北师大版七年级上册数学学案

合集下载

北师大版初一数学上学期教案文案3篇 初一数学北师大版备课

北师大版初一数学上学期教案文案3篇 初一数学北师大版备课

北师大版初一数学上学期教案文案3篇初一数学北师大版备课下面是整理的北师大版初一数学上学期教案最新文案3篇初一数学北师大版备课,供大家参考。

北师大版初一数学上学期教案最新文案1一、素质教育目标(一)知识教学点1.掌握的三要素,能正确画出.2.能将已知数在上表示出来,能说出上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握画法和用上的点表示有理数.2.难点:有理数和上的点的对应关系。

四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.的定义:规定了原点、正方向和单位长度的直线叫做.向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条,对不对?为什么?(2)下列所画对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固的概念.答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学习平面直角坐标系打基础.4.有理数与上点的关系通过刚才的学习我们知道所有的有理数都可以用上的点来表示.例1 画一条,并画出表示下列各数的点:1,5,0,-2.5, .学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.(出示投影4)例2 指出上A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示; C表示3;D表示;E表 .【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是( )(2)是直线( )(3)任何一个有理数都可以用上的点来表示()(4)上到原点距离等于3的点所表示的数是+3( )(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计北师大版初一数学上学期教案最新文案2教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

北师大版七年级数学上册《1.2.1展开与折叠(第一课时)》学案

北师大版七年级数学上册《1.2.1展开与折叠(第一课时)》学案

新北师大版七年级数学上册?睁开与折叠〔第一课时〕 ?教案学目1、在操作活中棱柱的某些特征.2、认识棱柱睁开的形状,能正确地判断和制作的立体模型.学要点1、在操作活中,展空念,累数学活.棱柱的某些特征,形成范的言。

2、能依据棱柱的睁开判断和制作的立体形.学点依据棱柱的睁开判断和操作的立体形.教课程一、授新从做一做中棱柱的特征〔生互〕1、棱柱的特色假定有假定干几何体,你能马上找到棱柱?棱柱有什么独出心裁的特色呢?(1)棱柱的上、下底面是.(2)棱柱的面都是 ______________.(3)棱柱的所有棱都 _____________.(4)棱柱面的个数与底面多形的数______________ 。

(5* )棱柱各元素的数目关系以下:名称底面形状点数棱数棱数面数面形状面数n棱柱2、棱柱的分我已认识了棱柱,那么棱柱之能否有区呢?往常依据底面形的数将棱柱分三棱柱、四棱柱、五棱柱⋯⋯方体和正方体都是____________________.二、你来一〔 * 做〕1、如:( 1〕方体有_________个点,_________条棱,_________个面,些面形状都是 _________。

( 2〕哪些面的形状和大小必定完整同样?( 3〕哪些棱的度必定相等?2.想想,再折一折,下边两图经过折叠可否围成棱柱?师生小结:三、专心做一做[例 1]三棱柱有_______条棱,_______个面,此中侧面是_______形,_______面的形状必定完整同样.[ 例 2]如以下列图,哪些图形经过折叠能够围成一个棱柱?先想想,再折一折.[ 例 3] 一个六棱柱模型如右图,它的底面边长都是 5 cm ,侧棱长 4 cm 。

察看这个模型,回复以下问题:( 1〕这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状和大小完整同样?( 2〕这个六棱柱一共有多少条棱?它们的长度分别是多少?学生小结:四、牢固加强:1、下边图形经过折叠可否围成棱柱?2、以下列图中哪一个是六棱柱的平面睁开图(A)(B)(C)(D)3、如右图所示的八棱柱,它的底面边长都是 5 ㎝,侧棱长都是 8 cm .请回复以下问题:(1〕这个八棱柱一共有多少个面?它们的形状分别是什么图形?哪些面的形状、面积完整同样?( 2 〕这个八棱柱一共有多少条棱?它们的长度分别是多少?( 3 〕沿一条侧棱将其侧面所有展成一个平面图形,这个图形是什么形状?面积是多少?4*、一个棱柱有 12 个极点,所有侧棱长和为36 cm,求每条侧棱的长.反省小结:预习资料: 1、棱柱的睁开图一定知足什么条件?2、准备一个用纸做的正方体。

新版北师大版七年级上册数学全册教案(最新精编版)

