利方程1. 伯努利方程的推导将欧拉运动微分方程式积分可以得到流体的压力分布规律,但只能在特殊的条件下,不可能在任何的情况下都可求得其解,故我们需对流场作出如下假设:(1)理想流体(2)定常流动(3)质量力有势(4)不可压缩流体(5)沿流线积分在定常流动的条件下,理想流体的运动微分方程(欧拉运动微分方程)可以写成 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-z v v y v v x v v z p f z v v y v v x v v y p f z v v y v v x v v x p f z z z y z x z y z y y y x y x z x y x x x ρρρ111 (4.1) 将这个方程沿流线积分,如图4.1所示,可得到伯努利方程。
为此,将式(4.1)的第一式乘以x d 得x zv v x y v v x x v v x x p x f x z x y x x x d d d d 1d ∂∂+∂∂+∂∂=∂∂-ρ (1) 按照流线方程 zy x v z v y v x d d d == 将有,y v x v x y d d =,z v x v x z d d =故式(1)可写成x x x x x x x x x v v z zv v y y v v x x v v x x p x f d d d d d 1d =∂∂+∂∂+∂∂=∂∂-ρ (2) 式(4.1)的另外两式分别乘y d 、z d 后,作类似的代换,可得y y y v v y yp y f d d 1d =∂∂-ρ (3)z z z v v z zp z f d d 1d =∂∂-ρ (4) 将式(2)、(3)和式(4)相加,得 z z y y x x z y x v v v v v v z zp y y p x x p z f y f x f d d d )d d d (1d d d ++=∂∂+∂∂+∂∂-++ρ (5) p 的全微分可以表示为 dz zp dy y p dx x p dp ∂∂+∂∂+∂∂= 质量力有势,则必存在势函数U ,满足y f y f x f z zU y y U x x U U y y x d d d d d d d ++=∂∂+∂∂+∂∂=而 2/d d d d 2v v v v v v v z z y y x x =++式中等号右端的v 为平均速度。
流体力学课件第四章流动阻力和水头损失
l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学第四章
同的规律。因此,在计算管流水头损失时必须首先判别出流动状态。
大量的实验表明,流体的流动状态不仅由临界速度一个参数决定。
影响流体流动类型的因素:
①流体的流速 u;②管径 d;③流体密度 ρ;④流体的粘度 μ。
u、d、ρ越大,μ越小,就越容易从层流转变为湍流。上述中四个因素所组成的复合数群 duρ/μ,是
差计,其液面高差△h=4cm,
求作用水头 H。
考点二 雷诺实验
实际流体的流动由于粘滞性的存在而具有两种不同的状态,英国物理学家雷诺(Reynolds)通过 大量的实验研究发现,实际流体在管路中流动存在着两种不同的状态,并且测定了管路中的能量损失 与不同的流动状态之间的关系,此即著名的雷诺实验。
试验过程(装置如下图): 实验过程中使水箱中的水位保持恒定。实验开始前水箱中颜色水的阀门以及玻璃管上的阀门都是关 闭的。开始实验时,逐渐打开玻璃管出口端上的阀门,并开启颜色水的阀门,使颜色水能流人玻璃管中。 ①层流:流动状态主要表现为流体质点的摩擦和变形,这种流体质点互不干扰各自成层的流动称 为层流。 a.流体质点做直线运动; b.流体分层流动,层间不相混合、不碰撞; c.流动阻力来源于层间粘性摩擦力。
湿周较小———外部阻力较小
{ } 面积 A较小———内部阻力较小
水力半径小
综合阻力较大
湿周较大———外部阻力较大
水力半径与阻力特性
例题 图中所示为一从水箱引水的水平直管。已知管径 d=20cm,
