锚杆(土钉)抗拔试验报告
锚杆抗拔试验报告
锚杆抗拔试验报告锚杆抗拔试验是测定锚杆在承载过程中的极限抗拔力、屈服抗拔力和弹性抗拔力等力学性能的试验。
本报告将介绍一次锚杆抗拔试验的过程、方法和结果,并对其进行分析和讨论。
一、试验设备与方法本次锚杆抗拔试验采用拉伸试验机进行。
试验机型号为UNIPAK-T1800,最大试验力为1000kN。
试验过程中,通过连接锚杆顶部的链接装置,将锚杆固定在试验机上。
然后逐渐增加拉伸力,记录锚杆的变形量和受力情况,直到锚杆发生破坏。
二、试验结果与分析极限抗拔力极限抗拔力是指锚杆在承载过程中,能够承受的最大抗拔力。
本次试验中,锚杆的极限抗拔力为120kN。
这个数值反映了锚杆在极端情况下的承载能力,对于工程设计和施工具有重要意义。
屈服抗拔力屈服抗拔力是指锚杆在承载过程中,发生塑性变形的抗拔力。
本次试验中,锚杆的屈服抗拔力为90kN。
这个数值反映了锚杆在承载过程中,发生塑性变形的临界状态,对于工程设计和施工也是非常重要的参数。
弹性抗拔力弹性抗拔力是指锚杆在承载过程中,发生弹性变形的抗拔力。
本次试验中,锚杆的弹性抗拔力为70kN。
这个数值反映了锚杆在承载过程中,发生弹性变形的程度,对于工程设计和施工也是非常重要的参数。
三、结论与建议通过本次锚杆抗拔试验,我们得到了锚杆的极限抗拔力、屈服抗拔力和弹性抗拔力等重要参数。
这些参数对于工程设计和施工具有重要意义,可以为工程安全性和稳定性评估提供依据。
在实际工程中,锚杆的抗拔力受到多种因素的影响,如土质、锚杆直径、长度等。
因此,在工程设计和施工前,应对地质情况进行详细勘察,并根据实际情况进行锚杆设计。
对于已建成的工程,应定期进行锚杆抗拔试验,以检测锚杆的力学性能和工程的稳定性。
对于试验中发现的问题,应及时采取措施进行处理和修复。
综上所述,锚杆抗拔试验是工程设计和施工中的重要环节,对于保证工程安全性和稳定性具有重要意义。
在未来的工程实践中,应进一步研究和优化锚杆抗拔试验的方法和技术,提高试验的准确性和可靠性。
锚杆拉拔试验报告单
试验日期
盒号
①
盒+湿土质量(g)
②
盒+干土质量(g)
③
盒质量(g)
④
水分质量(g)
⑤
②-③
干土质量(g)
⑥
③-④
含水量(g)⑦⑤/⑥平均含量(g)⑧Σ⑦/n
备注
试验负责人;日期:
检验时间
项次
检验项目
规定值或允许偏差
检验结果
检验频率和方法
1
基础压实度(%)
2
基础平整度(mm)
3
护栏地面以上中心高度(mm)
4
护栏混凝土强度(MPa)
5
轴线横向偏位(mm)
结论:
监理工程师:日期:
承包人:日期:
含水量试验
编号: C-1-1□□□□-□□□□
试验单位
施工路段
样品名称
合同号
样品来源
试验规程
锚杆拉拔试验报告单
承包单位:
监理单位:编号:C-32-□□□□□-□□□□
序号
工程部位
锚杆编号
锚杆直径
锚杆长度
钢筋直径
试验最大拉拔力
锚杆极限承载力
备注:附锚杆拉拔试验P-S曲线图
计算:复核:日期:混凝土护栏现场质量检验报告单
承包单位:
监理单位:编号:B-102-□□□□-□□□□
工程名称
施工时间
桩号及部位
锚杆抗拉拔试验检
锚杆锚固力的计算方法随锚固体形式不同而异,圆柱型锚杆的锚固力由锚 固体表面与周围地层的摩擦力提供;而端头扩大型锚杆的锚固力则由扩座 端的面承力及与周围地层的摩擦力提供。
注:(1)表中qs系一次常压灌浆工艺确定,适用于注浆标号M25~M30;当采 用高压灌浆时,可适当提高。
(2)极软岩:岩石单轴饱和抗压强度fp≤5MPa;软质岩:岩石单轴饱和抗压强 度5MPa≤fp≤30MPa硬质岩:岩石单轴饱和抗压强度fp≥30MPa。 (3)表中数据用作初步设计时计算,施工时宜通过试验检验。 (4)岩体结构面发育时,取表中下限值。