新版北师大版七年级上册数学全册教案(最新精编版)

1.1生活中的立体图形(一)教学目标1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:认识一些基本的几何体,并能描述这些几何体的特征教学难点:描述几何体的特征,对几何体进行分类。

教学过程:一、设疑自探1.创设情景,导入新课在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?2.学生设疑让学生自己先思考再提问3.教师整理并出示自探题目①生活常见的几何体有那些?②这些几何体有什么特征③圆柱体与棱柱体有什么的相同之处和不同之处④圆柱体与圆锥体有什么的相同之处和不同之处⑤棱柱的分类⑥几何体的分类4.学生自探(并有简明的自学方法指导)举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?说说它们的区别二.解疑合探1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:1.引导学生自编习题。

请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征2.教师出示运用拓展题。

(要根据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五、教后反思1.1生活中的立体图形(二)教学目标1、知识:认识点、线、面的运动后会产生什么的几何体2、能力:通过点、线、面的运动的认识几何体的产生什么3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:几何体是什么运动形成的教学难点:对“面动成体”的理解教学过程:一、设疑自探1.创设情景,导入新课我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?2.学生设疑点动会生成什么几何体?线动会生成什么几何体?面动会生成什么几何体?3.教师整理并出示自探题目教师根据学生的設疑情况梳理、归纳、细化得出自探题目( 自探要求 )4.学生自探(讨论)二.解疑合探举例分析那些几何体由什么运动形成的?那些图形运动可以形成什么几何体?三.质疑再探:说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)四.运用拓展:1.引导学生自编习题。