管长 L=40m,局部水头损失系数:进口 ζ1=0.5,阀门 ζ2=0.6。当通过流 量 Q=0.2m3/s时,在相距△L=10m的 1-1及 2-2断面间装一水银压
试验方法:
在试验段上接出两根测压管。液体在等直径的水平管路中稳定流时,由伯努利方程可得:hf
流体力学-第四章-流动阻力和能量损失(章结)
K(mm) 管道材料 K(mm)
表面光滑砖风道
4.0
度锌钢管
0.15
矿渣混凝土板风道 1.5
钢管
0.046
钢丝网抹灰风道 10~15
铸铁管
0.25
胶合板风道
1.0
混凝土管
0.3~3.0
墙内砌砖风道
5~10 木条拼合圆管 0.18~0.9
确定沿程阻力系数的方法:
(1)经验公式 (2)莫迪图 (3)查相关手册
二、等效过程
(1)用实验方法对某种材料的管道进行沿程损 失实验,测出 和 hf ;
(2)再用达西公式计算出λ;
hf
l d
2
2g
(3)用尼古拉兹阻力平方区公式计算出绝对
粗糙度K。
1
(1.74 2 lg d )2
2K
此时的K值在阻力的效果上是与人工粗糙管的管 道粗糙度相当的,故称其为当量粗糙度。
莫迪(Mood渐扩管 (d)减缩管
(e)折弯管
(f)圆弯管
(g)锐角合流三通
(h)圆角分流三通
在局部阻碍范围内损失的能量,只占局部损失中 的一部分,另一部分是在局部阻碍下游一定长度的 管段上损耗掉的,这段长度称为局部阻碍的影响长 度。受局部阻碍干扰的流动,经过影响长度后,流 速分布和紊流脉动才能达到均匀流动的正常状态。
核心问题2 水力半径、湿周、当量直径
以上讨论的都是圆管,圆管是最常用的断面形式。 但工程上也常用到非圆管的情况。例如通风系统 中的风道,有许多就是矩形的。如果设法把非圆 管折合成圆管来计算,那么根据圆管制定的上述 公式和图表,也就适用于非圆管了。这种由非圆 管折合到圆管的方法是从水力半径的概念出发, 通过建立非圆管的当量直径来实现的。
流体力学第四章
1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
流体力学第四章-黏性流体的运动和阻力计算
6、层流起始段长度——见课本74页
*4.4 圆管中的湍流流动
30
一、脉动现象与时均值
1、这种在定点上的瞬时运动参数随时间而发生波动的现象称为
脉动。
2、时均法分析湍流运动
u u u'
如取时间间隔T,瞬时速度在T时间内的平均值称为时间平均 速度,简称时均速度,即
二局部阻力某段管道上流体产生的总的能量损失应该是这段管路上各种能量损失的迭加即等于所有沿程能量损失与所有局部能量损失的和用公式表示为三总能量损失能量损失的量纲为长度工程中也称其为水头损失221圆管层流时的运动微分方程牛顿力学分析法可参考课本71页的ns方程分析法取长为dx半径为r的圆柱体不计质量力和惯性力仅考虑压力和剪应力则有pdpdxdprdxdpdrdudxdpdrdu根据牛顿粘性定律再考虑到则有dr图41圆管层流的速度和剪应力分布25在过流断面的任一半径r处取一宽度为dr的圆环如图42所示
u1
Tudt1
T(uu')dt1
Tudt1
T
u'dt
T0
T0
T0
T0
u1
T
u'dt
T0
时均压强
p
1
T
pdt
T0
.
二、湍流的速度结构、水力光滑管和水力粗糙管
31
1.湍流的速度结构 管中湍流的速度结构可以划分为以下三个区域:
(1)粘性底层区(层流底层):在靠近管壁的薄层区域内,流 体的粘性力起主要作用,速度分布呈线性,速度梯度很大,这 一薄层叫粘性底层。如图所示。
湍流 层流的临界速度 ——下临界流速
v c ——上临界速度
v c ——下临界速度
第一篇 流体力学第四章 阻力损失与管路计算
上一页
返回
第四节 局部损失的计算
• 局部损失可按下式计算:
• 局部损失的计算可以转化为求局部阻力系数ζ 的问题.对于不同的局部 阻碍,有不同的局部阻力系数ζ 值,其多数通过试验确定,并编制成专用 计算图、表,供计算时查用.表4-1列出了各种常用管件的局部阻力系 数ζ值.应当注意,表4-1中的ζ 值都是针对某一过流断面的平均流速而 言的,查表时必须与指定的断面流速相对应,凡未注明的,均应采用局部 阻碍以后断面的平均流速.
