拉弯和压弯构件

合集下载

钢结构课件第六章 拉弯和压弯构件

钢结构课件第六章 拉弯和压弯构件

Steel Structure
河海大学钢结构课件
第四节 实腹式压弯构件的局部稳定
压弯构件的板件可能处于或与共同 作用的受力状态,当应力达到一定值时, 板件可能发生失稳(屈曲)。压弯构件的局 部稳定性采用限制板件宽(高)厚比的办 法来保证。
一、压弯构件受压翼缘板的稳定计算 受力情况与相应梁的受压翼缘板基本相同, 通常σ可达fy,所需的宽厚比限值可直接采用有 关梁中的规定。
河海大学钢结构课件
Steel Structure
第 六 章
缀条式压弯构件的单肢按轴心受压构件 计算。单肢的计算长度在缀材平面内和外分 别取缀条体系的节间长度和侧向支承点之间 的距离。 缀板式压弯构件的单肢承受N1或 N2和 剪力引起的局部弯矩作用,剪力取实际剪力 和按式(4-56)求出的剪力值中大者。单肢 按压弯构件计算。
cr K
tw 2 12 1 v h0Steel来自Structure E
2



2
河海大学钢结构课件
第 六 章
K—屈曲系数,弹性阶段为Ke ,其值与 / 、应力梯度0=(max-min)/max有关; 塑性阶段为Kp ,其值与 / 、应变梯度 = (max- min)/max 、塑性变形发展深度 h0 等有关。取 / =0.150, =0.25。
Steel Structure
河海大学钢结构课件
第 六 章
只要受压较大分肢在其两个主轴方向的稳 定性得到满足,整个构件在弯矩作用平面外的 整体稳定性也得到保证,不必再计算整个构件 在弯矩作用平面外的稳定性。
3、缀材计算 格构式压弯构件缀材的计算方法与格构式轴 心受压构件相同,但剪力取构件的实际剪力和按 式(4-56)计算得到的剪力中的较大值。

拉弯和压弯构件

拉弯和压弯构件
N Mx 1 =0 N Ey M crx
2 2
Mx N + =1 N Ey M crx

N Ey = y Af y
M crx = bW1x f y 并引入非均
匀弯矩作用时的等效弯矩系数,箱形截面的截面影响 系数以及抗力分项系数
拉弯和压弯构件
压弯构件的稳定
一、弯矩作用平面内的稳定
y
X
y
X
X y Mx X y
1、边缘纤维屈服准则
m M x N + fy x A Wx (1 x N / N E )
适用于实腹式压弯构件在弹性阶段的稳定计算及格构式 压弯构件。 对实腹式压弯构件,截面可发展一定塑性,通过对11种 200多个常见截面形式构件的计算比较,规范采用下列公式:
0 2.0 时
拉弯和压弯构件的强度
1、强度
(1) 工作阶段
弹性阶段
N
弹塑性阶段
塑性阶段
N
图6.1 压弯构件
图6.3 压弯构件截面应力的发展过程
当截面出现塑性铰时, 根据力平衡条件可得轴 心压力与弯矩的相关方程, 绘出曲线, 为简化计算 且偏于安全, 采用直线作为计算依据。
2、强度公式
N + M =1 Np Mpn
2
拉弯和压弯构件
可求出弯扭屈曲临界力 以
N
N z / N Ey 的不同比值代入,可绘出 N / N Ey 和
之间的相关曲线
M x / M crx
外凸, 对常用的双轴对称工字 形截面,
N z / N Ey 越大,曲线越 N z / N Ey 1.0
偏于安全地取
N z / N Ey = 1.0

第7章拉弯和压弯构件

第7章拉弯和压弯构件

N x A
mx M x
N xW1x (1 0.8 ) x NE
f
规范βmx的取值规定: 1. 框架柱和两端支承构件
(1)没有横向荷载作用时: β mx 0.65 0.35
M1、M2 为端弯矩,无反弯点时取同号,否则取异号。
M2 M1
M1 M2
(2)端弯矩和横向荷载同时作用时:
箱形截面的腹板稳定 箱形截面压弯构件的腹板宽厚比限值不应超过式(7-40)
或式(7-41)的0.8倍,小于 40
T形截面的腹板稳定
当 0 1 时
235 fy
时,取 40
235 fy

h0 235 15 tw fy
h0 235 18 tw fy
当 0 1 时
7.4 格构式压弯构件的稳定
单肢2 单肢1
单肢按轴心受压构件计算,其计 算长度在缀材平面内取缀条体系的节 间长度,平面外取侧向支承点的距离。
N2 x N1
x Z2 Z1
a
2. 弯矩绕实轴作用的格构式压弯构件
由于其受力性能与实腹式压弯构件相同,故其平面内、
平面外的整体稳定计算均与实腹式压弯构件相同,但在计算
弯矩作用平面外的整体稳定时,系数y应按换算长细比ox确 定,而系数b应取1.0 。
(c)
肋板
+ C B C L σmin σmax σmin M + M d/2 T N
+
e
+ σmax R Lo/3
(d)
2Lo/3 Lo L N
M
N
x e T
e R
σmax
T
R
整体式刚性柱脚的设计 1. 底板平面尺寸B×L