北师大版七年级上册数学教案全册

北师大版七年级上册数学教案全册

北师大版七年级上册数学教案全册第一单元:走进数学第一课:数学的世界教学目标:1. 让学生了解数学的广泛应用和重要性。

2. 培养学生对数学的兴趣和好奇心。

活动内容:1. 数学故事分享:学生分享数学在生活中的应用故事,如购物时如何计算价格,建筑设计中的几何学等。

2. 数学猜谜游戏:设计一些数学谜题,让学生在游戏中体验数学的乐趣。

活动过程:1. 开场介绍:简要介绍数学的重要性和应用领域。

2. 数学故事分享:邀请学生分享他们的数学故事,鼓励他们思考数学在日常生活中的应用。

3. 数学猜谜游戏:分发谜题,学生分组讨论解答,公布答案并解释解题思路。

第二单元:有理数第二课:有理数的认识教学目标:1. 让学生理解有理数的概念。

2. 培养学生运用有理数进行运算的能力。

活动内容:1. 有理数卡片游戏:设计有理数卡片,让学生通过游戏学习有理数的分类和性质。

2. 有理数运算竞赛:学生分组进行有理数运算比赛,提高他们的运算速度和准确性。

活动过程:1. 开场介绍:简要介绍有理数的概念和分类。

2. 有理数卡片游戏:分发卡片,学生通过游戏学习有理数的性质。

3. 有理数运算竞赛:分组进行运算比赛,评选出运算速度最快和最准确的小组。

第三单元:整式的加减第三课:整式的加减运算教学目标:1. 让学生掌握整式加减运算的规则。

2. 培养学生解决实际问题时运用整式加减运算的能力。

活动内容:1. 整式加减运算讲解:通过具体例子讲解整式加减运算的规则和方法。

2. 实际应用练习:设计一些实际应用题目,让学生运用整式加减运算解决。

活动过程:1. 开场介绍:简要介绍整式加减运算的规则和方法。

2. 整式加减运算讲解:通过具体例子讲解运算规则,确保学生理解。

3. 实际应用练习:分发练习题,学生独立完成,进行解答和讨论。

第四单元:几何图形初步第四课:几何图形的认识教学目标:1. 让学生了解几何图形的基本概念和性质。

2. 培养学生观察和描述几何图形的能力。

活动内容:1. 几何图形观察:学生观察不同的几何图形,描述它们的特征和性质。

北师大七年级数学上册教案

北师大七年级数学上册教案

北师大七年级数学上册教案北师大七年级数学上册教案1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。

2.知道什么是正数和负数。

3.理解数0表示的量的意义。

(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

2.会用正、负数表示具有相反意义的量。

(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。

教学重点:知道什么是正数和负数,理解数0表示的量的意义。

教学难点:理解负数,数0表示的量的意义。

教学方法:师生互动与教师讲解相结合。

教具准备:地图册(中国地形图)。

教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。

如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

讲授新课:1.自然数的产生、分数的产生。

2.章头图。

问题见教材。

让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。

根据需要有时在正数前面也加上“十”(正号)表示正数。

举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、- 等是负数。

4、数0既不是正,也不是负数,0是正数和负数的分界。

0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

5、让学生举例说明正、负数在实际中的应用。

展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。

北师大版七年级上册数学教案5篇

北师大版七年级上册数学教案5篇

北师大版七年级上册数学教案5篇北师大版七年级上册数学教案1教学目标1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征知识重点相反数的概念教学过程(师生活动)设计理念设置情境引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类4,-2,-5,+2允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)思考结论:教科书第13页的思考再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。

以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想北师大版七年级上册数学教案2教学目标1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念北师大版七年级上册数学教案3教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2,能区分两种不同意义的量,会用符号表示正数和负数;3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点正确区分两种不同意义的量。

知识重点两种相反意义的量教学过程(师生活动)设计理念设置情境引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是_,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

新北师大版七年级数学上册全册学案

新北师大版七年级数学上册全册学案

新北师大版七年级数学上册全册学案1.1生活中的立体图形(1)学法指导认识并能辨别出基本的几何体.体会几何体间的联系和区别,能根据几何体的特征,对其进行简单分类.一、预学质疑(设疑猜想.主动探究)1.下面几种图形①三角形.②长方形③正方体.④圆⑤圆锥⑥圆柱。

其中属于立体图形的是()A.③⑤⑥ B.①②③ C.③⑥ D.④⑤2.请写出下列几何体的名称:(1)(2)(3)(4)(5)(6)3. 有生活中的物体抽象出几何图形,在后面的横线上填上相应的几何体.(1)足球(2)金字塔(3)魔方(4)漏斗(5)砖块(6)六角螺母4.思考下列问题:(1)生活常见的几何体有那些?(2)这些几何体有什么特征(3)圆柱体与棱柱体有什么的相同之处和不同之处(4)圆柱体与圆锥体有什么的相同之处和不同之处(5)棱柱的分类(6)几何体的分类要大胆质疑,提价值性问题:阅读课文内容,你认为模糊或不懂的地方记录下来:二、研学析疑(合作交流.解决问题)1.请同学们尽量用自己的语言描述圆柱与圆锥的异同点.2.用自己的语言描述棱柱与圆柱的异同点.3.请你按适当的标准对下列几何体进行分类.分析:(1)按柱体、锥体、球体分(最常见的分法):(2)按组成几何体的面的平曲分:(3)按有没有顶点分:归纳:圆柱和棱柱的异同:相同点:圆柱和棱柱都有2个底面,且底面的形状、大小完全相同。

不同点:(1)圆柱的底面是,棱柱的底面是。

(2)圆柱的侧面是,棱柱的侧面是。

棱柱有和两种,棱柱由上下底面和若干个侧面围成,它们都是,上下底面多为多边形,大小,侧面都是平行四边形。

三、导法展示(巩固升华.拓展思维)1.把图形与对应的图形名称用线连接起来:(圆锥)(棱柱)(圆柱)(棱锥)(球)2.下列几何体中(如图)属于棱锥的是()A.①⑤B.①C.①⑤⑥D.⑤⑥3.下列图形中属于棱柱的有()A.2个B.3个C.4个D.5个4.将图中的各几何体分类,并说明理由.5.观察下列图形并填空.上面图形中,圆柱是,棱柱是,圆锥是,棱锥是,球体是.(写序号)四、小结反思(自主整理,归纳总结)常见的几何体:柱.锥.(台).球分类名称图形主要特征柱棱柱(三棱柱.四棱柱.五棱柱等)侧面.底面都是平面,有多个侧面,两个底面,并且底面互相平行。