• 根据流体的边界情况,将流动阻力和能量损失分为两种形式:一种是沿 程阻力与沿程能量损失;另一种是局部阻力与局部能量损失.
下一页 返回
第一节 流动阻力与能量损失
• 如图4-1所示,水箱侧壁上连接一根由三段不同直径的管段所组成的 管路.在边壁沿程不变的管段上(1-2、2-3、3-4、4-5段), 阻碍流体流动的阻力沿程基本不变,这类阻力称为沿程阻力.为克服沿 程阻力而产生的能量损失称为沿程能量损失.沿程损失以水柱高度表 示时,称为沿程水头损失,用符号hf 表示.图中的hf12、hf23、hf34、 hf45就是相应1-2、2-3、3-4、4-5各管段的沿程水头 损失.图中整个管路的沿程水头损失等于各管段的沿程水头损失之和, 即
• 人们很早以前就发现沿程损失与流速之间存在着某种关系,但直到1 883年,英国物理学家雷诺在他做的试验中揭示了流体运动存在着 两种流态,这才认识到沿程损失与流速的关系与流态密切相关.
• 雷诺试验的装置如图4-2所示,水箱A 中水位恒定,水流通过玻璃管B 恒定出流,阀门K 用来调节管内流量,容器D 中盛有颜色水,颜色水可以 经过细管E 注入玻璃管B 中.
流体力学第4章流体流动基本原理
mCV qm2 qm1 0 t
28
对稳态流动系统,流体及流动参数均与 时间无关,即
mCV / t 0
因此,质量守恒方程简化为
qm1 qm2
或 1v1 A1 2v2 A2
即稳态流动,输入与输出的质量必然相等。
29
对不可压缩流体的稳态流动,ρ=const,则
v1 A v2 A2 1
CV
vmax
2
R v1R 0
2 2
34
故有
vmax=2v1
例题:一储气罐,罐中空气经管道向外界排出,
已知管道出口处气流密度和压强为均匀分布,而 速度呈抛物线规律分布:
r v vmax (1 2 ) r0
已知排气管r0=0.025m,当储气罐 中p0=0.14MPa,T0=277.8K,测得 管道出口处气流vmax=32m/s,储气 罐和管道的总容积0.32m3。
24
③ 控制体内的质量变化率
对于控制体内密度为ρ的任意微元体积dV,其质 量为ρdV。将ρdV在整个控制体CV积分可得控制体内 的瞬时总质量,再对时间求导得:
控制体内的 质量变化率 =
t
dV
CV
ρ dv
25
④ 质量守恒方程
将上述各式集合在一起即可得到控制体系
统的质量守恒方程:
输出控制体 的质量流量 输入控制体 — 的质量流量
4.2.1 控制体系统的质量守恒方程
根据质量守恒原理,对于质量为m的系统,其质 量守恒方程为
dm ( )系统 0 dt
由输运公式,以控制体为研究对象时质量守恒方程 可表述为
19
输出控制体 的质量流量
—
输入控制体 的质量流量
流体力学 第四章 cn
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,
即
λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如流体微团沿流线的微小位移ds在三个坐标轴上 的投影为dx、dy和dz。
现用dx、dy和dz分别乘以式(4-3)的第一式、第二 式和第三式,则可得到
f x dx
1
p dx u x
u dx v u dx w u dx
x
y
z
f y dy
1
p dy u y
0
t
u v w 0 x y z
因此式(4-2)可写成
fx
1
p x
u u x
v u w u
y
z
fy
1
p y
u v v v w v
x
y
z
1 p
w w
w
fz
z
u
x
v
y
w z
(4-3)
力在轴方向的分量为 fxρdxdydz
