绵阳市高中2018级第二次诊断性考试数学理科答案
高三数学第二次诊断考试试题理(扫描版)(2021学年)
四川省绵阳市2018届高三数学第二次诊断考试试题理(扫描版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省绵阳市2018届高三数学第二次诊断考试试题理(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省绵阳市2018届高三数学第二次诊断考试试题理(扫描版)的全部内容。
四川省绵阳市2018届高三数学第二次诊断考试试题理(扫描版)绵阳市高2015级第二次诊断性考试数学(理工类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.DBBCA CDDCA BD二、填空题:本大题共4小题,每小题5分,共20分.13.93 14.—5 15.116.①③④16题提示:③设|B M|=|BO |=m ,|CN|=|C O|=n ,由①得|PM |=|PN |=9.由题知圆E与x 轴相切,于是圆E:x2+(y —2)2=4是△PBC 的内切圆,根据公式S △PBC =)(21c b a r ++(其中r为内切圆半径,a ,b,c 为△P BC 的边长)得:21|B C|•y 0=21×2×2(|PM |+|BO |+|CO |),即21(m+n )×9=2(9+m +n ),解得536=+n m ,故S △P BC 5162953621=⨯⨯=.④同③可得21(m +n )•y 0=2(y 0+m +n ), 解得4400-=+y y n m , 故S △PBC ]8)4(16)4[(24421)(21000200+-+-⋅=-⋅=+=y y y y y n m ≥32.三、解答题:本大题共6小题,共70分.17.解:(Ⅰ)已知C B A tan 31tan 21tan ==,∴ tan B=2tan A ,tan C =3tan A, 在△ABC 中,tan A =-tan (B+C )=AAA CBC B 2tan 61tan 3tan 2tan tan 1tan tan -+-=-+-,………3分 解得tan 2A =1,即ta nA =-1,或tan A =1.……………………………………4分 若t anA =-1,可得tanB =—2,则A ,B 均为钝角,不合题意. ……………5分 故tan A =1,得A=4π.…………………………………………………………6分(Ⅱ)由tan A =1,得tan B =2,tan C =3,可得sin B=2cosB ,sin C =3cos C , ……………………………………………7分 结合s in2B +c os2B =1,sin 2C +cos 2C =1, 可得s inB =52,s in C =103, (负值已舍) ……………………………………9分在△ABC 中,由BbA a sin sin =,得b =a a a A B 51022252sin sin ==, …………11分于是S△ABC =21ab sin C =253103510221a a a =⨯⨯,∴ 253a =15,解得a=5.………………………………………………………12分18.解:(Ⅰ)根据题意得:a =40,b=15,c =20,d =25,∴ 879.7249.845554060)20152540(10022>≈⨯⨯⨯⨯-⨯⨯=K , ……………………………4分 ∴ 在犯错误的概率不超过0。
最新-绵阳市高中2018级第二次诊断性考试(理综生物)四川 精品
绝密*启用前[考试时间:2018年1月27日下午3:00~5:30]绵阳市高中2018级第二次诊断性考试理科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,两卷共8页。
满分300分,考试时间150分钟。
第Ⅰ卷答案涂在答题卡上,第Ⅱ卷答案写在答题卷上。
第Ⅰ卷(选择题,共126分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科目用4B或5B铅笔准确涂写在答题卡上,同时将第Ⅱ卷答卷密封线内的项目填写清楚。
2.第1卷每小题选出答案后,用4B或5B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上。
3.可能用到的相对原子质量:H 1 N 14 O 16 S 32 Na 23在每题给出的四个选项中,只有一个选项是最符合题目要求的。
共21题,每题6分。
1.已知某植物光合作用和呼吸作用的最适温度分别为25℃和30℃。
下图表示该植物在25℃时光合强度与光照强度的关系。
若将温度提高到30℃的条件下(原光照强度和CO2浓度等不变),从理论上,图中相应点的移动应该是A.a点上移,b点左移,m值增加B.a点不移,b点左移,m值不变C.a点下移,b点右移,m值下降D.a点下移,b点不移,m值上升2.下面关于植物体细胞杂交技术的叙述,哪一项是错误的?A.将杂种细胞放在无菌条件下培养成杂种植株B.经培养获得的杂种植株是二倍体植物C.该项技术的理论基础是植物细胞的全能性D.这项技术可克服远源杂交不亲合的障碍3.下面各项叙述,只有哪一项符合人体内蛋白质代谢的特点?A.接受了抗原刺激的淋巴细胞,其细胞内的蛋白质合成速度加快B.因人是异养生物,体内蛋白质合成所需氨基酸只能来自于食物C.健康成年人摄取过量食物蛋白,排出的尿液中尿素含量不变D.当糖类和脂肪摄人量都充足时,蛋白质的合成与储存就会增加4.脐血是新生婴儿脐带被结扎后由胎盘脐带流出的血,其内含有大量未成熟的造血干细胞。
推荐-四川省绵阳市2018年二次诊断数学试题(理科) 精品
绝密 ★ 启用前 【考试时间:2018年1月10日下午3:00~5:00】绵阳市高中2018级第二次诊断性考试数 学 (理工类)本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷(非选择题) 组成,共4页;答题卷共4页.满分100分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共48分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.3.参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B );如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概率:k n k kn n P P C k P --⋅⋅=)1()(; 正棱锥、圆锥的侧面积公式cl S 21=锥侧 其中c 表示底面周长,l 表示斜高或母线长;球的体积公式 334R V π=球 其中R 表示球的半径.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的, 把它选出来填涂在答题卡上.1.不等式02|1|>+-x x 的解集是 A .{x ︱x >-2} B .{x ︱x <-2} C .{x ︱-2<x <1或x >1} D .{x ︱x <-2或x >1}2.若a >b >0,则下列不等式中总成立的是A .a b b a 11+>+B .11++>a b a bC .b b a a 11+>+D .bab a b a >++22 3.下列极限中,其值等于2的是A .4326lim 32+++∞→n n nB .4326lim 22+++∞→n n nC .)11174(lim 31+-++-→x x x x D .nn n n n n n C C C C 2421lim 210++++++++∞→4.设不重合两条直线l 1:ax +by +c =0与直线l 2:mx +ny +p =0,则an =bm 是直线l 1∥l 2的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在平面上,已知点A (2,1),B (0,2),C (-2,1),O (0,0).给出下面的结论:①BC CA AB =- ②OB OC OA =+ ③OA OB AC 2-= 其中正确..结论的个数是 A .1个 B .2个 C .3个 D .0个6.已知数列{a n }的通项公式是1+=bn ana n ,其中a 、b 均为正常数,那么a n 与1+n a 的大小关系是A .1+<n n a aB . 1+>n n a aC .1+=n n a aD .与a 、b 的取值有关7.设)3,6(ππθ∈且17θ 的终边与θ 的终边相同,则tan θ =A .2-1B .2C .2+1D .1 8.方程 x (x 2 + y 2-3) = 0与x 2 + (x 2 + y 2-3)2 = 0所表示的曲线是A .都表示一条直线和一个圆B .都表示两个点C .前者是两个点,后者是一条直线和一个圆D .前者是一条直线和一个圆,后者是两个点 9.设α、β是某一锐角三角形的两个内角,则必有A .sin α<cos β且sin β<cos αB .sin α<cos β且sin β>cos αC .sin α>cos β且sin β>cos αD .sin α>cos β且sin β<cos α10.函数y =x +cos x 的大致图象是D .11.由方程 1||||=+y y x x 确定的函数y =f (x )在(-∞,+∞)上是A .奇函数B .偶函数C .增函数D .减函数12.已知a ,b ,c ∈R ,若1>⋅a c a b ,且2-≥+aca b ,则下列结论成立的是A .a ,b ,c 同号B .b ,c 同号,a 与它们异号C .b ,c 同号,a 不能确定D .a ,b ,c 的符号都不能确定第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知目标函数S = 2x + y ,则函数S 在条件⎪⎩⎪⎨⎧≤+-≤>0122,1,0y x y x 下的最大值为 .14.已知51cos sin =+αα,那么角α是第 象限的角.15.设a 、b 、c 是△ABC 中∠A 、∠B 、∠C 的对边,S 是△ABC 的面积,若a =4,b =5,35=S ,则c = . 16.已知命题:“若数列{a n }为等差数列,且a m =a ,a n =b (m ≠n ,m ,n ∈N +),则mn ma nb a n m -⋅-⋅=+”.现已知数列{b n }(b n >0,n ∈N +)为等比数列,且b m =a ,b n =b (m ≠n ,m ,n ∈N +),若类比上述结论,则可得到b m +n = .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分) 已知数列{a n }的各项均为正数,且前n 项和S n 满足1(1)(2)6n n n S a a =++.若a 2、a 4、a 9 成等比数列,求数列{a n }的通项公式.18.(本题满分12分) 已知A 是圆x 2 + y 2 = 4上任一点,AB 垂直于x 轴,交x 轴于点B .以A 为圆心、AB 为半径作圆交已知圆于C 、D ,连结CD 交AB 于点P ,求点P 的轨迹方程.19.(本题满分12分) 设平面内的向量)7,1(=, )1,5(=, )1,2(=,点P 是直线OM 上的一个动点,求当⋅取最小值时,的坐标及∠APB 的余弦值.20.(本题满分12分) 某地计划从今年起填湖围造一部分生产和生活用地.若填湖费、购置排水设备费等所需经费与当年所填湖造地面积x (亩)的平方成正比,其比例系数为a .设每亩水面的年平均经济收益为b 元,填湖造地后的每亩土地的年平均收益为c 元(其中a ,b ,c 均为常数).(Ⅰ) 若按计划填湖造地,且使得今年的收益不小于支出,试求所填面积x 的最大值.(Ⅱ) 如果填湖造地面积按每年1%的速度减少,为保证水面的畜洪能力和环保要求,填湖造地的总面积永远不能超过现有水面面积的25%,求今年填湖造地的面积最多只能占现有水面的百分之几.21.(本题满分12分) 证明:ααααααααsin 21)cos (sin cos 2cos sin 3cos 3sin =-++--.22.