最新北师大版七年级数学上册全册优秀教案教学设计

最新北师大版七年级数学上册全册优秀教案教学设计

北师大版七年级数学上册全册教案第一章丰富的图形世界 (2)1生活中的立体图形 (2)2展开与折叠 (6)3截一个几何体 (8)4从三个方向看物体的形状 (11)第二章有理数及其运算 (13)1有理数 (13)2数轴 (15)3绝对值 (17)4有理数的加法 (19)5有理数的减法 (22)6有理数的加减混合运算 (24)7有理数的乘法 (26)8有理数的除法 (29)9有理数的乘方 (31)10科学记数法 (33)11有理数的混合运算 (35)12用计算器进行运算 (37)第三章整式及其加减 (40)1字母表示数 (40)2代数式 (43)3整式 (46)4整式的加减 (48)第1课时合并同类项 (48)第2课时去括号 (50)5探索与表达规律 (53)第四章基本平面图形 (55)1线段、射线、直线 (55)2比较线段的长短 (57)3角 (60)4角的比较 (63)5多边形和圆的初步认识 (66)第五章一元一次方程 (69)1认识一元一次方程 (69)第1课时一元一次方程 (69)第2课时等式的基本性质 (71)2求解一元一次方程 (73)第1课时移项解一元一次方程 (73)第2课时去括号解一元一次方程 (75)第3课时去分母解一元一次方程 (77)3应用一元一次方程——水箱变高了 (78)4应用一元一次方程——打折销售 (80)5应用一元一次方程——“希望工程”义演 (82)6应用一元一次方程——追赶小明 (85)第六章数据的收集与整理 (88)1数据的收集 (88)2普查和抽样调查 (91)3数据的表示 (94)第1课时扇形统计图 (94)第2课时频数直方图 (96)4统计图的选择 (98)第一章丰富的图形世界1生活中的立体图形1.认识生活中常见的几何体.2.会指出一个棱柱的棱、侧棱、顶点、侧面、底面.3.能按照几何体的特征进行分类.重点直观认识规则的立体图形.难点正确识别立体图形,能对它们进行分类.一、情境导入课件出示教材第2页情境图,提出问题:(1)图中哪些物体的形状与你在小学学过的几何体类似?(2)找出图中与笔筒形状类似的物体.课件出示教材第2页中间的几种立体图形,提出问题:这些基本图形你熟悉吗?能说出它们的名称吗?学生思考后举手回答.二、探究新知1.认识棱柱(1)课件出示棱柱立体模型:教师:观察这个立体图形,分别指出它的顶点、侧面、棱、侧棱、底面,并说出它们的数量.学生讨论交流后举手回答,教师点评.这个棱柱有12个顶点,18条棱,6条侧棱,2个底面,6个侧面.教师:你能给这个棱柱命名吗?学生举手回答,教师点评.有12个顶点,6条侧棱,2个底面,6个侧面的棱柱体叫做六棱柱.人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……教师:棱柱的侧棱、底面、侧面分别有何特点?学生举手回答,教师点评.棱柱的特点:①所有侧棱长都相等;②上、下底面的形状大小完全相同;③侧面的形状都是平行四边形.教师:长方体、正方体是棱柱吗?学生举手回答,教师点评.(2)课件出示教材第3页图1-2,提出问题:①图中这两个棱柱体有什么不同?②分别说出图中各个棱柱体的棱、侧棱、面、侧面、顶点的个数.学生讨论回答,教师点评,并进一步讲解:棱柱可以分为直棱柱和斜棱柱.直棱柱的侧面是长方形;斜棱柱的侧面是平行四边形.本书只讨论直棱柱,简称棱柱.教师:请同学们分成小组思考并讨论棱柱与圆柱有什么异同点.学生讨论交流后,教师点评,并进一步讲解:棱柱与圆柱的相同点:都是柱体;都有上、下两个底面,都有侧面.不同点:①棱柱的底面是形状和大小完全相同的多边形,圆柱的底面是圆;②棱柱的侧面是长方形,圆柱的侧面是曲面;③棱柱有顶点,圆柱没有顶点.2.认识棱锥课件出示棱锥立体模型:教师:观察这个立体图形,请指出它的顶点、侧面、侧棱、底面.学生举手回答,教师点评.教师:这个图形有什么特点?如何给这个棱锥命名?学生回答,教师点评,并进一步讲解:棱锥的侧面是三角形,底面是多边形.棱柱有三棱柱、四棱柱、五棱柱、六棱柱等.棱锥也有三棱锥、四棱锥、五棱锥、六棱锥等.命名几棱锥体主要看底面图形,如:底面是三角形,就叫三棱锥.教师:棱锥跟圆锥有什么区别?学生:棱锥的底面是多边形;圆锥的底面是圆.3.