又流体微团的加速度在x轴上的投影为 ,则根据牛 顿第二定律得x轴方向的运动微分方程
f x dxdydz
p
p x
dx 2
dydz
p
p x
dx 2
dydz
dxdydz
Du Dt
将上式各项除以流体微团的流体质量ρdxdydz,化简
v dy v v dy w v dy
x
y
z
(4-4)
1 p
w
w
w
f z dz
dz u z
dz v
x
y
dz w z
dz
由流线微分方程, 有
udy=vdx ydz=wdy wdx=udz
(4-5)
将式(4-5)代入式(4-4)中的对应项,则得
f x dx
(4-6)
将式(3-39)的三个方程相加,得到
(
f x dx
f y dy
f z dz)
1
p x
dx
p y
dy
p z
dz
(4-7)
udu vdv wdw
由于式(4-7)中的dx、dy和dz是流体微团沿流线微 小位移ds的三个分量,所以要沿流线(或微元流束)进行 积分。
V 2 gh (4-11)
式中 ψ—流速修正系数,一般由实验确定, ψ=0.97。
黑体的半球全发射力为
该式称为 Stefan-Boltzmann定律,是 热辐射四次方定律的表达式
二,基尔霍夫定律(实际物体的 辐射特性和吸收特性的关系)
后得:
1 p Du
f x x Dt
fx
1
p x
Du Dt
同理
fy
1
p y
Dv Dt
(4-1)
fz
1
p z
Dw Dt
这就是理想流体的运动微分方程,早在1755年就为。 对于静止的流体u=v=w=0,则由式(4-1)可以直接得出 流体平衡微分方程,即欧拉平衡微分方程式。因此欧拉 平衡微分方程只是欧拉运动微分方程的一个特例。如果 把加速度写成展开式,可将欧拉运动微分方程写成如下 形式
第四节 伯努利(Bernoulli)方程的应用
理想流体微元流束的伯努利方程,在工程中广泛应 用于管道中流体的流速、流量的测量和计算,下面以应 用最广泛的皮托管和文特里流量计为例,介绍它们的测 量原理和伯努利方程的应用。
一、皮托管 在工程实际中,常常需要来测量某管道中流体流
速的大小,然后求出管道的平均流速,从而得到管道中 的流量,要测量管道中流体的速度,可采用皮托管来进 行,其测量原理如图4-3所示。
第三节 理想流体微元流束的伯努利方程
一、理想流体微元流束的伯努利方程
理想流体的运动微分方程(4-2)只有在少数特殊情 况下才能求解。在下列几个假定条件下:
(1)不可压缩理想流体的定常流动; (2)沿同一微元流束(也就是沿流线)积分; (3)质量力只有重力。 即可求得理想流体微元流束的伯努利方程。
假定流体是定常流动,则有
若1、2为同一条流线(或微元流束)上的任意两点, 则式(4-8)也可写成
z1
p1
g
V12 2g
z2
p2
g
V22 2g
(4-9)
在特殊情况下,绝对静止流体V=0,由式(4-8)可以得 到静力学基本方程
z p 常数
g
二、方程的物理意义和几何意义 为了进一步理解理想流体微元流束的伯努利方程,
BA Z
V Z
图 4-3 皮托管测速原理
在液体管道的某一截面处装有一个测压管和一根两端
开口弯成直角的玻璃管(称为测速管)。将测速管(又称 皮托管)的一端正对着来流方向,另一端垂直向上,这时 测速管中上升的液柱比测压管内的液柱高h。这是由于当 液流流到测速管入口前的A点处,液流受到阻挡,流速变
为零,则在测速管入口形成一个驻点A。驻点A的压强PA
实际物体的黑度(发射率)-实 际物体的辐射力与同温度下黑体 辐射力的比值。
实际物体的吸收率 α 取决于吸收物体 的种类、表面温度和表面状况和投射辐 射的特性。
物体对某一波长的辐射能所吸收的百分 数被定义为
单色吸收率.