(本题满分14分) 试利用“对数函数y = log a x 在(0,+∞)上的单调性质:0<x 1<x 2 ⇔ log a x 1<log a x 2 (a >1);0<x 1<x 2 ⇔ log a x 1>log a x 2 (0<a <1)” 解决下列问题:已知二次函数f (x )的图象开口向下,且对任意实数x 有f (2-x )=f (2+x ), 解关于x 的不等式:)10)](812([log )]45([log 222<<++-<++a a x x f a ax x f a a 其中.绵阳市高2018级第二次诊断性考试 数学(理)参考解答及评分标准一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.CABC BADD CBDA二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.2 14.二或四 15.61或2116. m n m n n m abb -+=三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.解 ∵ 对任意n ∈N *,有 1(1)(2)6n n n S a a =++, (1)∴ 当n =1时,有 11111(1)(2)6S a a a ==++, 解得 a 1 = 1 或a 1 = 2. ……………… 3分当n ≥2时,有 1111(1)(2)6n n n S a a ---=++. (2)于是,由 (1)-(2) 整理可得 (a n + a n -1)(a n -a n -1-3)=0.因为{a n }的各项均为正数,所以 a n -a n -1 = 3. …………… 8分 当a 1 = 1时,a n =1+3(n -1)=3n -2,此时a 42=a 2a 9成立.当a 1 = 2时,a n =2+3(n -1)=3n -1,此时a 42=a 2a 9不成立,故a 1=2舍去.所以a n =3n -2. ……………… 12分18.解 设点A 的坐标为A (2cos α,2sin α), 则以A 为圆心、AB 为半径的圆的方程为(x -2cos α)2 + (y -2sin α)2 = 4sin 2α. ……… 4分联立已知圆x 2 + y 2 = 4的方程,相减, 可得公共弦CD 的方程为x cos α + y sin α = 1+ cos 2α. (1) ……… 8分 而AB 的方程是 x = 2cos α. (2)所以满足(1)、(2)的点P 的坐标为(2cos α,sin α),消去α,即得点P 的轨迹方程为x 2 + 4y 2 = 4. ……………… 12分说明: 设A (m ,n )亦可类似地解决. 19.解 设),(y x OP =. ∵ 点P 在直线OM 上,∴ 与OM 共线,而)1,2(=,∴ x -2y =0即x =2y ,有),2(y y =. ……………… 4分∵ )7,21(y y --=-=,)1,25(y y --=-=, ∴ )1)(7()25)(21(y y y y --+--=⋅= 5y 2-20y +12 = 5(y -2)2-8. ……………… 8分从而,当且仅当y =2,x =4时,PB PA ⋅取得最小值-8,此时)2,4(=,)5,3(-=,)1,1(-=.于是34||=,2||=,8)1(51)3(-=-⨯+⨯-=⋅PB PA , ∴ 171742348||||cos -=⋅-=⋅=∠PB PA APB .…………… 12分 20.解填湖面积 填湖及排水设备费 水面经济收益 填湖造地后收益x (亩) ax 2 (元) bx cx(Ⅰ) 收益不小于支出的条件可以表示为 cx ≥ ax 2 + bx , 所以 ax 2 + (b -c )x ≤0, x [ax -(c -b )]≤0.当 c -b ≤0,即 0≤≤-x abc 时,此时不能填湖造地;……… 3分 当 c -b >0,即 a b c x -≤≤0 时,此时所填面积的最大值为abc -亩.…………… 6分(Ⅱ) 设该地现有水面m 亩,今年填湖造地x 亩, 则 m x x x x 25.0%)11(%)11(%)11(32≤+-+-+-+ ,不等式左边是无穷等比数列(首项为x ,公比q =0.99)的和,故有499.01m x ≤-, 即 m mx %25.0400=≤.因此今年填湖造地面积最多只能占现有水面的0.25%.…………… 12分21. 证明:∵ 分子=(sin2αcos α+cos2αsin α)-(cos2αcos α-sin2αsin α)-sin α+cos α= (2sin αcos 2α-sin α)+cos2αsin α-(cos2αcos α-cos α)+sin2αsin α = sin α(2cos 2α-1)+sin αcos2α+2sin 2αcos α+sin2αsin α = 2sin αcos2α+2sin2αsin α =2sin α(sin2α+cos2α), …………… 9分分母=2sin αcos α+2cos 2α-1= (sin2α+cos2α). …………… 11分∴ 左边=2sin α=右边,故等式成立. …………… 12分22.解 由题意知,二次函数f (x )的对称轴为直线x =2,…… 2分 故f (x )在x ∈(-∞,2]上单调递增,在[2,+∞)上单调递减.∵ 22222)2(45a a ax a ax x ≥++=++,a a x a x x ≥+-=++-22)41(2812, 且 0<a <1,∴ 2l o g )45(l o g 222=≤++a a ax x a a ,1log )812(log 2=≤++-a a x x a a, ∴ )812(l o g )45(l o g 222a x x a ax x aa ++-<++, …………… 6分 于是,得 a x x a ax x ++->++81245222,即08145)1(22<++-+-a a x a x . …………… 10分∵ )8145(4)1(22++--+=∆a a a=031)61(6212622>+-=+-a a a , ……………12分∴ 原不等式的解集为}10,2121|{<<∆++<<∆-+a a x a x . …………… 14分。
2018年全国II卷理科数学(含答案)(2)
I 1214181. 2. 2018年普通高等学校招生全国统一考试理科数学、选择题(本题共12小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有一项是复合题目要求的1 2i 1 2i 3.i 53. i 54 -i 5已知集合 ,贝U A 中元素的个数为Z , y Z x D .A . 9B . 8 x函数f 3. |a| 1, a 4.已知向量 C . 2A . 4B . 3 a,b 满足, e x二的图象大致是 x r br bA 3,则其渐近线方程为(A . y 2xB . y 3x 6.在△ ABC 中, C 5 cos — BC 1 , 2 5A . 4 2B . 30C .1 1 1 1 1 7.为计算S 12 3 4 99 100 5.双曲线 a >0 , b >0的离心率为 AC 29 则在空白框中应填入( ) 2 2 x y ~ 7~2a b 5,贝U AB=() ,设计了右侧的程序框图, 3A . i i 1 8 .我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 哥德巴赫 猜想是每个大于2的偶数可以表示为两个素数的和”如30 的素数中,随机选取两个不同的数,其和等于30的概率是(23.在不超过,V = 07 =flJ + 1A .—B .—C .丄 15D.—9•在长方体ABCD ABiGD i中,AB BC 1 , AA 3,则异面直线AD i与DB i所成角的余弦值为()八15厂v5n 2A .- B. C .—— D .——565210.若f x cosx sin x 在 a , a疋减函数,则a的最大值疋()A .- B. C .乞 D .42411 .已知f x是定义域为的奇函数,满足 f 1 x f 1x .若 f 1 2,贝Uf 1 f 2 f 3 f 50()A. 50B..0 C . 2 D . 5012.已知F1 , F2是椭圆C : 2 x1 ~22 y' ~21 a> b> 0的左、右焦点交点,A是C的左顶点,点P在过A且斜率为-J的a b26直线上,△ PF1F2为等腰三角形,F1F2P 120,则C的离心率为()2111A .— B. C . D .—3234二、填空题(本题共4小题,每小题5分,共20分)13.___________________________________________________ 曲线y 21 n x 1在点0,0处的切线方程为•x 2y 5>014._______________________________________________________________ 若x , y满足约束条件x 2y 3> 0,则z x y 的最大值为 _____________________________________________________________ •x 5< 015 .已知sin cos 1 , cos sin 0,贝y sin ________ .16. 已知圆锥的顶点为S,母线SA, SB所成角的余弦值为-,SA与圆锥底面所成角为45 •若△ SAB的面积为5; 15 ,8则该圆锥的侧面积为___________ .三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤。
最新-绵阳市高中2018级第二次诊断性考试-人教版[整理]
保密*启用前 [考试时间:2018年1月18日上午9:00—11:30]绵阳市高中2018级第二次诊断性考试理科综合能力测试本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,两卷共8页。
满分300分,考试时间150分钟。
第L卷答案涂在答题卡上,第Ⅱ卷答案写在答题卷上。
第Ⅰ卷(选择题,共126分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科目用4B或5B铅笔准确涂写在答题卡上,同时将第Ⅱ卷答卷密封线内的项目填写清楚。
2,第1卷每小题选出答案后,用4B或5B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,.用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上。
3.可能用到的相对原子质量:H1 C12 N14 O16一、选择题(本题包括13小题。
每小题只有一个选项符合题意.每小题6分)1.科学家在研究分泌蛋白的合成和分泌时,向豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,经过一段时间后,被标记的氨基酸可依次出现在该细胞的不同部位。
下面有关叙述哪一项是正确的?A.被标记的氨基酸首先出现在附着有核糖体的内质网中B.连接图中①、②、③、④所示结构的是具膜的小泡C.图中②、③、④分别代表内质网、高尔基体、细胞膜D.细胞内的各种生物膜既各施其职,又有紧密的联系,2.下面是在不同温度条件下测定某种植物光合作用与呼吸作用的强度绘制成的曲线。
如果在光照强度相同时,对植物生长最有利的温度是A.t0~t1B.t1~t2C.t2~t3D.t3~t43.下面是将某动物体(XY型)的性腺制成切片后,在显微镜下观察到的细胞分裂时期示意图。