非预应力锚杆长度一般不要超过l6m,单锚设计吨位一般为l00~400kN,最 大设计荷载一般不超过450 kN。预应力锚杆(索)长度一般不要超过50m,单 束锚索设计吨位一般为500~2500kN,最大设计荷载一般不超过3000kN,预 应力锚索的间距一般为4~10m。
进行锚杆设计时,选择的材料必须进行材性试验,锚杆施工完毕后必须对锚 杆进行抗拔试验,验证锚杆是否达到设计承载力的要求;同时对于遇到的大 型滑坡在采用预应力锚索加固后必须进行至少一年的位移监测。
(1)锚杆总长度为锚固段长、自由段长和外锚段之和。锚杆自由段长度按 外锚头到潜在滑裂面的长度计算,但予应力锚杆自由段长度不小于5.0m; 锚杆锚固段长度按计算确定,同时土层锚杆锚固段长度宜大于4.0m、小于 14.0m,岩石锚杆锚固段长度宜大于3.0m、小于10.0m;如果岩石锚杆承载 力设计值≤250kN,且锚固区段为结构完整无明显裂隙的硬质硬质岩石时, 锚固段长度可用2.0~3.0m。 (2)在无特殊要求的条件下,锚杆浆体一般采用水泥砂浆,其强度设计值 不宜低于M20。
4锚杆的施工
锚杆施工质量的好坏将直接影响锚杆的承载能力和边坡稳定安全,一般在 施工前应根据工程施工条件和地质条件选择适宜的施工方法,认真组织施 工。在施工过程中如遇与设计不符的地层,应及时报告设计人员,以作变 更处理。锚杆施工包括施工准备、造孔、锚杆制作与安装、注浆、锚杆锁 定与张拉等五个环节。
锚杆(土钉)抗拔试验报告
土钉轴向抗拔试验检测报告工程名称:xxxxxxxxxxx工程地点:xxxxxxxxxxx委托单位:广州市神运工程质量检测有限公司检测项目:土钉轴向抗拔试验检测日期:2014.12.23报告编号:MG-2014122301报告总页数:共13页(含本页)广州神运工程质量检测有限公司2014年12月29日土钉轴向抗拔试验检测报告检测人员:报告编写:审核:批准:注意事项:1、检测报告未加盖检验单位“检验专用章”无效;2、检测报告无检测人员、审核、批准人签字无效;3、检测报告涂改无效;4、未经本实验室书面批准,不得复制检测报告。
5、复制检测报告未重新加盖“检验专用章”无效;6、对检测报告若有议,应于收到检测报告之日起十五日内向检验单位提出。
实验室地址:广州市南沙区滨海半岛海宁大街81号之一电话:(020)32238460 传真:(020)32238460电子邮箱:****************邮编:511458工程概况受广州市神运工程质量检测有限公司的委托,于2014年12月23日对xxxxxxxxxxx(概况见表1)基坑临时性支护土钉进行了验收试验,本次试验的土钉杆体为Φ16钢筋(孔径100mm)。
目的是检验土钉轴向受拉承载力是否满足设计要求,根据有关规范和规定的要求,并与有关单位研究协商后,确定本次共检测10根土钉,现将检测结果报告如下:一、检测仪器设备、方法和标准1、检测仪器及设备采用锚杆拉力计(型号:HC-30,编号:20100728)分级加载,通过智能压力数值显示器控制对试验土钉施加轴向拉力,试验上拔量观测采用1个百分表测量(编号:830266,量程0~50mm,精度0.01mm)。
2、试验方法试验按照广东省标准《建筑地基基础检测规范》(DBJ 15-60-2008)中有关土钉验收试验的规定进行。
试验时,加荷等级(kN)与观测时间(min)见表2:土钉抗拔试验加/卸荷观测一览表表2注:最大试验荷载N max为1.2N u(N u为土钉轴向受拉抗拔承载力设计值)。
支护检测——锚杆(索)和土钉检测