圆锥与圆柱课件出示圆锥与圆柱的立体模型,提出问题:(1)圆柱、圆锥分别由几个面围成?(2)你能描述圆柱、圆锥的相同点和不同点吗?学生交流后回答问题,教师点评,并进一步讲解:圆柱由3个面围成,其中2个面是平的,1个面是曲的;圆锥由2个面围成,其中1个面是平的,1个面是曲的.圆柱与圆锥的相同点:底面都是圆,侧面都是曲面.不同点:圆柱有2个相同的底面,并且互相平行;圆锥只有一个底面.4.几何体的分类课件出示教材第4页习题1.1第3题,提出问题:观察上面的图形,如何将它们分类呢?学生举手回答,教师点评,并进一步讲解:立体图形的分类有两种:第一种,根据底面的个数分成三类,即柱体、锥体、球体.如图中的柱体有(1)(2)(4)(6)(7);椎体有(5);球体有(3).第二种,根据面的平曲分成两类.如图中含曲面的有(3)(4)(5);只含平面的有(1)(2)(6)(7).三、练习巩固教材第4页“随堂练习”第1,2题.四、小结1.生活中有哪些常见的立体图形?这些图形有什么特点?2.说说棱柱与圆柱的异同点,圆锥与棱锥的异同点,圆柱与圆锥的异同点.3.立体图形如何分类?五、课外作业教材第4~5页习题1.1第1,2,4,5题.立体图形与现实生活息息相关,它是更好地认识、描述生活空间的工具.在教学过程中,教师以提问的方式,引导学生自主学习,培养学生的自主学习能力,并运用理论与实际相结合的方法,采用模型及各种生活用品图片互相对比导入新的知识,加深了学生对立体图形的认识及理解,让学生体会到生活中处处有数学,数学知识与生活密不可分.同时调动了学习氛围,提高了学生的学习兴趣.2展开与折叠1.了解正方体、棱柱、圆柱、圆锥的侧面展开图,认识几何体展开前后各面之间的关系.2.认识立体图形与平面图形的关系,学会判断一个平面图形是否是一个立体图形的展开图.重点了解正方体、棱柱、圆柱、圆锥的侧面展开图.难点判断一个平面图形是否是一个立体图形的展开图.一、复习导入问题1:我们已经了解了棱柱,那么棱柱之间是否还有区别呢?问题2:如果有若干个几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?学生思考后举手回答,教师点评,并进一步讲解:通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.棱柱的特点:(1)棱柱的上、下底面是完全相同且互相平行的多边形.(2)棱柱的侧面都是平行四边形.(3)棱柱的侧棱长都相等.二、探究新知1.正方体的表面展开图教师:请同学们将事先准备好的立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,你能得到怎样的图形?学生动手操作完成后,有意挑选4个不同的展开图作为样本,然后给出正方体的表面展开图的定义:将正方体沿某些棱剪开后铺平,且六个面连在一起,这样的图形叫做正方体的表面展开图.教师:一个正方体的表面展开图共有几种情况?学生小组讨论交流后,请小组代表总结本组的情况,出示图形如下:教师:同学们表现得很好!通过探索,同学们能回答下面这两个问题吗?(1)正方体相对两个面在其展开图中的位置有什么关系?(2)正方体的几种展开图之间有什么关系?学生分小组讨论交流,并由代表发言,教师予以点评.2.棱柱的表面展开图教师:把从正方体学到的展开折叠知识,引用到棱柱中,能折成棱柱的平面图形的特征有哪些?(1)棱柱的底面边数=侧面数;(2)棱柱的两个底面要分别在侧面展开图的两端;(3)四棱柱的平面展开图中只有5条相连的棱.3.圆柱与圆锥的侧面展开图教师:圆柱与圆锥的侧面展开图又会是怎么样的呢?学生动手实验,并给出答案,教师点评.三、练习巩固1.教材第11页“随堂练习”第1,2题.2.下面是一个几何体的展开图,请根据要求回答问题:(1)如果A在几何体的下面,哪个字母会在上面?(2)如果F在前面,B在左面,哪个字母会在上面?(3)如果C在右面,D在后面,哪个字母会在上面?四、小结1.正方体的表面展开图有哪些?相对的两个面在展开图中的位置关系是什么?2.能折成棱柱的平面图形的特征有哪些?3.圆柱和圆锥的侧面展开图分别是什么?五、课外作业1.教材第9页习题1.3第2,3题.2.教材第11页习题1.4第1题.本节课内容对学生空间观念要求比较高,有较强的自我发展意识和挑战意识,部分学生会感到很困难.