比较甲、乙两个细胞所处的分裂时期,可以得出下列哪一项结论?A.它们处于同一细胞周期的不同阶段B.都可发生基因突变和基因重组C.只有甲图发生了X和Y染色体的分离D.乙图细胞分裂的结果染色体数且减半4.在人体特异性免疫反应中,体液免疫与细胞免疫的关系是A.只有体液免疫才需要抗体的参与,只有细胞免疫才需要淋巴细胞的参与B.体液免疫和细胞免疫分别组成人体内防止病原体入侵的第二、第三道防线C.对侵入人体的病原体由体液免疫发挥作用,—对癌细胞由细胞免疫发挥作用D.在抗病毒感染中,往往先通过体液免疫发挥作用,再通过细胞免疫发挥作用一5.下面有关真核细胞基因结构和功能的叙述哪一项是错误的?A.等位基因A与a的最本质区别是两者的碱基排列顺序不同B.对血友病患者的造血干细胞进行基因改造后,其遗传性发生改变C.不同种类的蛋白质的基因所含外显子和内含子的数目是不同的D.用PCR技术进行DNA的体外扩增时要发生碱基互补配对6.等物质的量的下列物质分别与足量的NaOH溶液完全反应,需要NaOH的量最多的是A.NaHS18 B.AICl3C.SiO2D.7.某货车由于制动失灵冲人高速公路边的小河沟内,车上装载的化工原料遇水着火燃烧,该化工原料可能是A.NH4N18 B.KCl18C.CaC2D.CaO8.设NA表示阿伏加德罗常数的值,下列叙述正确的是A.0.8gNH2—所含电子数为N AB.在44g干冰中,含C=O键数为4N AC.1molSi02晶体中含有2N A个Si—O键D.常温常压下,48g臭氧所含分子数为N A9.下列实验方案合理的是A.蔗糖水解(H2S18作催化剂)后,在水解液中加新制的Cu(OH)2悬浊液加热煮沸检验水解产物B.用氨水清洗做过银镜反应的试管C.除去苯中的苯酚,加饱和NaHC18溶液再分液D.用新制的生石灰,通过加热蒸馏,以除去乙醇中的少量水10.广义的水解观认为:无论是盐的水解还是非盐的水解,其最终结果是:反应中各物质和水分别解离成两部分,然后两两重新组合成新的物质。
四川省绵阳市 中考数学二诊试卷含答案解析
四川省绵阳市中考数学二诊试卷一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.﹣6的绝对值是()A.﹣6 B.﹣ C.D.62.在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:编号123456789101112消费金额(元)300200400500400300600300400800300300根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为()A.400,300 B.300,400 C.400,400 D.300,3005.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥6.如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD 的度数为()A.65°B.50°C.25°D.12.5°7.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.158.下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形9.如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣10.已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限11.如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.12.如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.化简:(2a2)3=.14.如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=.15.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.16.如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC为直径作圆,则图中阴影部分的面积是.17.若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是(写出你认为正确的所有结论的序号).18.在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是.三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.20.光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球”项目的有人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.22.如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.23.一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?24.在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)25.如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y 关于x的函数解析式,并求出AN长度取值范围.四川省绵阳市中考数学二诊试卷参考答案与试题解析一、选择题(每小题3分,共36分,每小题只有一项是符合题目要求的)1.﹣6的绝对值是()A.﹣6 B.﹣ C.D.6【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选D.2.在过去的2015年北上广深等一线城市楼市火爆,其中仅北京的新房总成交额就达到2500亿元,若用科学记数法表示该数据应是()A.2.5×1011元 B.25×1010元C.2.5×1012元 D.0.25×1011元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2500亿有12位,所以可以确定n=12﹣1=11.【解答】解:2500亿=2.5×1011.故选A.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.4.“双十一”购物节后,小明对班上同学中的12位进行抽样调查并用数字1﹣12对每位被调查者进行编号,统计每位同学在购物节中的消费金额,结果如表所示:编号123456789101112消费金额(元)300200400500400300600300400800300300根据上表统计结果,被调查的同学在“双十一”购物节中消费金额的平均数和众数分别为()A.400,300 B.300,400 C.400,400 D.300,300【考点】众数;算术平均数.【分析】根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可.【解答】解:∵300出现了5次,出现的次数最多,∴众数是300;这组数据的平均数是:÷12=400;故选:A.5.如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥【考点】由三视图判断几何体.【分析】根据一个空间几何体的正视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体侧面形状,得到答案.【解答】解:由几何体的正视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选:B.6.如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD 的度数为()A.65°B.50°C.25°D.12.5°【考点】圆周角定理;垂径定理.【分析】连接AC,根据直径AB⊥弦CD于点H,利用垂径定理得到,从而利用等弧所对的圆周角相等得到∠CAB=∠DAB,利用圆周角定理得到∠BAD=∠BAC=25°.【解答】解:连接AC,∵直径AB⊥弦CD于点H,∴∠CAB=∠DAB∵∠BAC=∠BEC=25°,∴∠BAD=∠BAC=25°.故选C.7.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2cm,BC=14m,则楼高CD为()m.A.10.5 B.12 C.13 D.15【考点】相似三角形的应用.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,故选B.8.下面关于四边形的说法中,错误的是()A.菱形的四条边都相等B.一组邻边垂直的平行四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形【考点】正方形的判定;平行四边形的性质;菱形的性质;矩形的判定.【分析】根据菱形的性质判断A;根据矩形的判定判断B;根据正方形的判定判断C;根据矩形与正方形的性质判断D.【解答】解:A、菱形的四条边都相等,正确.B、一组邻边垂直的平行四边形是矩形,正确.C、对角线相等且互相垂直的四边形可能是等腰梯形,可能是正方形,错误.D、矩形是特殊的平行四边形,正方形既是特殊的矩形也是特殊的菱形,正确.故选C.9.如图,矩形ABCD中,AB=4,AD=3,点E、F分别在边AB,CD上,且∠FEA=60°,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,当M,N分别在边BC,AD上时.若令△A′B′M的面积为y,AE的长度为x,则y关于x的函数解析式是()A.y=﹣x2+6x﹣8B.y=﹣2x2﹣12x+16C.y=2x2+12x﹣16D.y=﹣x2+2x﹣【考点】根据实际问题列二次函数关系式.【分析】由折叠性质可得AE=A′E=x、∠BEM=∠B′EM=60°、∠B=∠EB′M=90°、BE=B′E=4﹣x,继而可得BM=BM′=BEtan∠BEM=(4﹣x)、A′B′=A′E﹣B′E=2x﹣4,根据三角形面积公式即可得.【解答】解:∵∠AEF=60°,∴∠BEF=120°,由题意知,∠BEM=∠B′EM=60°,∠B=∠EB′M=90°,BE=B′E=4﹣x,∴BM=BM′=BEtan∠BEM=(4﹣x),又∵AE=A′E=x,∴A′B′=A′E﹣B′E=x﹣(4﹣x)=2x﹣4,=×A′B′×B′M,∵S△A′B′M∴y=(2x﹣4)[(4﹣x)]=﹣x2+6x﹣8,故选:A.10.已知反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),若x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,则下列四种说法中错误的是()A.必有b≠0B.必有m2﹣b2=8C.线段OA的长度必定大于2D.除A点外y=与y=x+b图象必定还有一个交点,且两交点位于同一象限【考点】反比例函数与一次函数的交点问题.【分析】根据x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根即可判断A;根据一次函数图象上点的坐标特征和根与系数的关系即可求得m2﹣b2=8,即可判断B;根据勾股定理和m2﹣b2=8得出OA=,即可判断C;根据根与系数的关系求得k,判定反比例函数的位置,然后根据直线所处的位置即可判断D.【解答】解:A、∴反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x2=x1+b,∴b=x2﹣x1,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴b=x2﹣x1≠0,故正确;B、∵x2=x1+b,∴x2﹣x1=b,∴(x1+x2)2﹣4x1x2=b2,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,x1+x2=﹣m,∴m2﹣4×2=b2,∴m2﹣b2=8,故正确;C、∵点A(x1,x2),∴OA===,∵m2﹣b2=8,∴m2=,m2﹣b2=8∴OA=,∵b≠0,∴b2+4>4,∴OA=>2,故正确;D、∵反比例函数y=与一次函数y=x+b的图象相交于点A(x1,x2),∴x1x2=k,∵x1、x2是关于x的方程x2+mx+2=0的不相等的两实数根,∴x1x2=2,∴k=2,∴反比例函数在一三象限,∵一次函数y=x+b的图象一定经过一、三象限,∴y=与y=x+b图象的交点分别在第一、第三象限,故错误;故选D.11.