第6章-拉弯和压弯构件

第6章-拉弯和压弯构件

第6章 拉弯与压弯构件
压弯(拉弯)构件——同时承受轴向力和弯矩的构件
弯矩的产生
轴向力的偏心作用 端弯矩作用 横向荷载作用
压弯构件
拉弯构件
拉弯构件:
应用:屋架下弦 截面形式:受拉为主,和一般轴心拉杆一样。 受弯为主,采用在弯矩作用平面内有较大 抗弯刚度的截面。 破坏形式:强度破坏,即截面出现塑性铰。
6.2.1 压弯构件在弯矩作用平面内 的失稳现象
(a)
在确定压弯构件弯矩作用平面内极限承载力时, 可用两种方法。 一种是边缘屈服准则的计算方法
通过建立平衡方程,引入等效弯矩系数m=Mmax /M,其中
1 1 N / NE
N E 2 EI / l 2
mM N fy x A Wx (1 x N / N E )
第6章 拉弯与压弯构件





拉弯与压弯构件实际上就是轴力与弯矩共同作用的构件, 也就是为轴心受力构件与受弯构件的组合,典型的三种拉、 压弯构件如下图所示。 同其他构件一样,拉、压弯构件也需同时满足正常使用及 承载能力两种极限状态的要求。 正常使用极限状态:满足刚度要求。 承载能力极限状态:需满足强度、整体稳定、局部稳定三 方面要求。 截面形式:同轴心受力构件, 分实腹式截面与格构式截面 实腹式:型钢截面与组合截面 格构式:缀条式与缀板式
mx M x
N 1xW1x 1 0.8 ' N Ex
f
y
y1
x
f
y
x
y2
N A
mx M x
N 2 xW2 x 1 1.25 ' N Ex
W1x — 受压区边缘的毛截面抵 抗矩,W1x I x y1 ; W2 x — 受拉区边缘的毛截面抵 抗矩,W2 x I x y2 ;

《金属结构设计》第五章 拉弯和压弯构件

《金属结构设计》第五章 拉弯和压弯构件

mx ——等效弯矩系数。
5. 拉弯和压弯构件
§5.3.1弯矩作用平面内的稳定计算(续6) 上式中的等效弯矩系数应按下列规定采用。 ① 框架柱和两端支承的构件:
a.无横向荷载作用:
mx
0.65 0.35
率(无反弯点)时取同号,使构件产生反向曲率(有反弯点)时取异号, M1 M 2 ;
5. 拉弯和压弯构件
§5.1拉弯和压弯构件的特点(续2)
进行拉弯和压弯构件设计时,应同时满足: 承载能力极限状态和正常使用极限状态的要求。 拉弯构件:需要计算强度和刚度(限制长细比); 压弯构件:需要计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳 定)、局部稳定和刚度(限制长细比)。 拉弯构件的容许长细比和轴心拉杆相同,压弯构件的容许长细比和轴心压杆相同。
N A
mx M x
N xW2 x 1 1.25 / N Ex
f
(5-12)
式中:W1x——受拉侧最外纤维的毛截面模量。 式中的系数1.25是经过与理论计算结果比较后引进的修正系数。
5. 拉弯和压弯构件
§5.3.2弯矩作用平面外的稳定计算 开口薄壁截面压弯构件的抗扭刚度及弯矩作用平面外的抗弯刚度通常较小,当构件 在弯矩作用平面外没有足够的支撑以阻止其产生侧向位移和扭转时,构件可能因弯扭屈 曲而破坏。 《钢结构设汁规范》采用的实腹式压弯构件弯矩作用平面外稳定计算的相关公式 M N tx x f (5-13) y A bW1x 式中:Mx——所计算构件段范围内(构件侧向支承点间)的最大弯矩; βtx——等效弯矩系数,应根据两相邻支承点间构件段内的荷载和内力情况确定, 取值方法与弯矩作用平面内的等效弯矩系数βmx相同; η——截面影响系数,闭合截面η=0.7,其他截面η=1.0; fy——弯矩作用平面外的轴心受压构件稳定系数; fb——均匀弯曲受弯构件的整体稳定系数,采用近似计算公式计算,这些公式 已考虑了构件的弹塑性失稳问题,因此当fb大于0.6时不必再换算。 对闭口截面 fb=1.0;