支护检测——锚杆(索)和土钉检测摘要:随着地下空间的施工难度加大和支护工程质量的严格控制,对其施工质量检验的要求越来越高,在基坑及边坡支护工程中,由于锚杆设置灵活、施工方便、成本低、可靠性高,大量的锚杆或其他构件与支护结构组合而成,本文探讨了以广东省检测标准的为主的支护锚杆及土钉常用的几种检测方法,分析了检测过程中的要点和存在的问题,保证和提高了锚杆、土钉检测的准确性。
关键词:支护锚杆(索)、土钉检测1.基本概念根据JGJ120-2012《建筑基坑支护技术规程》第2.1.14条术语:锚杆是一端由杆体(钢绞线、预应力螺纹钢筋、普通钢筋或钢管)、灌浆固结体、锚杆和套管组成,锚固件,与支承结构件相连,另一端锚固于稳定岩土中的一种受力构件,在使用钢绞线的情况下,又称锚索;第2.1.18条:土钉是将土体埋入土中,通过灌浆而形成的一种具有承受拉力与剪力的杆件,比如用钢筋桩身和灌浆加固体构成的钢筋土钉,将其打入土中。
不同之处在于:①锚杆由锚具和套管组成,而土钉只是在桩身四周灌浆,二者的差别在于有没有“锚”;②锚杆主要承受拉力作用,土钉主要承受拉力和剪力作用。
所以土钉比起锚杆来说,其抗拔力设计值往往较小。
1.锚杆检测锚杆检测是对锚杆承载力、锚杆锚固质量和锚杆变形状态的测试和试验,包括施工前为设计和施工提供依据的基本试验、蠕变试验和施工后为工程竣工验收提供依据的验收试验、锁定力试验。
2.1基本试验在工程锚杆正式开工之前,对锚杆的极限抗拔承载能力进行研究,为了选择和确定锚杆的设计参数及施工技术。
2.2蠕变试验在软土中放置的锚杆,在承受较大的载荷时,会发生较大的蠕变,为了解软土中锚杆的工作性能,国内外相关规范均对其进行了规范;国内锚杆规定,凡塑指数在17以上的土壤中、极度风化的泥质岩层中、在节理裂隙发育并充满粘土的岩层中的锚杆,必须进行蠕变实验。
2.3锁定力试验锚杆锁定力是锚杆材料、加工和施工安装质量的综合反映,是锚杆质量检测的一项基本内容。
土钉抗拔测试报告
3.3验收标准:
1在最大试验荷载作用下,锚头位移相对稳定;
2锚杆弹性变形不应小于自由段长度变形计算值的80%,且不应大于自由段长度与1/2锚固段长度之和的弹性变形计算值。
3L二P・L/E・A(AL:变形计算值;P:设计轴向力;L:②式之锚杆相应长度试验;E:弹性模量取2.0X105MPa;A:钢绞线截面积)。
2.试验过程要求:试验采用分级连续加载法,首先施加少量初始荷载(但不大于土钉设计荷载的1/10),使加载装置保持稳定,同时用百分表量出试验土钉坡面外受拉钢筋长度,以后的每级荷载增量不超过设计荷载的20%。根据设计方案及《基坑土钉支护技术规程》规定。
3.6试验终止条件
当出现下列现象之一时,可终止试验:
工程名称:D1地块2#、3#楼及地下车库边坡
试验桩号:试验5#
测试日期:
钉长:7.0m
孔径:100mm
荷载金由
0
5
10
20
30
40
50
本级沉降(mm)
11.17
5
64
10
35
5.98
17.15
6
80
15
50
5.64
22.79
7
8
5
55
-5.39
17.40
最大沉降量:22.79mm最大回弹量:5.39mm回弹率:23.7%
工程名称:D1地块2#、3#楼及地下车库边坡
试验桩号:试验2#
测试日期:
钉长:6m
孔径:100mm
荷载金由
0
8
16
32
48
64
80
工程名称:D1地块2#、3#楼及地下车库边坡
试验桩号:试验3#
锚杆抗拔试验报告
锚杆抗拔试验报告一、实验目的1.了解锚杆在校直载荷作用下的抗拔性能;2.衡量锚杆材料的强度和稳定性;3.确定锚杆在实际工程中的应用价值。
二、实验原理三、实验设备和材料1.实验设备:拉力试验机、杠杆;2.材料:锚杆、耐压装置。
四、实验步骤1.准备工作:a.检查实验设备是否正常运行和校准;b.清洁并准备好需要使用的材料。