如图△ABC中,tan∠C=,DE⊥AC,若CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,则BE的长度是()A.B.C.D.【考点】解直角三角形.【分析】作辅助线BF⊥AC,根据题目中的数据利用三角形相似和勾股定理可以分别求得BF、EF、BE的长度,本题得以解决.【解答】解:作BF⊥AC于点F,如右图所示,∵CE=5,DE=1,且△BEC的面积是△ADE面积的10倍,DE⊥AC,∴,即,解得,BF=2AE,设AE=a,则BF=2a,∵DE⊥AC,BF⊥AC,∴△ADE∽△ABF,∴,即,得AF=2a2,∴EF=2a2﹣a,∵tan∠C=,tanC=,BF=2a,解得,CF=4a,∵CE=CF+EF,CE=5,即5=4a+2a2﹣a,解得,a=1或a=﹣2.5(舍去),∴BF=2,EF=1,∴BE=,故选C.12.如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P运动而运动且运动路径也形成一个圆,则该圆的半径是()A.B.C.D.1【考点】圆的综合题.【分析】如图,作直线AO交⊙O于P1,P2,点P在⊙O上运动,所以PA的最小值就是AP1的长,PA的最大值就是PA2的长,求出相应的AM的最小值、最大值即可解决问题.【解答】解:如图,作直线AO交⊙O于P1,P2.∵点P在⊙O上运动,∴PA的最小值就是AP1的长,PA的最大值就是PA2的长,∵∠AP1M1=∠AP2M2,∴P1M1∥P2M2,∵∠AM1P1=∠AM2P2=90°,∴A、M1、M2共线,∵OA==2,∴AP1=2﹣2,AP2=2+2,∵cos∠AP1M1=,∴sin∠AP1M1=,∴AM1=PA1•=(2﹣2),AM2=(2+2),∴M1M2=,由图象可知M1M2就是点M随着点P运动而运动且运动路径形成的圆的直径,∴该圆的半径是.故答案为C.二、填空题(本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上)13.化简:(2a2)3=8a6.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方计算即可.【解答】解:(2a2)3=23•a2×3=8a6.14.如图,m∥n,点A在直线m上,B、C两点在直线n上,△ABC是等腰直角三角形,∠BAC=90°,则∠1=45°.【考点】平行线的性质.【分析】先根据△ABC是等腰直角三角形,∠BAC=90°求出∠B的度数,再由平行线的性质即可得出结论.【解答】解:∵△ABC是等腰直角三角形,∠BAC=90°,∴∠B=45°.∵m∥n,∴∠1=∠B=45°.故答案为:45°.15.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为.【考点】几何概率.【分析】利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.【解答】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故答案为:.16.如图,在直角△ABC中,∠BAC=90°,AB=3,AC=4,分别以AB、AC为直径作圆,则图中阴影部分的面积是π﹣6.【考点】勾股定理.【分析】观察图形发现:阴影部分的面积=两个半圆的面积﹣直角三角形的面积,根据半圆面积公式和直角三角形面积公式求面积即可.【解答】解:π×(3÷2)2+π×(4÷2)2﹣4×3÷2=π+2π﹣6=π﹣6.故图中阴影部分的面积是π﹣6.故答案为:π﹣6.17.若规定f(x)是正整数x所唯一对应的实数,且对于任意的正整数a、b都有f(a+b)=f(a)•f(b),如f(5)=f(3+2)=f(3)•f(2),现已知f(1)=.给出下列结论:①f(2)=2.②若a>b,则必有f(a)>f(b).③当a>b时,存在符合条件的a、b,使得2f(a)=f(a﹣b)+f(a+b)成立.④当a>b时,必有f(2a)=f(a﹣b)•f(a+b)成立.其中正确的结论是①②④(写出你认为正确的所有结论的序号).【考点】实数的运算.【分析】①把2根据规定运算写成1+1代入即可得出结论正确;②由于a>b,设a=b+n(n为整数)代入规定化简即可得出结论正确;③根据规定f(a﹣b)+f(a+b)=0,再判断出f(a)≥,即可得出结论不正确;④将f(a﹣b)•f(a+b)根据规定化简得出右边,即可判断出结论正确.【解答】解:①f(2)=f(1+1)=f(1)•f(1)==2,∴①正确;②设a=b+n,n为正整数,∴f(a)=f(b)+f(n)=f(b)+nf(1)=f(b)+n>f(b),∴②正确;③∵f(a﹣b)+f(a+b)=﹣f(a)•f(b)+f(a)•f(b)=0,由②知f(a)≥f(1),∵f(1)=,∴f(a)≥≠0,∴③不正确;④∵f(a﹣b)•f(a+b)=f(a﹣b+a+b)=f(2a),∴④正确;∴正确的有①②④故答案为①②④.18.在平面直角坐标系xOy中,点P在由直线y=x+2,直线y=﹣x+2和直线y=4所围成的区域内或其边界上,点M在x轴上,若点N的坐标为(5,1),当MN+MP最小时,点P坐标是(1,3).【考点】轴对称﹣最短路线问题.【分析】如图,作直线y=x+2关于x轴的对称的直线y=﹣x﹣2,过点N作直线y=﹣x﹣2的垂线垂足为E,交x轴于M,则点E坐标(1,﹣3),点E关于x轴的对称点P 坐标(1,3),可以证明点P就是所求的点.【解答】解:如图,作直线y=x+2关于x轴的对称的直线y=﹣x﹣2,过点N作直线y=﹣x﹣2的垂线垂足为E,交x轴于M,则点E坐标(1,﹣3),点E关于x轴的对称点P坐标(1,3),此时MN+MP最短,理由:∵MN+MP=MN+ME=NE,∴MN+MP最短(垂线段最短).故点P坐标为(1,3),故答案为(1,3).三、解答题(本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤)19.(1)计算+|()0﹣2sin45°|+2﹣1(2)解方程:﹣2=.【考点】实数的运算;解分式方程;特殊角的三角函数值.【分析】(1)原式利用二次根式性质,绝对值的代数意义,零指数幂、负整数指数幂法则计算即可得到结果;(2)分式去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+﹣1+=3﹣;(2)去分母得:x2+2x﹣2x2﹣2x+4=2,即x2=2,解得:x=±,经检验x=±都为分式方程的解.20.光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10人,男生最喜欢“乒乓球”项目的有20人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)总数减去喜欢跳绳、乒乓球、羽毛球、其他的人数,即可得出喜欢“踢毽子”项目的人数,先求出男生喜欢乒乓球的人数所占的百分比,继而可得出男生最喜欢“乒乓球”项目的人数;(2)由(1)的答案可补全统计图;(3)根据男生、女生喜欢乒乓球人数所占的百分比,即可得出计该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20人;(2)补充条形统计图如右图:.(3)400×28%+450×=193,答:该校喜欢“羽毛球”项目的学生总人数为193人.21.如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为3,sin∠ADE=,求AE的长.【考点】切线的判定.【分析】(1)连接OD,则∠AOD=90°,由四边形ABCD是平行四边形,则AB∥DC.从而得出∠CDO=90°,即可证出答案.(2)连接BE,则∠ADE=∠ABE根据题意得sin∠ABE=,由AB是圆O的直径求出AB的长.再在Rt△ABE中,求得AE即可.【解答】(1)证明:连接OD,则∠AOD=2∠AED=2×45°=90°,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠CDO=∠AOD=90°,∴OD⊥CD,∴CD与圆O相切;(2)连接BE,则∠ADE=∠ABE,∴sin∠ADE=sin∠ABE=,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6,在Rt△ABE中,sin∠ABE==,∴AE=5.22.如图,O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,∠AOC=45°,OA=2,反比例函数y=在第一现象内的图象经过点A,与BC交于点D.(1)求反比例函数的解析式;(2)若点D的纵坐标为,求直线AD的解析式.【考点】反比例函数与一次函数的交点问题;平行四边形的性质.【分析】(1)作AH⊥x轴于点H,根据等腰三角形性质及三角函数可求得点A的坐标,从而可得反比例函数解析式;(2)由反比例函数解析式及点D的纵坐标可得D的坐标,结合点A的坐标,待定系数法可求得直线AD解析式.【解答】解:(1)如图,作AH⊥x轴于点H,∵OA=2,∠AOH=45°,∴OH=AH=OAsin∠AOH=2×=,即A(,),又∵点A(,)在y=图象上,∴m=×=2,∴反比例函数解析式是y=;(2)∵点D的纵坐标为,且点D在双曲线y=上,∴其横坐标为2,即D(2,),设直线AD解析式为:y=kx+b,将点A(,)、D(,2)代入得:,解得:,∴直线AD的解析式为y=﹣x+.23.一工厂共有6条生产线生产某种机器设备,每条生产线每月可生产500台,该厂计划从今年1月开始对6条生产线各进行一次改造升级,每月改造升级1条生产线,这条生产线当月停产,并于次月再投入生产,每条生产线改造升级后,每月产量将比原来提高20%.已知每条生产线改造升级的费用为30万元,将今年1月份作为第1个月开始往后算,该厂第x(x是正整数)个月的产量设为y台.(1)求该厂第3个月的产量;(2)请求出y关于x的函数解析式;(3)如果每生产一台机器可盈利400元,至少要到第几个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据:第3个月的产量=前2条生产线改造后的产量和+后3条生产线未改造的产量和,列式计算可得;(2)当1≤x≤6时,根据(1)中相等关系可列函数关系式;当x>6时,总产量=改造后每条生产线的产量×生产线数量;(3)根据前6个月的总盈利=一台机器的盈利×前6个月的生产量﹣改造升级的总费用,计算出前6个月的总盈利,再计算出不升级改造的总盈利可得x>6,继而根据:该厂的盈利扣除生产线改造升级费用后的盈利总金额≥同样时间内生产线不作改造升级时的盈利总额,列出不等式即可得x的范围.【解答】解:(1)由已知可得,第3个月的产量是:2×500×(1+20%)+500×3=2700(台),答:该厂第3个月的产量是2700台.(2)①当1≤x≤6时,每月均有一条生产线在停产改造,即均是有5条生产线在生产,其中,升级后的生产线有x﹣1条,未升级的生产线有6﹣x条,根据题意,得:y=(x﹣1)×500×(1+20%)+(6﹣x)×500=100x+2400;②当x>6时,y=500×(1+20%)×6=3600台;综上,y=.(3)由(2)得,当1≤x≤6时,y=100x+2400,则前6个月的总产量Q=100×(1+2+3+4+5+6)+2400=16800(台),∴前6个月的盈利扣除改造升级的成本应是:16800×0.04﹣30×6=480(万元),如果不升级改造,前6个月盈利应是:500×6×6×0.04=720(万元),故前6个月不符合题目要求,从而得x>6,则有:480+(x﹣6)×3600×0.04≥500×6x×0.04,解得:x≥16,答:至少要到第16个月,这期间该厂的盈利扣除生产线改造升级费用后的盈利总金额将超过同样时间内生产线不作改造升级时的盈利总额.24.在菱形ABCD中,对角线AC,BD交于点O,E为AC上点,且CE=CB,F为BE上点,M 为BC上点,且MF⊥BE,并与OB相交于点N.