拉弯和压弯构件(第一讲)

拉弯和压弯构件(第一讲)

N
Mx
x A
Wpx 1 0.8
N N Ex
fy
3.规范规定的实腹式压弯构件整体稳定计算式
N
mxM x
f
x A
xW1x
1
0.8
RN
N Ex
N 轴向压力;
M x 所计算构件段范围内的最大弯矩;
x 轴心受压构件的稳定系数;
W1x 受压最大纤维的毛截面抵抗矩;
NEx 欧拉临界力,NEx 2EA/ 2x; R 抗力分项系数, Q235: R 1.087, 其它1.111; mx 等效弯矩系数,详见规范取值。
2
0
以Nz/NEy的不同值代入上式得N/NEy和Mx/Mcrx相 关曲线:
如偏安全地取Nz/NEy=1,则上式成为:
Mx M crx
2
1
N N Ey
2

N Mx 1 N Ey M crx
用NEy=yAfy,Mcrx=bW1xfy代入上式得规范公式
N tx M x f y A bW1x
v0
1 (
x
1)1 x
Afy N Ex
W1x A
代入上式整理得:
N
x A
Mx
W1x 1x
N N Ex
fy
2.最大强度准则
实腹式压弯构件当受压最大边缘刚开始屈服时 尚有较大的强度储备,即容许截面塑性深入。 因此若要反映构件的实际受力情况,宜采用 最大强度准则,即以具有各种初始缺陷的构 件为计算模型,求解其极限承载力。规范考 虑截面塑性发展和二介弯矩,对初弯曲和残 余应力用综合等效弯矩系数v0,最后提出一 近似相关公式:
拉弯构件需要计算:强度、刚度(限制长细比)。
压弯构件需要计算:强度、整体稳定(弯矩作用 平面内稳定和弯矩作用平面外稳定)、局部稳定、 刚度(限制长细比)。

钢结构——拉弯构件和压弯构件

钢结构——拉弯构件和压弯构件

钢结构——拉弯构件和压弯构件钢结构是指采用钢材作为主要构造材料的建筑结构。

在钢结构中,常见的构件有拉弯构件和压弯构件。

拉弯构件主要承受拉力,而压弯构件则主要承受压力。

本文将分别介绍拉弯构件和压弯构件的特点、设计和应用。

拉弯构件是指同时承受拉力和弯矩的构件。

它们常常用于桥梁、塔架等需要抵抗拉力的结构中。

拉弯构件受力时,在受拉面上会产生拉应变,而在另一侧会产生压应变。

拉弯构件的设计目标是在满足强度和刚度的要求下,最大程度地减小构件重量。

为了实现这一目标,拉弯构件通常采用I型、H型或者箱型截面,这些截面具有较大的截面面积和惯性矩,能够提供足够的强度和刚度。

拉弯构件的设计需要考虑以下几个因素:首先是受力情况。

拉弯构件在受力时,应根据实际情况确定构件的截面形状和尺寸,以满足承受拉力和弯矩的要求。

其次是构件的材料选择。

常见的拉弯构件材料有普通碳素钢和高强度钢。

高强度钢具有较高的强度和刚度,能够减小构件的截面尺寸和重量。

最后是构件的连接方式。

拉弯构件的连接方式有焊接、螺栓连接和铆接等,设计时需要选择适合的连接方式以满足受力要求。

压弯构件是指同时受到压力和弯矩作用的构件。

它们通常用于承担压力的柱子和梁等结构中。

压弯构件在受力时,产生的主要应力是压应力和弯曲应力。

与拉弯构件相比,压弯构件的设计更加复杂,需要考虑稳定性问题。

在设计过程中,需要根据实际情况确定构件的截面形状和尺寸,以满足承受压力和弯矩的要求,并保证构件的稳定性。

常见的压弯构件截面有角钢、工字钢和管材等。

与拉弯构件相比,压弯构件的设计更注重稳定性。

在设计压弯构件时,需要考虑构件的临界压弯强度,即其能够承受的最大弯矩和压力。

为了提高构件的稳定性,常见的设计方法有增大截面尺寸、采用合适的截面形状、设置剪力加强构件等。

此外,还需要考虑构件的支撑条件和边界约束等因素,以保证压弯构件在受力过程中不发生屈曲或失稳。

拉弯构件和压弯构件在钢结构设计和应用中都起着重要的作用。

钢结构之拉弯和压弯构件

钢结构之拉弯和压弯构件

拉弯和压弯构件对于压弯构件,当承受的弯矩较小时其截面形式与一般的轴心受压构件相同。

当弯矩较大时,宜采用弯矩平面内截面高度较大的双轴或单轴对称截面(图1)。

图1 弯矩较大的实腹式压弯构件截面设计拉弯构件时,需计算强度和刚度(限制长细比);设计压弯构件时,需计算强度、整体稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局部稳定和刚度(限制长细比)。