灰体也是一种假定的理想物 体。在红外线范围内,可把实 际物体近似看作灰体,给工程 计算带来方便。
因此,伯努利方程可叙述为:理想不 可压缩流体在重力作用下作定常流动时, 沿同一流线(或微元流束)上各点的单位 重量流体所具有的位势能、压强势能和动 能之和保持不变,即机械能是一常数,但 位势能、压强势能和动能三种能量之间可 以相互转换。
所以伯努利方程是能量守恒定律在流 体力学中的一种特殊表现形式。
2
又假设为不可压缩均质流体,即ρ=常数,积分后得
gz p V 2 常数
2
或
z p V 2 常数
(4-8)
g 2g
式(4-8)称为理想流体微元流束的伯努利方程。 方程右边的常数对不同的流线有不同的值。该方程的适 用范围是:理想不可压缩均质流体在重力作用下作定常 流动,并沿同一流线(或微元流束)。
称之为速度水头。位置水头、压强水头和速度水
头之和称为总水头。由于它们都表示某一高度, 所以可用几何图形表示它们之间的关系,如图42所示。
图 4-2 总水头线和静水头线
因此伯努利方程也可叙述为:理想不可压 缩流体在重力作用下作定常流动时,沿同一流 线(或微元流束)上各点的单位重量流体所具有的 位置水头、压强水头和速度水头之和保持不变, 即总水头是一常数。
现来叙述该方程的物理意义和几何意义。
1、物理意义 理想流体微元流束的伯努利方程式(4-8)中,左端
前两项的物理意义,在静力学中已有阐述,即第一项z表 示单位重量流体所具有的位势能;第二项p/(ρg)表示单位 重量流体的压强势能;第三项V2/(2g)理解如下:由物理学 可知,质量为m的物体以速度V运动时,所具有的动能为 mv2/2,则单位重量流体所具有的动能为v2/(2g), 即 (mv2/2)/(mg)= v2/(2g) 。所以该项的物理意义为单位重量流 体具有的动能。位势能、压强势能和动能之和称为机械能。
1
p x
dx
u
u x
dx u
u y
dy u
u z
dz
udu
f y dy
1
p y
dy
v
v x
dx v
v y
dy v
v z
dz
vdv
1 p
w
w
w
f z dz z dz w x dx w y dy w z dz wdw
式(3-40)中的 p dx p dy p dz dp
x y z
udu vdv wdw 1 d(u 2 v 2 w2 ) 1 dV 2
2
2
假设质量力只有重力,fx=0,fy=0,fz=-g,即z轴垂直
向上,oxy为水平面。则式(4-7)可写成
gdz 1 dp 1 dV 2 0
2、几何意义 理想流体微元流束的伯努利方程式(4-8)
中,左端前两项的几何意义,同样在静力学中已 有阐述,即第一项z表示单位重量流体的位置水 头,第二项p/(ρg)表示单位重量流体的压强水头, 第三项v2/(2g)与前两项一样也具有长度的量纲。 它表示所研究流体由于具有速度v,在无阻力的 情况下,单位重量流体所能垂直上升的最大高度,
第四章
流体动力学基本定理及其应用
第二节 理想流体的(欧拉)运动
微分方程
在流动的理想流体中,取出一个微元平行六面体的微
团,它的各边长度分别为dx、dy和dz,如图4-1所示。由 于是理想流体,没有黏性,运动时不产生内摩擦力,所以
作用在流体微团上的外力只有质量力和压强。该压强与静
压强一样,垂直向内,作用在流体微团的表面上。假设六 面体形心的坐标为x、y、z,压强为p。
称为全压,在入口前同一水平流线未受扰动处(例如B点) 的液体压强为 PB,速度为v。应用伯努利方程于同一流线 上的B、A两点,则有
z
pB
V2
z
pA
0
h pA pB V 2
g 2g
g
g g 2g
则
v 2 pA pB 2gh
(4-10)
式(4-10)表明,只要测量出流体的运动全压和静压 水头的差值h,就可以确定流体的流动速度。由于流体的 特性,以及皮托管本身对流动的干扰,实际流速比用式(410)计算出的要小,因此,实际流速为