在教学过程中,要充分地相信学生,释放学生思维.让学生自己动手实践,能够更加形象地了解立体图形与平面图形的关系,深刻地掌握立体图形的特征.同时,让学生合作交流、探讨,培养学生团队合作精神.3截一个几何体1.经历截几何体的活动过程,了解一些几何体截面的形状.2.体会数学中面与体之间的转换过程,发展学生的空间观念.重点了解一些几何体截面的形状.难点从截几何体的活动中发现规律,并能用自己的语言表达出来.一、情境导入教师课件演示切截西瓜的过程,引导学生观察截面的产生.用一个平面去截一个几何体,截出的面叫做截面.学生通过观察切西瓜的过程感知几何体与截面的关系.二、探究新知1.截正方体(1)教师:用一个平面去截一个正方体,所得到的截面会是什么形状呢?学生分组讨论、合作交流,猜测用一个平面截一个正方体所得截面的形状可能有:三角形、正方形、长方形、梯形等.鼓励学生积极发言.(2)教师:请同学们以小组的形式,来截手中的正方体模型,验证自己的猜想.教师在学生操作活动中巡视指导,参与到学生的讨论与交流中,鼓励学生在小组中大胆发表自己的见解.全班实物切截活动结束后,教师鼓励各个小组请代表发言.选取一些小组让他们进行演示说明,并积极肯定他们的做法.教师课件演示截正方体的几种方式:(3)教师:通过刚才的课件动态演示,你能得到什么规律吗?学生:用一个平面去截一个正方体,所得截面是由这个平面与正方体的若干个面相交得到的结果.若与三个面相交得三条交线,由这三条交线构成的截面图形是三角形;若与四个面相交,则截面是四边形……各小组请代表发言,说出他们所观察到的截面的各种形状产生、变化的过程,用自己的语言说明产生不同形状的截面的原因,积极肯定学生的正确推理.2.截圆柱与圆锥教师:用圆柱体的木料能否做出如下形状的平面材料?学生先自己思考,再和同桌交流,猜测可能的图形,然后画出图形,最后教师展示学生的作品.教师课件演示圆柱体与圆锥体的截面情况.(1)圆柱体的截面:(2)圆锥体的截面:利用课件演示截圆柱、圆锥的过程,进一步验证学生的结论,深化学生对截一个几何体所产生截面形状的直观感受.三、练习巩固1.教材第14页“随堂练习”第1,2题.2.如图,用一个平面分别去截下列几何体,所得截面与其他三个不同的是( )四、小结1.什么叫截面?2.正方体的截面形状有哪些?圆柱、圆锥和球呢?五、课外作业教材第15页习题1.5第2,3题.本节课是在学生认识了生活中的立体图形,经历了图形的展开与折叠的基础上,让学生经历截几何体的活动过程,体会几何体在截的过程中的变化.在教学过程中,先让学生充分想象用一个平面去截一个几何体所得的截面是什么形状,再让学生实际动手操作,验证想象的结果与实际结果是否一致.学生在这一过程中,丰富了几何直觉和数学活动经验,发展了学生的空间观念.同时,以小组合作交流的方式,提高学生的团队合作能力.4从三个方向看物体的形状1.会画从正面、左面、上面看到的几何体的形状图.2.从不同方向观察物体,发展学生的空间观念,能合理、清晰地表达自己的思维过程.重点会画从正面、左面、上面看到的几何体的形状图.难点根据从上面看到的形状图及其相应位置的立方块的数量,画出从正面、左面看到的形状图.一、情境导入课件出示庐山风景图,使学生切身感受从不同的方向看到的物体是不同的.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这首苏东坡的诗表现了观察庐山的几种方式:横看、侧看、远看、近看、身处山中看.从不同方向观察庐山可看成“峰”,也可看成“岭”.那么从不同方向看几何体又能看到什么呢?这节课我们就来学习从不同方向看物体的形状.二、探究新知1.观察实物教师在讲台上摆放乒乓球、热水瓶、玻璃杯.教师:讲台上有乒乓球、热水瓶、玻璃杯三样物品,现在请三位学生分别站在讲台的左面、右面和正面观察它们.这三样物品从不同的方向看到的图形会一样吗?三位学生分别站在讲台的左面、右面和正面观察,其余学生想象可能看到的图形.然后让三位学生分别叙述自己所看到的图形.教师点评,并进一步讲解.2.观察几何体课件出示教材第16页图1-18,提出问题:请同学们分别画出从正面、左面、上面看到的几何体的形状图.学生动手画图,教师巡视.