拉弯和压弯构件的容许长细比分别与轴心受拉构件和轴心受压构件相同。

一、拉弯和压弯构件的强度计算拉弯和压弯构件的强度计算式f W M A Nnxx x n ≤+γ (1) 承受双向弯矩的拉弯或压弯构件,采用的计算公式f W M W M A Nnyy y nx x x n ≤++γγ (2) 式中 n A ——净截面面积;nx W 、ny W ——对x 轴和y 轴的净截面模量;x γ、y γ——截面塑性发展系数。

当压弯构件受压翼缘的外伸宽度与其厚度之比t b />y f /23513,但不超过y f /23515时,应取x γ=1.0。

对需要计算疲劳的拉弯和压弯构件,宜取x γ=y γ=1.0,即按弹性应力状态计算。

二、实腹式压弯构件在弯矩作用平面内的稳定计算确定压弯构件弯矩作用平面内极限承载力的方法很多,可分为两大类,一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。

1. 边缘屈服准则边缘纤维屈服准认为当构件截面最大纤维刚刚屈服时构件即失去承载能力而发生破坏,较适用于格构式构件。

按边缘屈服准则导出的相关公式y Ex x x xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+ϕϕ11 (3)式中x ϕ——在弯矩作用平面内的轴心受压构件整体稳定系数。

2.最大强度准则实腹式压弯构件当受压最大边缘刚开始屈服时尚有较大的强度储备,即容许截面塑性深入。

因此若要反映构件的实际受力情况,宜采用最大强度准则,即以具有各种初始缺陷的构件为计算模型,求解其极限承载力。

规范修订时,采用数值计算方法,考虑构件存在l/1000的初弯曲和实测的残余应力分布,借用了弹性压弯构件边缘纤维屈服时计算公式的形式,经过数值运算,得出比较符合实际又能满足工程精度要求的实用相关公式y Ex px xx f N N W M AN=⎪⎪⎭⎫⎝⎛-+8.01ϕ (4)式中 px W ——截面塑性模量。

钢结构设计原理---拉弯压弯构件

钢结构设计原理---拉弯压弯构件

max maxx,y []
[]取值同 轴压构件。
第六章 拉弯、压弯构件
§6.2 拉弯、压弯构件的强度
对拉弯构件、截面有削弱或构件端部弯矩大于跨间 弯矩的压弯构件,需要进行强度计算。
hw h
h (1-2)h h
Af=bt y
x Mx x Aw=hwtw
y
fy
fy
fy
fy H
N
H
fy
fy
(a) (b) (c
第六章 拉弯、压弯构件
§6.1拉弯、压弯构件的应用和截面形式 1、拉弯、压弯构件的应用
构件同时承受轴心压(拉)力和绕截 面形心主轴的弯矩作用,称为压弯 (拉弯)构件。根据绕截面形心主轴 的弯矩,有单向压(拉)弯构件;双 向压(拉)弯构件。弯矩由偏心轴力 引起时,也称作偏压(或拉)构件。
图6.1 压弯、拉弯构件
2. 箱形截面的腹板
考虑到两块腹板可能受力不均,因而箱形截面高厚比值取为共字
型截面腹板的0.8倍。但不应小于
40 235/ fy
第六章 拉弯、压弯构件
3.T形截面的腹板
当弯矩作用在T形截面对称轴内并使腹板自由边受压时:
当0≤1.0时
h0 15 tw
235/ fy
(6.26a)
当0>1.0时
h0 18 tw
(6.4)
第六章 拉弯、压弯构件
1.单向拉弯、压弯构件强度计算公式
N Mx f
An xWnx
(6.5a)
第六章 拉弯、压弯构件
2.双向拉弯、压弯构件强度计算公式
N Mx My f
An xWnx yWny
(6.5b)
N——轴心压力设计值
An——验算截面净截面面积