2.组装试件:a.将锚杆插入土壤,并通过耐压装置固定在地下;b.确保锚杆垂直且稳定。
3.施加荷载:a.使用拉力试验机施加垂直向上的荷载;b.逐渐增加荷载,直到锚杆开始变形或承受不住荷载为止。
4.记录数据:a.在每次施加荷载后,记录拉力试验机示数;b.每次增加荷载后,等待片刻,观察锚杆的变形情况并做相关记录;c.当锚杆发生断裂或无法承受进一步的荷载时,停止实验。
五、实验结果与分析根据实验记录,我们得到以下数据:实验编号施加荷载(N)锚杆变形(mm)110000.5220001.0330001.5440002.1550002.6通过以上数据,我们可以画出荷载-变形曲线,以评估锚杆的抗拔性能。
根据实验数据分析,随着施加荷载的增加,锚杆的变形也随之增加。
这说明锚杆在受荷状态下会发生变形,但变形的幅度相对较小。
根据实验数据,可以计算锚杆的抗拔强度和刚度等指标,以评估锚杆的性能。
六、实验结论根据锚杆抗拔试验的结果,我们得出以下结论:1.锚杆在校直载荷作用下具有抗拔性能,可以抵抗一定的荷载;2.锚杆的变形随着施加荷载的增加而增加,但变形幅度相对较小;3.锚杆具有较好的抗拔强度和稳定性,适用于实际工程中的锚固。
七、实验总结本次锚杆抗拔试验通过施加垂直荷载来评估锚杆的抗拔性能,得出了锚杆在受荷状态下的变形情况以及相关指标。
实验结果表明锚杆具有良好的抗拔强度和稳定性,适用于实际工程中的锚固。
然而,该实验只是一次单点试验,结果仅具有局部代表性,对于更全面的评估和设计仍需进一步实验研究。
锚杆拉拔试验总结报告
锚杆拉拔试验总结报告————————————————————————————————作者: ————————————————————————————————日期:锚杆拉拔试验总结报告一、锚杆拉拔试验时间及参与人员时间:2016年4月24日参与人员:建设单位工程部人员、监理单位驻地工程师及实验室主任、项目部工程师及试验工程师、作业队施工人员。
二、试验目的锚杆拉拔力试验的目的是判定土层锚杆的可锚性,评价锚杆锚固系统的性能和锚杆的锚固力。
三、人员机械配备情况1.人员组成管理人员1名,技术人员2名,质检人员1名,施工作业人员3名。
2.施工机具配备见下表。
投入的主要施工机具工程名称序号设备名称型号与规格数量机械状态十字型锚杆1 钻孔机千米钻1台良好2 空压机奈克9m³1台良好3 注浆机 4MPA 1台良好4锚杆拉力计ML-200B型1个良好5 钢垫板40cm*40cm*2.5cm 1块良好四、试验段施工准备及工艺1.搭设钻孔机作业平台,作业平台按设计孔位角度搭设,倾斜角度误差不大于1°。
2.原材料选择(1)锚杆材料选用Φ25螺纹钢。
(2)注浆材料:水泥选用P.O42.5普通硅酸盐水泥,细骨料应选用粒径小于2mm的中细砂,采用符合要求的水质,不得使用污水,不得使用PH 值小于4的酸性水,砂浆强度等级M35。
3.钻孔(1)锚杆孔直径90mm,孔深12m及15m。
4.杆体的组装与安放(1)按设计要求制作锚杆,为使杆体处于钻孔中心,应在锚杆杆件上安设定中架(对中定位支架间距50cm)。
(2)安放锚杆时,应防止杆体扭曲、压弯,注浆管随锚杆一同放入孔内,管端距孔底为50-100mm,杆体放入角度与钻孔倾角保持一致,安好后使杆体始终处于钻孔中心。
5.注浆(1)注浆材料应根据设计要求确定,选用1:1水泥砂浆。
(2)浆液应搅拌均匀,过筛,随搅随用,浆液应在初凝前用完,注浆管路应经常保持畅通。
(3)常压注浆采用砂浆泵将浆液经压浆管输送至孔底,再由孔底返出孔口,待孔口溢出浆液或排气管停止排气时,可停止注浆。
土钉抗拔测试报告材料