学生完成后举手展示所画的形状图,教师点评,并进一步讲解:画从正面、左面、上面看到的几何体的形状图的方法:(1)先确定几列(几列就横排连续画几个正方形);(2)再确定每列最高有几层(几层就竖排连续画几个正方形).课件出示教材第17页图1-20,提出问题:一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这几个几何体的形状如图所示,请搭出满足条件的几何体.学生动手操作,教师巡视指导,并引导学生思考:你搭的几何体由几个小立方块构成.三、练习巩固1.教材第17页“随堂练习”.2.如图,请画出下列几何体从正面、左面、上面看到的形状图.四、小结1.从不同的方向观察同一物体,看到的图形一样吗?2.画从正面、左面、上面看到的几何体的形状图的方法是什么?五、课外作业教材第17~18页习题1.6第1,2题.本节课的内容是从三个方向看物体的形状.在教学过程中,教师把实物模型、教具或多媒体课件演示给学生看,使学生直观、具体、形象地感知图形.引导学生从不同的角度观察几何体,并得到从不同方向看物体的形状的画法,能识别从不同方向观察物体所得到的图形.组织学生主动参与、勤于动手、积极思考,使他们在自主探索与合作交流的过程中真正理解和掌握本节课的内容.第二章有理数及其运算1有理数1.进一步认识负数,会用正负数表示具有相反意义的量.2.理解有理数的概念,会辨别一个数是否为有理数.3.能够对有理数进行简单的分类.重点会用正负数表示具有相反意义的量,了解有理数的概念及分类.难点明确有理数的分类标准,区分有理数.一、复习导入问题1:在生活中,我们经常遇到用负数表示的量,你能说出一些例子吗?问题2:有了负数,数的运算与过去相比有什么区别和联系?教师提出问题,学生交流讨论后举手回答.二、探究新知1.用正负数表示相反意义的量课件出示问题:如何用数学语言来表示下列数据:(1)零上3 ℃和零下12 ℃;(2)收入800元和支出500元;(3)增加5 kg 和减少2 kg ; (4)水位升高0.5 m 和降低1.3 m .教师提出问题,学生讨论交流后回答问题.老师判断对错,并进一步讲解:一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,用正数表示.而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的,用负数表示.2.有理数的概念及分类 课件出示填空题:(1)像5,1.2,12,…这样的数叫做________,它们都比________大;(2)在正数前面加上“-”号的数叫做________,如-10,-3等,它们都比________小;(3)0既不是________,也不是________.0是________和________的分界点,0是________数,也是________数,也是________数.学生举手回答,教师点评,并进一步讲解:理解正数和负数时需要注意的问题:①对于正数和负数的意义,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数;②负数是在正数前面加上一个“-”号,如-5,-(+7)等都是负数,负数中的“-”号不能省略,如-5省略“-”号就是5,变成正数了;③0既不是正数,也不是负数.教师:试将以前学过的所有的数进行分类,并与同桌进行交流. 学生讨论交流后,教师点评,并进一步讲解: 整数与分数统称为有理数. 有理数的分类: (1)按符号分:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数(2)按定义分:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数三、练习巩固教材第25页“随堂练习”第1,2题.四、小结1.通过这节课的学习,你学到了什么?2.什么是有理数?有理数是怎么分类的?五、课外作业教材第26页习题2.1第2,3题.本节课是有理数全章的第一节,为以后“数”的学习奠定基础.学生在日常生活中已经有用正负数表示量的经验,但是体会它们的意义却是首次.在教学过程中,教师通过提问等方式,引导学生自主探究正负数的意义及有理数的概念和分类.体现教师的导向作用和学生的主体地位.