第七章拉弯和压弯构件

第七章拉弯和压弯构件

例7.1 如下图所示拉弯构件,承受的荷载的设计 值为:轴向拉力800kN,横向均布荷载7kN/m。 试选择其截面,设截面无削弱,材料为Q235钢。
解:
试采用普通工字钢I28a,截面面积A=55.37cm2, 自重0.43kN/m,Wx=508cm3,ix=11.34cm,iy=2.49cm。 构件截面最大弯距Mx=(7+0.43×1.2)×62/8=
Af=aAW a=Af/AW
(7.4)
工字形截面绕强轴受弯的压弯构件轴力弯距相 关曲线:式(7.3)、式(7.4)曲线
规范采用直线式相关公式代替曲线公式:
(7.5)
曲线与直线相差不大 直线考虑附加挠度的 不利影响 直线代替曲线偏安全
式(7.3)和 (7.4)曲线
式(7.5)直线
考虑截面塑性部分发展
➢ W1x-按受压最大纤维确定的毛截面的模量
较适用于格构式构件,
对短粗实腹杆偏于安全,对细长实腹杆偏于不安全
❖ 7.3.1.2 最大强度准则
容许截面塑性深入,以具有各种初始缺陷的 构件为计算模型,求解其极限承载能力
考虑一定初弯曲和实测残 余应力数值计算得到200 条相关曲线
考虑截面的塑性发展,借用边缘纤维屈 服准则公式(7.10)根据极限承载力曲 线,得出近似相关公式:
压弯构件
拉弯构件
拉弯和压弯构件也可按其截面形式分为 实腹式构件和格构式构件两种
➢ 当受力较小时,可选用热轧型钢或冷弯薄壁 型钢截面
➢ 当受力较大时,可选用钢板焊接组合截面或 型钢与型钢、型钢与钢板的组合截面
➢ 当构件计算长度较大且受力较大时,为提高 截面的抗弯刚度,采用格构式截面
➢ 对称截面一般适用于所受弯矩值不大或正负 弯矩值相差不大的情况

拉弯与压弯构件

拉弯与压弯构件
一、拉弯和压弯构件的应用和破坏形式
1、概念:
拉弯构件:同时承受轴线拉力和弯矩作用的构件 压弯构件:同时承受轴线压力和弯矩作用的构件
N
NN
N
e
e
P
P
N
NN
N
N
NN
NN MB
N MB
H
H
e
Pe q
P q
P
P
H
H
N
N N
MA NN
MA N
2、截面类型:
压弯构件:
如果承受的弯矩不大,而轴心压力很大,其截面形式 和一般轴心压杆相同
(1 2 ) M p (1 2 )
联立以上两式,消去η,则有如下相关方程
( N )2 M 1
Np
Mp
N p f ybh --轴力单独作用时最大承载力 M p fy bh2 4 --弯矩单独作用时最大承载力
为计算方便,改用线性相关方程(偏安全)
NM 1
Np Mp
《规范》公式
N An
M
Wn
fy
N txM x f y A bW1x
四、压弯构件的局部屈曲 1、翼缘:控制宽厚比 2、腹板:根据腹板所受压应力的应力梯度
0 = max min /max
代入上式便有:
Af yx
Af yxv0
A W1x (1 Af yx
NE ) f y (b)Βιβλιοθήκη 联立1、2两式,则有N
mM x
x A W1x (1 x N
NEx )
fy
如果和梁一样允许一定的塑性发展,则有《规范》公式
N
mxM x
x A W 1x 1x (1 0.8N
N
' Ex

第6章 拉弯和压弯构件

第6章 拉弯和压弯构件

N N Ey
1
N N Ey
N Ey N
Mx M crx
2
0
N / NEy
1.0
0.0
1 0.5
N / NEy 5 2
0.2
M x / Mcrx
1.0
大多数工程构件
N /NEy 1
即 N Mx 1
NEy M crx
可视为压弯杆件平面外 稳定的下限值
第6章 拉弯和压弯构件
压弯杆件平面外稳定工程计算公式的表达
Mx
N
y
v
Mx zN
稳定问题要采用二阶分析——在荷载产生变形的基础上建立平衡方程 构件的侧向变形与轴力N 产生附加的弯矩——称P-δ效应(二阶效应) 构件的挠度比仅因弯矩产生的挠度增大——放大效应
弯矩等效
第6章 拉弯和压弯构件
压弯构件考虑轴压力作用的弹性弯曲平衡方程
Mx
N
y6章 拉弯和压弯构件
例如工业厂房的变截面柱为压弯构件 eN
MN
截面类型
第6章 拉弯和压弯构件
截面选择
受力状态 -轴压为主,弯矩为辅 -单向弯矩为主 -双向压弯
截面类型与选择
双轴对称,两主轴长细比接近( λx = λy ) 双轴对称或单轴对称
第6章 拉弯和压弯构件
拉、压弯构件的计算内容
拉弯构件
轴力—弯曲挠度变形曲线
第6章 拉弯和压弯构件
部分考虑塑性发展的弹塑性设计方法 :
N / Np 1.0
N / Np 1.0
20 40
偏心率0y =1
80 120
vmax /
0 20
截面承载力
80
轴力—弯曲挠度变形曲线
(以长细比为参数)