实用标准文档大全边坡支护工程土钉验收试验报告报告编号(2011)测试108号工程名称:试验地点:试验日期:试验类别:土钉验收试验工程土钉验收试验报告结论1、工程概况1.1场地工程地质条件根据现场勘探、原位测试及室内土工试验成果,并按地层沉积年代、成因类型,将本次勘察最大勘探深度(35.00m)范围内的土层划分为人工堆积层、新近沉积层和第四纪沉积层三大类,并按岩性、工程性质指标进一步划分为8个大层及亚层,现分述如下:表层为人工堆积之房渣土①层,粉质粘土填土、粘质粉土填土①1层。
人工堆积层以下为新近沉积之砂质粉土、粘质粉土②层,粘质粉土、粉质粘土②1层。
新近沉积层以下为第四纪沉积之粉质粘土、粘质粉土③层,砂质粉土、粘质粉土③1层及细砂、粉砂③2;粉质粘土、粘质粉土④层,细砂④1层及砂质粉土④2层;细砂、中砂⑤层,砂质粉土⑤1层及粉质粘土、粘质粉土⑤2层;中砂、粗砂⑥层及砂质粉土、粘质粉土⑥1层;卵石、圆砾⑦层,粉质粘土、粘质粉土⑦1层及砂质粉土、粘质粉土⑦2;粉质粘土、粘质粉土⑧层及细砂⑧1层。
1.2场区地下水条件本次勘探期间,在勘探深度范围内观测到一层地下水,为潜水类型,水位埋深29.1~28.7m,标高12.41~13.1m。
1.3设计参数及结果基坑支护采取土钉墙的支护形式,具体设计和施工参数如下:2#、3#楼及地下车库边坡支护剖面设计:设计方案:1.4工作量土钉采用抗拉试验检测承载力,由于2#、3#楼及地下车库相互连通,且基坑深度相同,故试验数量取不少于土钉总数的1%,且不应少于3根。
根据要求本次土钉抗拉试验共检测15根。
2、检测依据①. 《建筑基坑支护技术规范》(JGJ 120-99);②.《建筑基坑支护技术规程》(DB11/489-2007);③. 本工程土钉设计计算书及施工组织设计(电子版)。
3、土钉验收试验3.1概述每一典型土层中至少应有3个专门用于测试的非工作钉。
测试钉除其总长度和粘结长度可与工作钉有区别外,应与工作钉采用相同的施工工艺同时制作,其孔径、注浆材料等参数以及施工方法等应与工作钉完全相同。
土钉抗拔测试报告
土钉抗拔测试报告1.引言土钉是一种常用的土壤加固材料,主要用于抗拔场景下的土壤加固和坡面防护。
为了评估土钉的抗拔性能,本测试对土钉进行了抗拔试验,并分析了试验结果。
2.试验目的本试验的目的是评估土钉的抗拔性能,了解其在不同荷载条件下的强度和变形特性。
3.试验方法本试验采用标准的静力荷载抗拔试验方法,具体步骤如下:(1)选择试验土钉的规格和长度。
(2)在试验地点选择代表性的土壤样本,并进行物理性质测试。
(3)将试验土钉固定在土壤中,保持一定的埋深。
(4)按照预定的荷载规程对土钉施加垂直荷载。
(5)使用称重传感器或应变计实时监测土钉的应力和变形。
(6)记录试验数据,并根据数据分析土钉的强度和变形特性。
4.试验结果(1)土钉的拔出荷载:根据试验数据,土钉的拔出荷载为XXXkN。
(2)土钉的破坏模式:在试验荷载达到XXXkN时,土钉发生破坏,主要表现为土钉断裂和土钉与土壤之间的剪切断裂。
(3)土钉的变形特性:土钉在荷载施加过程中发生了一定的变形,包括弯曲和拉伸变形。
根据试验数据,土钉的最大变形量为XXX mm。
5.结果分析(1)土钉的抗拔强度:根据试验结果,土钉的抗拔强度为XXXkN,可以满足设计要求。
相比于试验前的土壤力学性质,土钉的加固效果显著,能够有效抵抗荷载施加导致的土体变形和破坏。
(2)土钉的变形特性:试验结果显示,土钉在荷载施加过程中发生一定的变形,但其变形量相对较小,说明土钉具有较好的刚度和变形控制能力。
6.结论根据试验结果和分析,可以得出以下结论:(1)土钉具有较好的抗拔性能,其抗拔强度满足设计要求。
(2)土钉在荷载施加过程中发生一定的变形,但其变形量较小,变形受到较好的控制。
(3)土钉加固对土体的稳定性和抗变形能力具有显著的改善效果。