(1)求证:△BOE∽△MFB;(2)若BD=AC,BF=a,求MN的长.(结果用a表示)【考点】相似三角形的判定与性质;菱形的性质.【分析】(1)由菱形性质得AC⊥BD,由已知得出∠CEB=∠CBE,由MF⊥BE,得出∠BOE=∠BFM,即可得出结论;(2)作MP∥AC于BE交于点P,与OB交于点Q,由△BOE∽△MFB,得出∠EBO=∠FMB,证出tan∠OCB==,由平行线的性质得出∠MPB=∠CEB=∠CBE,∠MQN=90°,=,证出△MBP为等腰三角形,由等腰三角形的三线合一性质得出BF=FP,∠PMF=∠BMF=∠PBQ,证得△PBQ∽△NMQ,由对应边成比例得出比例式即可求出结果.【解答】(1)证明:∵AC、BD是菱形ABCD的对角线,∴AC⊥BD,∴∠BOE=90°,∵CE=CB,∴∠CEB=∠CBE,∵MF⊥BE,∴∠BFM=90°,∴∠BOE=∠BFM,∴△BOE∽△MFB;(2)解:作MP∥AC与BE交于点P,与OB交于点Q,如图所示:由△BOE∽△MFB,∴∠EBO=∠FMB,∵BD=AC,∴OB=OC,∴tan∠OCB==,∵MP∥AC,∴∠MPB=∠CEB=∠CBE,∠MQN=90°,=,∴△MBP为等腰三角形,∵MF⊥BE,∴BF=FP,∠PMF=∠BMF=∠PBQ,∵∠MQN=∠BQP=90°,∴△PBQ∽△NMQ,∴===,∴MN=BP=×2BF=3BF=3a.25.如图,已知抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8).已知点C(4,m)在抛物线上,过点C作CD⊥y轴,垂足为D,AC与y轴交于点E.(1)请给出抛物线解析式;(2)若令∠BAO=α,请求tan的值;(注:要求运用课本所学知识结合题中几何关系进行推导求值).(3)如图2,点P为线段CD上一动点(不与C、D重合),延长PE与x轴交于点M,点N′为AB上点,且∠PMN=∠BAO,若点P横坐标记为x,AN长度记为y,请求出y 关于x的函数解析式,并求出AN长度取值范围.【考点】二次函数综合题.【分析】(1)根据抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B (0,8),可以求得b、c的值,从而可以得到函数的解析式;(2)由∠BAO=α,要求tan的值,只要从图中可以找到等于的角即可,过点C 作CH⊥x轴于点H,只要证明∠BAC=∠HAC即可,根据题目中的信息,可以证明这两个角相等,从而可以求得tan的值;(3)要想求y与x之间的函数关系式,只要作出合适的辅助线,用题目中的数量关系可以表示出y与x之间函数关系.进而可以确定y的取值范围.【解答】解:(1)∵抛物线y=﹣x2+bx+c分别与x轴、y轴交于点A(﹣6,0)、B(0,8),∴,解得,,即抛物线的解析式为:y=﹣x2+x+8;(2)如图1所示,过点C作CH⊥x轴于点H,∵点C(4,m)在抛物线上,∴,得m=5,∴点C(4,5),又∵点A(﹣6,0),点B(0,8),∴AB=,BC=,∵CH=5,AH=AO+OH=6+4=10,AC=AC,∴AB=AH,BC=HC,∴△ABC≌△AHC,∴∠BAC=∠HAC,∵∠BAO=∠BAC+∠HAC,∴∠HAC=,∴tan;(3)如图2,作MQ⊥AB于点Q,∵∠NMO=∠PMN+∠PMO=∠BAO+∠ANM,又∵∠PMN=∠BAO,∴∠PMO=∠ANM,∵CH∥EO,在图1中,,∴OE=,∵BD=8﹣5=3,∴OE=OB﹣BD﹣OE=8﹣3﹣3=2,∵点P横坐标为x,即PD=x,∴tan∠EMO=tan∠DPE=,∴,即,得OM=,∴AM=OA﹣OM=6﹣,在Rt△QAM中,sin∠QAM=,cos∠QAM=,∴QM=AM•sin∠QAM=(6﹣),AQ=AM•cos∠QAM=,∵在Rt△QNM中,,即QN=QM,∴AN=AQ+QN=,化简,得=,∴当x=时,y取得最大值,∵y>0,∴AN的取值范围是:0.2017年3月12日。
四川省绵阳市2018届高三第二次诊断性测试理综物理试题 含答案
秘密★启用前【考试时间:2018年1月6日上午9∶00~11∶30】绵阳市高中2018级高三第二次诊断性考试理科综合能力测试可能用到的相对原子质量:H 1 C 12 O 16 S 32 Cu 64 Zn 65 Ba 137第Ⅰ卷二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分。
14. 2018年10月17日,我国用长征二号FY11运载火箭将“神舟十一号”飞船送入预定转移轨道。
关于火箭发射,下列说法正确的是A.火箭刚离开发射架时,火箭处于失重状态B.火箭刚离开发射架时,火箭处于超重状态C.火箭发射时,喷出的高速气流对火箭的作用力大于火箭对气流的作用力D.火箭发射时,喷出的高速气流对火箭的作用力小于火箭对气流的作用力15. 2018年7月,科学家宣布找到了一颗人类“宜居”行星,它是离太阳最近的恒星——比邻星( Proxima Centauri)的行星。
若这颗“宜居”行星质量为地球的a倍,半径为地球的b倍。
设该行星的卫星的最小周期为T1,地球的卫星的最小周期为T2,则T1 /T2=16.在2018年11月初的珠海航展上,我国展出了国产四代战机———歼-20等最先进飞机。
假设航展飞行表演中,两架完全相同的歼-20飞机甲、乙在两条平行平直跑道上同向滑行,在0~t2时间内的v-t图像如图所示,则A.在t l时刻,两飞机沿跑道方向相距最远B.在t l时刻,两飞机发动机输出功率相等C. 0~t2,飞机甲的平均速度大于飞机乙的平均速度D.0~t2,合外力对飞机甲做的功大于合外力对飞机乙做的功17.如图所示的电路中,E为电源电动势,r为电源内阻,R1和R2为定值电阻,R为滑动变阻器。
当R的滑片P在某一位置时,闭合开关S,电压表的读数为U=l.00 V,电流表A1的读数I1=0.80A,电流表A2的读数为I2=1.20A。
四川省绵阳市2018届高三第二次诊断考试理综试题
秘密★启用前【考试时间:2018年1月22日上午9:00—11:30】绵阳市高中2015级第二次诊断性考试理科综合能力测试可能用到的相对原子质量:B 11 N 14 C135.5一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于人体细胞的结构和功能的叙述,正确的是A.神经元细胞处于静息状态时不进行葡萄糖的跨膜运输B.线粒体外膜上没有运输葡萄糖分子和氧气分子的载体C.小分子物质都是通过主动运输或者被动运输进出细胞D.细胞之间通过胞间连丝可以进行信息交流和物质交换2.下列有关现代生物进化理论的叙述,不正确的是A.变异对生物是否有利因生物所处的具体环境不同而有所差异B.自然选择通过作用于个体而引起种群基因频率发生定向改变C.种群内基因频率发生改变的偶然性随种群数量的下降而减小D.形成新物种的过程中一定有生殖隔离而不一定经过地理隔离3.对照实验是生物科学探究中常用的实验方法之一,设置对照实验的方法也多种多样。
下列关于对照实验的说法,错误的是A.“低温诱导染色体加倍”的实验中,作为对照的常温组也要用卡诺氏液处理B.“探究生长素类似物促进扦插枝条生根”的预实验中,不需要设置对照实验C.“探究血浆维持PH相对稳定”的实验中,清水组和缓冲液组都作为对照组D.沃泰默探究狗胰液分泌调节的实验中,将稀盐酸注入狗的血液能起对照作用4.为了研究棉花光合作用速率与温度的关系,某生物兴趣小组的同学测定了不同温度条件下,棉花植株在黑暗中单位时间内氧气的消耗量以及光照条件下单位时间内氧气的释放量,结果如右图所示。
据图分析,下列说法错误的是A.测氧气释放量的实验中光照强度及初始C02浓度应保持一致B.30℃时,棉花植株的总光合作用速率是呼吸作用速率的两倍C.40℃时,棉花叶肉细胞仍需从环境中吸收CO:用于光合作用D.20℃时,棉花叶肉细胞线粒体中合成A TP的量比叶绿体更多5.预防接种是把人工处理的病菌、病毒等疫苗接种在健康人的身体内,使人在不发病的情况下产生抗体,获得特异性免疫的医学技术。
2018年四川省绵阳市中考数学试卷(含答案与解析)
数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数 学(本试卷满分140分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.0(2018)-的值是( ) A .2018-B .2018C .0D .12.四川省公布了2017年经济数据GDP 排行榜,绵阳市排名全省第二,GDP 总量为2 075亿元.将2 075亿元用科学计数法表示为 ( ) A .120.207510⨯ B .112.07510⨯ C .1020.7510⨯ D .122.07510⨯3.如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上.如果244∠=,那么1∠的度数是 ( )A .14B .15C .16D .17 4.下列运算正确的是( )A .236a a a =B .325a a a +=C .248()a a =D .32a a a -= 5.下列图形是中心对称图形的是( )ABCD 6.等式3311x x x x --=++成立的x 的取值范围在数轴上可表示为( )AB C D 7.在平面直角坐标系中,以原点为对称中心,把点(3,4)A 逆时针旋转90,得到点B ,则点B 的坐标为 ( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-- 8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .2(30529)πm +B .240πmC .2(30521)πm +D .255πm10.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:3 1.732≈,2 1.414≈) ( ) A .4.64海里 B .5.49海里 C .6.12海里 D .6.21海里11.如图,ACB △和ECD △都是等腰直角三角形,CA CB =,CE CD =,ACB △的顶点A 在ECD △的斜边DE 上,若2AE =,6AD =,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-12.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 21 23 25 27 29 ……按照以上排列规律,第25行第20个数是( )A .639B .637C .635D .633毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:234x y y -= .14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,)1-和(3,1)-,那么“卒”的坐标为 .15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .16.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .17.已知0a b >>,且2130a b b a ++=-,则b a= . 18.如图,在ABC △中,3AC =,4BC =,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB = .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分,每题8分) (1)4sin60|23+(2)解分式方程:13222x x x-+=--.20.(本小题满分11分)绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当16x <时为“不称职”,当1620x ≤<时为“基本称职”,当2025x ≤<时为“称职”,当25x ≥时为“优秀”.