拉弯和压弯构件

拉弯和压弯构件
图6.5 压弯构件截面应力的发展过程
第9页/共73页
由此可得强度验算公式为:
N Mx My f
An xWnx yWny
式中:N—设计荷载引起的轴心力;
(6.7)
Mx、My—分别是作用在两个主平面内的计算弯矩;
γx、γy—分别是截面在两个主平面内的截面塑性发展
系数,当压弯构件受压翼缘的自由外伸宽度与其厚度之比
从图6.3.4可以看出,当偏心压力达临界值N时,截面在 xoz平面内产生侧弯,挠度为u,因而形成了平面外方向的弯 矩 M y 及Nu剪力。
此剪力 V dM y不/ d通z 过N截u面的弯曲中心,对截面形成扭 矩:
Mz Ve Neu
(6.3.10)
因此,构件在弯矩作用平面外的屈曲属于弯扭屈曲。
N
N
强轴
e
弱轴
荷载
图6.3.1
第14页/共73页
图所示为一根在两端作用有相同弯矩的等截面压弯构 件,当N与M共同作用时,可以画出压力N和杆中点挠度v 的关系曲线。图中的虚线0AD是把压弯构件看作完全弹性 体时的关系曲线。实曲线0ABC则代表弹性塑性杆的关系 曲线,曲线的上升段0B表示杆处于稳定平衡状态,下降 段则表示处于不稳定平衡状态。曲线的B点表示承载力的 极限状态,对应的极限荷载要用压溃理论来确定。实际上, 当达到该极限状态时所对应的挠度太大而不能满足使用要 求。如取构件截面边缘屈服(A点)作为稳定承载力的极 限状态,则显得过于保守。因此,钢结构设计规范取A′点 作为稳定承载力的极限状态,即将截面的塑性区限制在 1/4~1/8截面高度范围。由此可借用强度相关公式来导出 稳定承载力的实用计算公式。
(但不b /超t 过13 235/ f y 时,应取γx =b1/.t00;15需2要35验/ 算f y 疲劳

拉弯和压弯构件

拉弯和压弯构件
第六章 拉弯和压弯构件 6.1 拉弯和压弯构件的特点 拉弯或压弯构件:同时承受轴向力和弯矩的构件。 压弯和拉弯构件的应用十分广泛,例如有节间荷载作用 的桁架上下弦杆,受风荷载作用的墙架柱以及天窗架的 侧立柱,工业建筑中的厂房框架柱,不仅要承受上部结 构传下来的轴向压力,同时还受有弯矩和剪力。 设计拉弯和压弯构件时,应同时满足承载能力极限状态 和正常使用极限状态的要求。拉弯构件需要计算其强度 和刚度(限制长细比);压弯构件则需要计算强度、整体 稳定(弯矩作用平面内稳定和弯矩作用平面外稳定)、局 部稳定和刚度(限制长细比)。
(2)中和轴在翼缘范围内
N Aw f y
4 1 M x N 1 2(2 1) M px N p
图中实线为工字形截面构件当弯矩绕强轴作用时的相 关曲线。曲线是外凸的,但腹板面积较小时外凸不多。 为了便于计算,同时考虑分析中没有考虑附加挠度的 不利影响,规范采用了直线式相关公式,即用斜直线 代替曲线。 Mx N
Af y W v0 ( 1) 1 A N E 1
N A
经整理得
m M
N W 1 N E
fy
边缘屈服准则导出的相关公式。 规范将上式作为格构式压弯构件绕虚轴平面内稳定计算 的相关公式,引入抗力分项系数
N x A
M px Np 1
令 N p An f y , M px xWnx f y ,引入抗力分项系数,得到 拉弯和压弯构件的强度计算式
Mx N f An xWnx
承受双向弯矩的拉弯或压弯构件,采用了与上式相衔接 的线性公式
My Mx N f An xWnx yWny
6.2 拉弯和压弯构件的强度 考虑钢材的塑性性能,拉弯和压弯构件是以截面出现塑 性铰作为其强度极限状态。 在轴心压力及弯矩的共同作用下,工字形截面上应力的 发展过程如图所示。 ①边缘纤维最大应力达屈服点;②最大应力一侧塑性部 分深入截面;③两侧均有部分塑性深入截面;④全截面 进入塑性,此时达到承载能力极限状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 拉弯和压弯构件习题7.1 有一两端铰接长度为4m 的偏心受压柱,用Q235的HN400x200x8x13做成,压力的设计值为490KN ,两端偏心距相同,皆为20cm 。