7.建议(1)在土钉设计和施工过程中,需要综合考虑土钉的强度和变形特性,确保土钉能够满足设计要求。
(2)加强土钉与土壤的粘结力,以提高抗拔强度和变形控制能力。
锚杆抗拔验收试验报告
编号: SK5-1MGYS-110031长沙矿产资源监督检测中心实验大楼基坑支护工程锚杆抗拔验收试验检测报告湖南省勘测设计院二零一一年七月十四日声明及联系方式一、声明1、本报告不加盖“湖南省勘测设计院检测专用章”无效、无骑缝章无效;2、复制件必须完整并加盖“湖南省勘测设计院检测专用章”印章,否则无效;未经委托单位书面同意,不得私自复制本报告的任何部分;3、本报告无检测、编写、审核、报告签发人签字无效;4、报告涂改无效;5、对本报告结论如有异议或需要说明之处,可在报告发出后15日内向我单位书面提出。
本单位将于5日内给予答复,逾期不予受理。
二、联系方式地址:长沙市体院路245号邮政编码: 410014E - mail:******************电话:(0731)85596783传真:(0731)85596783建设单位:湖南省矿产测试利用研究所勘察单位:湖南省勘测设计院监理单位:湖南省建科工程项目管理有限公司设计单位:湖南省勘测设计院施工单位:湖南省地质建设工程(集团)总公司检测单位:湖南省勘测设计院检测人员:-报告编写:报告审核:报告签发:检测证件:湖南省质量技术监督局计量认证合格证书:(2008)量认(湘)字(181135R)号建设工程质量检测机构资质证书:湘建检字第2008265号湖南省建设工程质量检测技术人员证书:(2009)湘建检测0176(2009)湘建检测0309(2010)湘建检测061419(2010)湘建检测060802(2010)湘建检测061416说明:1、本报告一式四份;2、报告未盖本院检测专用章无效,无审核、签发人签字无效;3、未经本院书面批准,不得部分复制本报告;4、如委托单位对本检测结果有异议,请于收到报告之日起十五日内提出,过期不予受理。
目录一、前言 (5)1、工程概况 (5)2、检测工作概况 (5)二、工程地质概况及试验锚杆工程概况 (6)1、工程地质概况 (6)2、试验锚杆工程概况 (7)三、技术方法及试验设备 (8)1、技术方法 (8)2、试验设备 (8)四、测试结果分析 (9)五、结论 (10)六、附表 (10)长沙矿产资源监督检测中心实验大楼基坑支护工程锚杆抗拔验收试验检测报告一、前言受湖南省矿产测试利用研究所委托,湖南省勘测设计院对长沙矿产资源监督检测中心实验大楼基坑支护工程进行了锚杆抗拔验收试验检测。
支护锚杆试验和土钉试验
支护锚杆试验和土钉试验7.1 适用范围7.1.1本方法适用于基坑支护工程、边坡工程等拉力型支护锚杆(包括锚索)、土钉承载力验收。
7.1.1【条文说明】支护锚杆主要承受边坡、挡墙、地下洞室岩土压力。
锚杆分类,按锚固体周围土层性质分为土层锚杆、岩石锚杆;按是否施加预应力情况分为预应力锚杆、非预应力锚杆;使用年限分为永久性锚杆、临时性锚杆;按使用功能分为支护锚杆、基础锚杆。
本规程所称的支护锚杆试验和土钉试验包括锚杆基本试验、锚杆验收试验、土钉验收试验、锚杆蠕变试验。
试验采用接近于锚杆和土钉的实际工作条件的方法,确定锚杆和土钉在验收荷载作用下的工作性状,为工程验收提供依据。
对锚杆蠕变试验还可参照《建筑基坑支护技术规程》JGJ120-99、《建筑地基基础设计规范》GB50007-2002 和《建筑边坡技术规范》GB50330-2002 执行,仪器设备及安装可参照本规程。
7.1.2杆的锚固体的长度和锚固密实度检测可参考《锚杆质量无损检测技术规程》JGJ/T182-2009。
7.1.3锚杆的试验条件控制如下:1 锚杆锚固体的浆体强度达到15MPa或达到设计强度的75%时,方可进行锚杆试验。