根据以上信息,解答下列问题: (1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(本小题满分11分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?数学试卷 第5页(共36页) 数学试卷 第6页(共36页)22.(本小题满分11分)如图,一次函数1522y x =-+的图象与反比例函数()k y k x =>0的图象交于A ,B 两点,过A 点做x 轴的垂线,垂足为M ,AOM △面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的值最小,并求出其最小值和P 点坐标.23.(本小题满分11分)如图,AB 是O 的直径,点D 在O 上(点D 不与A ,B 重合),直线AD 交过点B 的切线于点C ,过点D 作O 的切线DE 交BC 于点E . (1)求证:BE CE =;(2)若DE AB ∥,求sin ACO ∠的值.24.(本小题满分12分)如图,已知ABC △的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从A 点出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN . (1)求直线BC 的解析式;(2)移动过程中,将AMN △沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记ABC △在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图25.(本小题满分14分)如图,已知抛物线2(0)y ax bx a =+≠过点3)A -和B .过点A 作直线AC x ∥轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与AOC △相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S =△△?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共36页)数学试卷第8页(共36页)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】解:∵020181=,故答案为:D . 【考点】零次幂的运算 2.【答案】B【解析】解:∵112075 2.07510=⨯亿,故答案为:B . 【考点】科学记数法 3.【答案】C 【解析】解:如图:依题可得:244∠=,60ABC ∠=,BE CD ∥,∴1CBE ∠=∠,又∵60ABC ∠=,∴2CBE ABC ∠=∠-∠604416=-=,即116∠=.故答案为:C .【考点】平行线的性质 4.【答案】C【解析】解:A .∵235a a a =,故错误,A 不符合题意;B .a 3与a 2不是同类项,故不能合并,B 不符合题意;C .∵248()a a =,故正确,C 符合题意;D .a 3与a 2不是同类项,故不能合并,D 不符合题意;故答案为:C . 【考点】整式的运算 5.【答案】D【解析】解:A .不是中心对称图形,A 不符合题意;B .是轴对称图形,B 不符合题意;C .不是中心对称图形,C 不符合题意;D .是中心对称图形,D 符合题意;故答案为:D .【考点】中心对称图形的概念 6.【答案】B【解析】解:依题可得:30x -≥且10x +>,∴3x ≥,故答案为:B . 【考点】分式和根式有意义的条件,不等式在数轴上的表示 7.【答案】B 【解析】解:如图:由旋转的性质可得:AOC BOD △≌△, ∴OD OC =,BD AC =, 又∵(3,4)A ,∴3OD OC ==,4BD AC ==,∵B 点在第二象限, ∴B (4,3)-. 故答案为:B . 【考点】旋转的性质 8.【答案】C【解析】解:设参加酒会的人数为x 人,依题可得:1(1)552x x -=, 化简得:21100x x --=, 解得:111x =,210x =-(舍去), 故答案为:C . 【考点】一元二次方程数学试卷 第11页(共36页) 数学试卷 第12页(共36页)9.【答案】A【解析】解:设底面圆的半径为r ,圆锥母线长为l ,依题可得: 2π25πr =,∴5r =,∴圆锥的母线l ==∴圆锥侧面积2112ππ(m )2S r l rl ===,圆柱的侧面积222π2π5330π(m )S r h ==⨯⨯⨯=,∴需要毛毡的面积230π(m )=+,故答案为:A .【考点】圆柱和圆锥的侧面积 10.【答案】B【解析】解:根据题意画出图如图所示:作BD AC ⊥,取BE CE =,∵30AC =,30CAB ︒∠=,15ACB ︒∠=,∴135ABC ∠=, 又∵BE CE =, ∴15ACB EBC ∠=∠=, ∴120ABE ∠=, 又∵30CAB ∠=, ∴BA BE =,AD DE =, 设BD x =,在Rt ABD △中,∴AD DE ==,2AB BE CE x ===,∴230AC AD DE EC x =++=+=,∴1)5.492x =≈,故答案为:B .【考点】解直角三角形的应用 11.【答案】D【解析】解:连接BD ,作CH DE ⊥,∵ACB △和ECD △都是等腰直角三角形, ∴90ACB ECD ∠=∠=,45ADC CAB ∠=∠=, 即90ACD DCB ACD ACE ∠+∠=∠+∠=, ∴DCB ACE ∠=∠, 在DCB △和ECA △中,DC EC DCB ACE AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴DCB ECA △≌△,∴DB EA =45CDB E ∠=∠=, ∴90CDB ADC ADB ∠+∠=∠=, 在Rt ABD △中,∴AB ==,在Rt ABC △中, ∴2228AC AB ==, ∴2AC BC ==, 在Rt ECD △中,数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴2222CDDE ==,∴1CD CE =,∵ACO DCA ∠=∠,CAO CDA ∠=∠, ∴CAO CDA △∽△,∴221)4CAO ACD S S ===-=-△△ 又∵11222ECD S CE DE CH ==△,∴22CH ==∴1122ACD A C S DH =⨯==△, ∴(43CAOACD S S =-⨯=-△△即两个三角形重叠部分的面积为3 故答案为:D .【考点】等腰直角三角形的性质,勾股定理,相似三角形的判定和性质 12.【答案】A【解析】解:依题可得:第25行的第一个数为:(124)24124682*********+⨯+++++⋯⋯+⨯=+⨯=,∴第25行的第第20个数为:601219639+⨯=. 故答案为:A . 【考点】规律的探究13.【答案】(2)(2)y x y x y +-【解析】解:原式(2)(2)y x y x y =++-, 故答案为:(2)(2)y x y x y +-. 【考点】因式分解 14.【答案】(2,2)--【解析】解:建立平面直角坐标系(如图),∵相(3,1)-,兵(3,1)-, ∴卒(2,2)--, 故答案为:(2,2)--. 【考点】平面直角坐标系15.【答案】310【解析】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况;∴能够构成三角形的概率为:310.故答案为:310.【考点】概率的计算 16.【答案】4【解析】解:根据题意以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(如图),依题可得:(2,0)A -,(2,0)B ,(0,2)C ,设经过A、B 、C 三点的抛物线解析式为:(2)(2)y a x x =-+, ∵(0,2)C 在此抛物线上,数学试卷 第15页(共36页) 数学试卷 第16页(共36页)∴12a =-, ∴此抛物线解析式为:1(2)(2)2y x x =--+,∵水面下降2 m ,∴1(2)(2)22x x --+=-,∴1x =2x =-,∴下降之后的水面宽为:∴水面宽度增加了:4.故答案为:4.【考点】二次函数的图象与性质17.【解析】解:∵2130a b b a ++=-,两边同时乘以()ab b a -得: 22220a ab b --=,两边同时除以a 2得:22()210b ba a +-=, 令(0)bt t a =>,∴22210t t +-=,∴t =,∴b t a ==.【考点】解分式方程,换元法 18.【解析】解:连接DE ,∵AD 、BE 为三角形中线,∴DE AB ∥,12DE AB =,∴DOE AOB △∽△, ∴12DO OE DE OA OB AB ===, 设OD x =,OE y =, ∴2OA x =,2OB y =, 在Rt BOD △中,2244x y += ①,在Rt AOE △中,22944x y += ②,∴+①②得:2225554x y +=, ∴2254x y +=,在Rt AOB △中,∴222225444()44AB xy x y =+=+=⨯,即AB =.【考点】勾股定理,三角形中位线的性质,三角形相似的判定与性质 三、解答题19.【答案】(1)1423=⨯原式,2=+,数学试卷 第17页(共36页) 数学试卷 第18页(共36页)2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =,系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【解析】(1)1423=⨯原式, 2=+, 2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =, 系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【考点】实数的运算,解分式方程 20.【答案】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=,“基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人, ∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【解析】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=, “基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【考点】扇形统计图,折线统计图,中位数,众数,数据分析21.【答案】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m =+-=+,∵300k =>,∴W 随x 的增大而增大, ∴当8m =时,运费最少, ∴30810001240()W =⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m=+-=+,∵300k=>,∴W随x的增大而增大,∴当8m=时,运费最少,∴30810001240()W=⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【考点】二元一次方程组解决实际问题,一次函数的应用22.【答案】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111 222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2 yx =.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2) A'-,∴PA PB A B'+==.设A B'直线解析式为:y ax b=+,∴2142a ba b-+=⎧⎪⎨+=⎪⎩,∴3101710ab⎧=-⎪⎪⎨⎪=⎪⎩,∴A B'直线解析式为:3171010y x=-+,∴17(0,)10P.