试验算其承载力。

解:(1)截面的几何特性A = 84.12 cm 2 I X = 23700cm 4 I y = 1740cm 4 i x = 16.8cm i y = 4.54cm w x = 1190cm 3 (2) 验算强度 N= 490kN M= N x e 0 =490x0.2=98kN •mAn N+ XMx r Wnx = 324901084.1210⨯⨯ + 6398101.05119010⨯⨯⨯ = 58.25+78.43=136.68N/mm 2 < f =215 N/mm 2 (3) 验算弯矩作用平面内的稳定 λx = x xl i =40016.8= 23.8< [λ] =150 查附表4.2(b 类截面) ϕx = 0.958'Ex N = 22X1.1EAπλ = 2220600084121.123.8π⨯⨯⨯ = 2744.86kN mx β=1.0 x ANϕ +mx X 1x 'Mxr W (10.8)ExNN β- =3490100.9588412⨯⨯+631.098104901.05119010(10.8)2744.86⨯⨯⨯⨯-=152.30N/mm 2 < f =215 N/mm 2可见平面内不失稳。

(4)验算弯矩作用平面外的稳定 λy = 4004.54=88.1 查附表4.2 (b 类截面) ϕy = 0.634ϕb = 1.07 -2y 44000λ = 1.07-288.144000=0.894 tx β=1.0 , η=1.0y A N ϕ + b 1tx x x M W βηϕ = 3490100.6348412⨯⨯ + 631.098101.00.894119010⨯⨯⨯⨯⨯ =184 N/ mm 2< f = 215 N/mm 2 平面外不失稳。

(5)局部稳定验算:max σ=A N + 02x x M h I g = 3490108412⨯ + 64981037423700102⨯⨯g = 135.57 N/mm 2min σ=A N - 02x x M h I g = 3490108412⨯ - 64981037423700102⨯⨯g = -19.07N/mm 20α=max minmaxσσσ-=1.1407〈 1.6 腹板:0w h t =400268- =46.75 〈 (160α+0.5λ0+25翼缘:b t=100413- =7.385 〈局部不会失稳。

7.2图7.24所示悬臂柱,承受偏心距为25cm 的设计压力1600kN 。

在弯矩作用平面外有支撑体系对柱上端形成支点[图7.24(b )],要求选定热轧H 型钢或焊接工字截面,材料为Q235(注:当选用焊接工字形截面时,可适用翼缘2-400×20,焰切边,腹板-460×12)。

解:采用焊接H 型钢:(1)、几何特征:A=215.2cm 2,42339.101945)10230(2040020400121246012121cm I x =⎥⎦⎤⎢⎣⎡+⨯⨯+⨯⨯⨯+⨯⨯=Wx=4077.9cm 3, i x =21.8cm3341146012220400213401212y I cm =⨯⨯+⨯⨯⨯= Wy=1067cm 3, i y =9.69cm (2)、验算强度: Mx=1600×0.25=400kN ·m223623/205/77.16742.9335.74109.407705.110400102.215101600mm N mm N W M A N nxx x n <=+=⨯⨯⨯+⨯⨯=+γ(3)、平面内稳定验算:150][22.6421814000=<==λλx ,查表:0.785x ϕ=, kN EA N x ex4.964422.641.11022.215102061.123222'=⨯⨯⨯⨯⨯==πλπ 0.1=mx β223623'/205/42.20271.10771.94)4.964416008.01(109.407705.1104000.1102.215785.0101600)8.01(mm N mm N N NW M AN Exx x xmx x <=+=-⨯⨯⨯⨯+⨯⨯⨯=-+γβϕ(4)、验算弯矩作用平面外的稳定:150][46.726.967000=<==λλy ,查表:736.0=y ϕ, 951.04400046.72736.007.14400007.122=⨯-=-=yb λϕ0.1=tx β,0.1=η2236231/205/42.20414.10302.101109.4077951.0104000.10.1102.215736.0101600mm N mm N W M A Nxb x tx y <=+=⨯⨯⨯⨯⨯+⨯⨯⨯=+ϕβηϕ (5)、由于所选截面为焊接H 型钢,故需验算局部稳定:236230max /44.172109.407710400102.2151016002mm N h I M A N x x =⨯⨯+⨯⨯=⋅+=σ236230min/74.23109.407710400102.2151016002mm N h I M A N x x -=⨯⨯-⨯⨯=⋅-=σ 6.1138.144.17274.2344.1720<=+=∴α腹板:318.751)5.222.645.0138.116(235)255.016(3.381246000=⨯+⨯+⨯=++<==yx w f t h λα翼缘:13235137.9206200=<=-=yf t b 满足要求。

7.3 习题7.2中,如果弯矩作用平面外的支撑改为如图7.25所示,所选截面需如何调整才能适应?解:由上题可知在平面内验算时已接近设计值,故无需调整。

7.4 。

解:(1).截面几何特征分肢1和分肢2截面完全相同,即212155A A cm ==,4121702X X I I cm ==,41294004y y I I cm ==,12 3.32x x i i cm ==,1224.7y y i i cm ==整个截面:21754155217022376841.52x Icm ⎛⎫=⨯⨯= ⎪⎝⎭⨯412294004188008y y I I cm ==⨯=, 87.56x i cm === (2).斜缀条的验算缀条采用的是12510L ⨯,2min 24.37, 2.48A cm i cm ==假想剪力为2310215107841285V N ⨯⨯=== 则一个缀条的轴力为78412554452cos 2cos 45c V N N α===⨯。