2 锚杆极限抗拔试验采用的地层条件、杆体材料、锚杆参数和施工工艺必须与工程锚杆相同。
7.1.4土钉的试验条件控制如下:1 测试钉的注浆粘结长度不小于工作钉注浆粘结长度的二分之一且不短于5m,在满足钢筋不发生屈服并最终拔出的前提下宜取较长粘结段,必要时适当加大土钉钢筋直径。
2 检测钉进行抗拔试验时的注浆体抗压强度不应低于6MPa。
7.2 仪器设备7.2.1支护锚杆试验和土钉试验使用的荷载测量仪器、加、卸载设备、变形测量仪器应符合本规程第4.2.1- 4.2.3条的规定。
7.2.2试验千斤顶的作用力方向应与锚杆、土钉轴线重合。
7.2.3支护锚杆、土钉的验收性试验的加载反力装置宜采用支座横梁反力装置,在下列条件下也可采用承压板式反力装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土钉轴向抗拔试验检测报告
工程名称:xxxxxxxxxxx
工程地点:xxxxxxxxxxx
委托单位:广州市神运工程质量检测有限公司
检测项目:土钉轴向抗拔试验
检测日期:2014.12.23
报告编号:MG-2014122301
报告总页数:共13页(含本页)
广州神运工程质量检测有限公司
2014年12月29日
土钉轴向抗拔试验检测报告
检测人员:
报告编写:
审核:
批准:
注意事项:
1、检测报告未加盖检验单位“检验专用章”无效;
2、检测报告无检测人员、审核、批准人签字无效;
3、检测报告涂改无效;
4、未经本实验室书面批准,不得复制检测报告。
5、复制检测报告未重新加盖“检验专用章”无效;
6、对检测报告若有议,应于收到检测报告之日起十五日内向检验单位提出。
实验室地址:广州市南沙区滨海半岛海宁大街81号之一
电话:(020)32238460 传真:(020)32238460
电子邮箱:****************邮编:511458
工程概况
受广州市神运工程质量检测有限公司的委托,于2014年12月23日对xxxxxxxxxxx(概况见表1)基坑临时性支护土钉进行了验收试验,本次试验的土钉杆体为Φ16钢筋(孔径100mm)。
目的是检验土钉轴向受拉承载力是否满足设计要求,根据有关规范和规定的要求,并与有关单位研究协商后,确定本次共检测10根土钉,现将检测结果报告如下:
一、检测仪器设备、方法和标准
1、检测仪器及设备
采用锚杆拉力计(型号:HC-30,编号:20100728)分级加载,通过智能压力数值显示器控制对试验土钉施加轴向拉力,试验上拔量观测采用1个百分表测量(编号:830266,量程0~50mm,精度0.01mm)。
2、试验方法
试验按照广东省标准《建筑地基基础检测规范》(DBJ 15-60-2008)中有关土钉验收试验的规定进行。
试验时,加荷等级(kN)与观测时间(min)见表2:
土钉抗拔试验加/卸荷观测一览表表2
注:最大试验荷载N max为1.2N u(N u为土钉轴向受拉抗拔承载力设计值)。
3、土钉验收标准
1)最大验收试验荷载持荷时,后5min的位移增量小于前5min的位移增量,并连续出现两次。
2)对同一条件的土钉进行统计分析,当满足下列条件时,判所检测的土钉验收试验结果满足设计要求:
①荷载加载到试验荷载计划最大值后变形稳定;
②最大试验荷载达到极限承载力标准值时,未产生破坏。
二、受检土钉设计施工资料
根据委托单位提供的设计及施工资料,各检测土钉的承载力设计值和有关土钉参数见表3,土钉位置平面图见有关图件。
三、检测结果
所选定的10根土钉,均按规范要求进行了试验。
试验结果汇总表见表4。
根据以上试验资料对10根土钉的试验结果分述如下:
1、2-2剖面1-1土钉,加荷至最大试验荷载96kN,总上拔位移量为7.03mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥96kN,满足设计要求。
2、2-2剖面1-2土钉,加荷至最大试验荷载96kN,总上拔位移量为6.94mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥96kN,满足设计要求。
3、2-2剖面4-1土钉,加荷至最大试验荷载60kN,总上拔位移量为8.88mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥60kN,满足设计要求。
4、2-2剖面4-2土钉,加荷至最大试验荷载60kN,总上拔位移量为8.61mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥60kN,满足设计要求。
5、3-3剖面1-1土钉,加荷至最大试验荷载96kN,总上拔位移量为8.00mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥96kN,满足设计要求。
6、3-3剖面4-1土钉,加荷至最大试验荷载60kN,总上拔位移量为7.53mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥60kN,满足设计要求。
7、4-4剖面1-1土钉,加荷至最大试验荷载96kN,总上拔位移量为9.31mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥96kN,满足设计要求。
8、4-4剖面1-2土钉,加荷至最大试验荷载96kN,总上拔位移量为8.39mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥96kN,满足设计要求。
9、4-4剖面4-1土钉,加荷至最大试验荷载60kN,总上拔位移量为8.16mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥60kN,满足设计要求。
10、4-4剖面4-2土钉,加荷至最大试验荷载60kN,总上拔位移量为7.90mm,上拔位移相对稳定。
综合分析,该土钉抗拔极限承载力≥60kN,满足设计要求。
以上试验结果与分析结果汇总于表4
试验结果汇总表表4
四、检测结论
土钉抗拔试验结果表明:本次对广东佳明电器有限公司三水区一号公租房基坑临时性支护土钉共检测10根,加载最大荷载达到1.2倍设计值时,锚头位移、坡墙稳定;根据土钉试验结果、验收条件,受检的土钉轴向抗拉承载力满足设计要求。
广州市神运工程质量检测有限公司
2014年12月29日
五、附图表
1、荷载-变形数据汇总表;
工程名称:xxxxxxxxxxx试验土钉编号:2-2剖面1-1
工程名称:xxxxxxxxxxx试验土钉编号:2-2剖面1-2
工程名称:xxxxxxxxxxx试验土钉编号:2-2剖面4-1
工程名称:xxxxxxxxxxx试验土钉编号:2-2剖面4-2
工程名称:xxxxxxxxxxx试验土钉编号:3-3剖面1-1
工程名称:xxxxxxxxxxx试验土钉编号:3-3剖面4-1 测试日期:2014-12-23 土钉直径:Φ16 土钉长:9.0
工程名称:xxxxxxxxxxx试验土钉编号:4-4剖面1-1
工程名称:xxxxxxxxxxx试验土钉编号:4-4剖面1-2 测试日期:2014-12-23 土钉直径:Φ16 土钉长:4.0
工程名称:xxxxxxxxxxx试验土钉编号:4-4剖面4-1
工程名称:xxxxxxxxxxx试验土钉编号:4-4剖面4-2。