【解析】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2yx=.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2)A '-,∴PA PB A B '+==.设A B '直线解析式为:y ax b =+,∴2142a b a b -+=⎧⎪⎨+=⎪⎩,∴3101710a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴A B '直线解析式为:3171010y x =-+, ∴17(0,)10P .【考点】一次函数和反比例函数的图象与性质,待勾股定理 23.【答案】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠, ∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形,∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r r OH⨯=⨯, ∴OH =,在Rt COH△中,∴sin OH ACO OC ∠===. 【解析】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠,∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形, ∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r rOH ⨯=⨯, ∴OH =,在RtCOH △中,∴sin OH ACO OC ∠=. 【考点】圆的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理 24.【答案】(1)解:设直线BC 解析式为:y kx b =+, ∵(0,4)B ,(3,0)C -,∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合, ∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ′,∵(3,0)A ,(0,4)B , ∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y ,∴34325x t +=-,0225y t +=, ∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△,∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【解析】(1)解:设直线BC 解析式为:y kx b =+,∵(0,4)B ,(3,0)C -, ∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合,∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ',∵(3,0)A ,(0,4)B ,∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y , ∴34325x t +=-,0225y t +=,∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△, ∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【考点】直线的解析式,全等三角形的判定和性质,相似三角形的判定和性质,三角形和四边形的面积,动点问题25.【答案】(1)解:∵点A 、B 在抛物线上, ∴33270aa ⎧+=-⎪⎨+=⎪⎩, 解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:212y x=. (2)解:设(,)P x y , ∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y=+,3CO =,AD x =AC =, ①当ADP ACO Rt △∽△时,∴AD DP =,33y +=,∴6y=-,又∵P 在抛物线上, ∴2126yx y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0xx --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC=,=∴4y=-, 又∵P 在抛物线上, ∴2124y x y ⎧=⎪⎪⎨⎪=-⎪⎩,,, 2110x -+=, ∴8)(0x -=,∴1x =2x =解得:43x y⎧=⎪⎪⎨⎪=-⎪⎩或3xy ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P 点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =, 又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==, 过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,,∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN解析式为:9y =+,∴2912y x y ⎧=⎪⎨⎪=⎩+,,∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOCAOQ S S =△△. 【解析】(1)解:∵点A 、B 在抛物线上,∴33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为:212y x =. (2)解:设(,)P x y ,∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y =+,3CO =,AD x =AC = ①当ADP ACO Rt △∽△时, ∴AD DP AC CO =,33y +=,∴6y =-,又∵P 在抛物线上,∴2126y x y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0x x --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC CO =,3x -=∴4y =-, 又∵P 在抛物线上,∴2124y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,,,2110x -+=,∴8)(0x -=,∴1x =2x =,解得:433x y ⎧=⎪⎪⎨⎪=-⎪⎩或3x y ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =,又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==,过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,, ∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN 解析式为:9y =+,∴2912y x y ⎧=-⎪⎨⎪=⎩+,, ∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q 点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOC AOQ S S =△△.【考点】二次函数的图象与性质,三角形相似的判定与性质。
四川省绵阳市2018届高三第二次诊断性考试试题 数学文 扫描版含答案
四川省绵阳市2018届高三第二次诊断性考试试题数学文扫描版含答案选择题:本大题共12小题,每小题5分,共60分。
答案为DDCACCCBBABD。
二、填空题:本大题共4小题,每小题5分,共20分。
13.95,14.106.5,15.4.三、解答题:本大题共6小题,共70分。
16.4317.解:Ⅰ)已知tanA=11,tanB=tanC=23,∴tanB=2tanA,tanC=3tanA。
在△ABC中,tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC),化简后得tan2A=1,即tanA=-1,或tanA=1.若tanA=-1,可得tanB=-2,则A,B均为钝角,不合题意。
故tanA=1,得A=π/4.Ⅱ)由tanA=1,得tanB=2,tanC=3,即sinB=2cosB,sinC=3cosC。
结合sin2B+cos2B=1,sin2C+cos2C=1,可得sinB=2/5,sinC=3/10,(负值已舍)。
在△ABC中,由XXX=sinA,得b=a/5×2=2a/5.于是S△ABC=1/2absinC=1/2×5a×3a/10=3a2/4.18.解:Ⅰ)根据题意得:a=40,b=15,c=20,d=25。
K=(100×(40×25-15×20)2)/(60×40×55×45)≈8.249>7.879。
在犯错误的概率不超过0.005的前提下可以认为网购与年龄有关。
Ⅱ)根据题意,抽取的6人中,年轻人有4人,分别记为A1,A2,A3,A4,中老年人2人,分别记为B1,B2.则从这6人中任意选取3人的可能有(A1,A2,A3),(A1,A2,A4),(A1,A2,B1),(A1,A2,B2),(A1,A3,A4),(A2,A3,A4),(A1,B1,B2),(A2,B1,B2),(A3,B1,B2),共9种情况。
2019年春绵阳市2018级第二学期末教学质量监测数学试题及答案
保密 ★ 启用前 【考试时间:2019年6月28日上午10:30—12:00】绵阳市示范初中2018级第二学期教学质量监测数 学 试 题 卷本试卷分为试题卷(共4页)和答题卷(共4页)两部分。
考试时间90分钟,满分100分。
第Ⅰ卷(选择题,共36分)注意事项:1.答第I 卷前,请务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在,﹣1,0,35-,这四个数中,最小的实数是A .B .﹣1C .0D .35-2.为了了解某校1500名学生的视力情况,抽查了500名学生的视力进行统计分析,下面四个判断正确的是A .500名学生的视力是总体的一个样本B .500名学生是总体C .每名学生是总体的一个个体D .样本容量是500名 3.下列命题正确的是A .若22bc ac >,则 b a > B .若b a >,则c b c a +<+C .若b a >,c <0,则ac >bcD .若b a >,则cb c a > 4.如图,不能判定CD ∥EF 的条件是A .∠B =∠AED B .∠C+∠CDE=180°C .∠EFB =∠DEFD .∠CDE +∠DEF +=180° 5.若a 为整数,且满足6<a <,则a 的值为A .4B .113C .2D .1 6.已知a 、b 、c 是同一平面内的不同直线,下列说法正确的是A .若a 与b 相交,b 与c 相交,则a 与c 相交B .若a ∥b ,b ∥c ,则a ∥cC .若a ⊥b ,b ⊥c ,则a ⊥cD .若a 、b 、c 两两相交(不重合),则有三个交点 7.若点(3m-3,1)在第一象限,则m 的取值范围为 A .m<-1或m ≥1 B .-1<m<1 C .m ≤-1或m ≥1 D .﹣1<m ≤18.如图,直线AB 与CD 相交于点O ,OD 平分∠BOF ,OE ⊥OF ,若∠BOD =29°,则∠COE 的度数是 A .116° B .118° C .119° D .120°9.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.现在甲、乙两人制定比赛规则:胜 一局得2分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分。