缀条的长度175247cos 45l cm ==。

[]min0.989.8150li λλ==<=查附表(b 类截面)0.662ϕ= 单角钢连接的设计强度折减系数为:0.60.00150.7347ηλ=+=验算缀条稳定:2225544536.58/0.7347215157.96/0.62224.3710c N N mm f N mm A ηϕ==<=⨯=⨯⨯稳定满足要求。

(3).验算弯矩作用平面内的整体稳定[]229.31033.4615087.56ox x x l i λλ⨯===<=换算长细比[]35.93150ox λλ==<=查附表(b 类截面)0.914x ϕ=223'322206103100044338101.1 1.135.93Exox EA N N ππλ⨯⨯⨯===⨯⨯ 36241'280010 1.02300100.914310102376841.5102800(1)(10.914)175098.82443382mx x x x x EX M N N A W N βϕϕ⨯⨯⨯+=+⨯⨯⨯-⨯-⨯=188.682/N mm 2215/f N mm <=。

平面内稳定满足要求。

(4).验算分肢的稳定 1280023002714.3,2 1.75N kN =+= []1117552.711503.32x x x l i λλ===<=,[]1111820073.68150247y y y l i λλ===<=查附表(1x λ为a 类,1,y λ为b 类)得,min ϕ=0.82032212min 12714.310213.6/215/0.82015510N N mm f N mm A ϕ⨯∴==<=⨯⨯ 分肢的稳定满足要求。

(5).分肢局部稳定的验算因为构件为热轧型钢截面,翼缘和腹板都比较厚,所以不必进行局部稳定验算。

7.5图7.27所示的刚接框架,柱为等截面实腹式,横梁为桁架式,试确定柱的计算长度。

【解】:柱的截面惯性矩为I=(1/12)x500x8003-(1/12)x(500-12)x7603=3481x106 mm4查表对2L140x10截面A1=54.74cm2I x1=1029.4cm4对2L125x10截面A2=48.74cm2I x2=723.4cm4桁架式横梁高度有变化时,其惯性矩按平均高度计算。

对本题,取为h=3000mm。

则上弦到惯性轴的距离为a= A2h/( A1+A2)=(48.74x300)/(54.74+48.74)=141.3cm则由移轴公式惯性矩为 I= I x1+ a 2A 1+I x2+ (h-a)2A 2=1029.4+141.32x54.74+723.4+(300-141.3)2x48.74 =2322225cm 4考虑腹杆变形的影响,惯性矩乘以0.9的折减系数,变为 20900x106 mm 4。

故K 1=15000/3481x 1030000/20900x 1066 =3.00按有侧移框架,柱与基础刚接固定查表7.3得: μ=1.08因此柱的平面内计算长度为 L=μH=1.08x15=16.2m7.6 用扎制工字钢I 36a (材料为Q235钢)做成的10m 长的两端较支柱,轴心压力的设计值为650KN ,在腹板平面承受均布荷载设计值为6.24kN/m.试验算此压弯柱在弯矩作用平面内的稳定有无保证?为保证弯矩作用平面外的稳定需设置几个侧向中间支承点? 解:(1)截面的几何特性 (查附表7.2)h = 360 mm b = 136 mm t w =10.0mm t = 15.8 mmA = 76.4cm 2 I X = 15796cm 4 I y = 555cm 4i x = 14.4cm i y = 2.69cm w x = 878cm 3(2) 验算强度 M=21 6.24108⨯⨯=78kN •mAn N + X Mx r Wnx = 326501076.410⨯⨯ + 6378101.0587810⨯⨯⨯ = 85.079+84.608=169.69N/mm 2 < f =215 N/mm 2(3) 验算弯矩作用平面内的稳定λx = x x l i = 31010144⨯ = 69.4 < [λ] =150 查附表4.2(b 类截面) ϕx = 0.755'Ex N = 22X 1.1EA πλ = 2220600076401.169.4π⨯⨯⨯ = 2931.9kN mx β=1.0 x A Nϕ + mx X 1x 'Mxr W (10.8)Ex N N β- = 3650100.7557640⨯⨯ +631.078106501.0587810(10.8)2931.9⨯⨯⨯⨯-=215.54N/mm 2 〉 f =215 N/mm 2所以, 此压弯柱在作用平面内的稳定无保证。

相关文档
最新文档