四川省宜宾市2018届高三第二次诊断测试数学理科试题含答案
俯视图侧视图正视图334343一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合}0158|{},6|{2<+-=<∈=x x x B x N x A ,则B A 等于A .}53|{<<x xB .}4{C .}4,3{D .}5,4,3{2.已知i 是虚数单位,复数2(12i)+的共轭复数虚部为A .i 4B .3C .4D .4-3.如图的平面图形由16个全部是边长为1且有一个内角为的菱形组成,那么图形中的向量,AB CD 的数量积AB CD ⋅等于 A .172 B .152C .8D .74.某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小组积分的方差为A .0.5B .0.75C .1D .1.255.某几何体的三视图如图所示,则此几何体的表面积是A.18+B.18+C.24+D.24+6.设537535714(),(),log 755a b c -===,则c b a ,,的大小顺序是A .c a b <<B .b a c <<C .a c b <<D .a b c <<7.执行如图所示的程序框图,则输出的S 的值为AB1 CD18.在各项均不为零的等差数列}{n a 中,若2110(2)n n n a a a n +--+=≥,则=--n S n 412A .2-B .0C .1D .29.若21sin cos 1=+αα,则=+ααsin 2cosA .1-B .1C .25-D .1或25-10.某班级需要把6名同学安排到周一、周二、周三这三天值日,每天安排2名同学,已知甲不能安排到周一,乙和丙不能安排到同一天,则安排方案的种数为 A .24B .36C .48D .7211.已知双曲线224x y -=上存在两点,M N 关于直线2y x m =-对称,且线段MN 的中点在抛物线216y x =上,则实数m 的值为 A .016或-B .016或C .16D .16-12.设1=x 是函数3212()1()n n n f x a x a x a x n N +++=--+∈的极值点,数列{}n a 满足:11a =,22a =,n n a b 22log =,若[]x 表示不超过x 的最大整数,则122320182019201820182018[]b b b b b b +++=A .1008B .1009C .2017D .2018二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绵阳市高中2018级第二次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.1—5 DADCB 6—10 CCCAB 11—12 DA二、填空题:本大题共4小题,每小题5分,共20分.13.-i 14.0.8 15.3 16.②④三、解答题:本大题共6小题,共70分.17.解:(1)证明:∵211(2)n n n n a a a a ++=+,∴2211112(2)()0n n n n n n n n a a a a a a a a ++++−−=−+=.又数列{a n }各项均为正数,∴10n n a a ++>,∴120n n a a +−=,即12n na a +=. …………………………………………………4分 数列{a n }是首项a 1=1,公比为2的等比数列.∴数列{a n }的通项公式为12n n a −=. …………………………………………6分(2)∵1(1)1221112n nn n a q S q −−===−−−, ∴S 2n =22n -1, ………………………………………………………………… 8分 ∵S 2n >1609n a , ∴29(21)802n n −>⨯,即(921)(29)0n n ⨯+−>,∴290n −>,又*n N ∈ ,∴正整数n 的最小值为4. …………………………………………………12分18.解:(1)由题意得,1=(23456)45x ⨯++++=, 1=(35 6.5810.5) 6.65y ⨯++++=,……………………2分1()()18n i i i xx y y =−−=∑,21()10n i i x x =−=∑,……………………………………4分1.8b =, 6.6 1.840.6a y bx =−=−⨯=−, ………………………………………5分∴y 关于x 的线性回归方程 1.8.6ˆ0yx =−. ……………………………………6分(2)由(1)所得回归方程计算2月至7月份预测生产量依次为3,4.8,6.6,8.4,10.2,12.可得,其中“甲级月”有3个,“乙级月”有3个.……………………… 9分 记6个月中随机抽取2个月均为“乙级月”为事件A ,∴P(A )=232631155C C ==.…………………………………………………………12分 19.解:(1)在△APC 中, 30PAC ∠=,AC =,由余弦定理得CP 2=AP 2+AC 2-2AP ×AC ×cos ∠PAC ,即CP 2=AP 2+3-AP ×cos30°, ……………………………………………2分 又AP +CP =2,联立解得AP =1,CP =1. ………………………………………………………4分 ∴∠APC =120°. ……………………………………………………………………6分 (2)∵∠APC =120°,∴∠APB =60°.∵cos B =∴sin B = ……………………………………………………………………8分 在△APB 中,由正弦定理sin sin AB AP APB B=∠,∴AB = …………………………………………………………………………10分 在△APB 中,由余弦定理2222cos AB AP PB AP PB APB =+−⋅⋅∠,得7=1+PB 2-2PBcos60°,即PB 2-PB -6=0,解得BP =3.∴△APB的面积为11sin 1322AP BP APB ⨯⨯∠=⨯⨯=12分 20.解:(1)由21()()2g x f x mx =+=(22)4ln m x x +−,x >0, 得4(22)4(1)2()(22)=2m x m x g x m x x x+−+−'=+−=⋅. ……………………………2分 ①当1≤m −时,(1)2()20=≤m x g x x+−'⨯, 此时g (x )在(0),+∞上单调递减, g (x )在(0),+∞上不可能有两个零点,故1≤m −不合题意. ……………………4分②当m>-1时,f(x)在区间2(0)1,m+上单调递减,在区间2()1,+m∞+上单调递增.……………………………5分要使得函数g(x)在(0),+∞上有两个零点,则22()44ln011gm m=−<++,解得2e1em−−<<.综上,实数m的范围是2e1em−−<<.………………………………………6分(2)4(2)(2)()(22)mx xf x m mxx x−−'=+−−=−,x>0.①当0<m<1时,函数f(x)在2(2),m上单调递增,在(0,2),2(),+m∞上单调递减,当44xm>+时,函数f(x)在2(),+m∞上单调递减.∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0,在x>0恒成立不成立,即0<m<1不合题意.……………………8分②当m≥1时,函数f(x)在2(2),m上单调递增,函数f(x)在2(0),m,(2),+∞上单调递减,当442xm>+>时,f(x)在(2),+∞上单调递减,∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0在x>0恒成立不成立,即m≥1不合题意.………………………………………………………………10分③当m≤0时,函数f(x)在(0,2)上单调递减,在(2),+∞上单调递增,∴要使得f(x)≥0的充要条件是f(2)≥0,解得m≥2ln2-2,∴2ln2-2≤m≤0.综上所述,实数m的范围是[2ln2-2,0].……………………………………12分21.解:(1)由题意得425)25(21p p x A +=+=,25||p DF −=.……………………2分 由抛物线的定义可知2||p x AF A +=, 则由AF DF =,解得2=p .∴抛物线C 的方程为x y 42=.…………………………………………………5分(2)设直线l 1的方程为m kx y +=, 则5(55)(5)(0)2k m G k m E P m ++,,,,,. ∴以DG 为直径的圆E :2225(5)(5)()24k m k m x y ++−+−=, 即22(5)(5)0x y k m y −+−+=. …………………………………………………7分联立24y x y kx m ⎧=⎨=+⎩,,消去y 整理得0)42(222=+−+m x km x k . ……………8分 ∵l 1与曲线C 相切,∴04)42(222=−−=∆m k km ,化简得1=km . …………………………………………………………………9分 设直线l 2与的方程为y tx m =+,H (x 1,y 1),Q(x 2,y 2).联立22(5)(5)0y tx m x y k m y =+⎧⎨−+−+=⎩,,消去y ,整理得22(1)(510)2550t x tm kt x km ++−−+−=, ∴12222015521km x x t t ⋅=−=++. …………………………………………………11分∵1PH =,2PQ =, ∴22122(1)(1)20120PH PQ t x x t t ⋅=+⋅=+⋅=+, 即|PH |•|PQ |为定值20.……………………………………………………………12分22.解:(1)∵曲线C 1的直角坐标方程为(x -2)2+y 2=6,∴曲线C 1的极坐标方程为24cos 20ρρθ−−=. …………………………………4分 将曲线C 2的参数方程消参得x 2-y 2=4(x ≥2),∴曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥. ……………………………5分(2)曲线C 1的极坐标方程为24cos 20-ρρθ−=,将直线l :()22=ππθαα−<<,ρ∈R 代入上式,得24cos 20ρα−−=,∴124cos ρρα+=,1220ρρ=−<. ………………………………………………7分设1OA ρ=,2OB ρ=.∴12||||AB ρρ=−=∵曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥,设点()C ρα,,∴||OC =∵||||AB OC =, ……………………………………………………………………9分 ∴24cos 28cos250αα+−=, 解得1cos22α=. ∵22ππα−<<, ∴66或-ππαα==. …………………………………………………………………10分23.解:(1)当x ≥3时,f (x )=x -3+x -2=2x -5.由f (x )<3,得x <4,综合得3≤x <4.当2<x <3时,f (x )=3- x +x -2=1.由f (x )<3,得1<3恒成立,综合得2<x <3.当x ≤2时,f (x )=3- x +2-x =5-2x .由f (x )<3,得x >1,综合得1<x ≤2.综上,不等式f (x )<3的解集为(1,4). ……………………………………………5分 (2)证明:∵()32(3)(2)1f x x x x x −+−−−−==≥,(当且仅当2≤x ≤3时,取“=”)∴函数f (x )的最小值为1,即m =1.∴ab +bc +ac =abc .∴ab +bc +ac =()ab bc ac a b c abc ++⨯++)(c b a cb a ++⋅++=()111 3()()()b ac b c a a b b c a c=++++++ ≥3+2+2+2=9.(当且仅当a =b =c 时取“=”)∴9ab bc ca ++≥. ………………………………………………………………10分。