把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲,为学生提供足够的时间和空间,帮助学生主动探究,鼓励学生表达与交流,使学生轻松、愉快地学习,不断克服学习中的被动情况.2数轴1.认识数轴,能根据构成数轴的三个要素正确画出数轴.2.能将有理数用数轴上的点表示出来;探索有理数与数轴上的点的对应关系,并利用数轴比较有理数的大小.重点认识数轴,并能正确画出数轴.难点将有理数用数轴上的点表示出来,能用数轴比较有理数的大小.一、情境导入教师:我们在小学学习数学时,就能用直线上依次排列的点来表示自然数,它帮助我们认识了自然数的大小关系.教师:能不能用直线上的点表示正数、零和负数?从温度计上能否得到启发呢?让学生尝试用直线上的点来表示2,3,-1,0.教师:用直线上的点能不能表示有理数?为什么?学生讨论完成后,教师指出:这就是我们本节课所要学习的内容——数轴.二、探究新知1.数轴的概念课件出示教材第27页温度计的图,提出问题:(1)图中温度计上显示的温度各是多少?你为什么能准确地说出每一个度数?(2)你能借鉴温度计,用一条直线上的点表示有理数吗?学生分小组讨论交流完毕后,举手分享讨论结果,教师点评,并进一步讲解:画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就可以得到数轴.2.画数轴教师:根据观察温度计所给的启示,我们来画一条数轴,你们会画吗?学生独立完成后,教师点评,并进一步讲解:数轴具体画法:画一条直线(通常画成水平位置),在这条直线上任取一点作为原点,用这点表示0.规定直线上从原点向右为正方向,画上箭头,而相反方向为负方向.再选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次标上1,2,3…;从原点向左,每隔一个单位长度取一点,依次标上-1,-2,-3…画数轴时,需要注意数轴的三要素:原点、正方向、单位长度,它们缺一不可.三、举例分析例1 数轴上A,B,C,D各点分别表示什么数?学生举手回答,教师讲评.例2 画出数轴,并用数轴上的点表示下列各数:3 2,-3.5,0,5,-4,-32.学生独立完成,教师讲评.教师:经过对例题的研究,画出的数轴有哪些特点?学生小组讨论交流后,分享结果,教师点评,并进一步讲解:任何一个有理数都可以用数轴上的一个点来表示,注意分数(或特殊数)在数轴上的表示.数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数.四、练习巩固1.教材第28页“做一做”.2.教材第29页“随堂练习”.3.下列图形是数轴的是( ).五、小结1.数轴的定义是什么?如何画数轴? 2.数轴有哪些特点?3.通过本节课的学习,你还有哪些收获?又有什么疑问?五、课外作业教材第29页习题2.2第1,3,4题.学生在小学里学习过数与点的对应关系,上一节课又学习了有理数的概念,为数轴概念的建立和进一步学习数轴上的点与有理数的对应关系积累必要的学习经验.在教学过程中,运用日常生活中常见的实物——温度计作为模板学习数轴,使学生更直接形象地理解数轴的概念.同时,让学生动手实践,提高学生的动手能力.但课堂上的气氛不够活跃,可以多设几个活动内容,以调动课堂氛围,提高学生学习的兴趣.3 绝对值1.了解相反数的概念,会求一个数的相反数. 2.理解绝对值的含义,会求一个数的绝对值. 3.会利用绝对值比较两个负数的大小.重点理解绝对值的含义,会求一个数的绝对值. 难点能利用绝对值比较两个负数的大小.一、情境导入教师:3与-3有什么相同点?32与-32,5与-5呢?学生:每组数中的两个数只有符号不同.教师:对!像这样,如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地,0的相反数是0.二、探究新知1.绝对值的定义教师:将上面三组数用数轴上的点表示出来,每组数对应的点,在数轴上有什么关系?学生小组讨论交流,教师点评,并进一步讲解:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如,+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.教师:想一想,互为相反数的两个数的绝对值有什么关系?学生思考后举手回答,教师点评.2.绝对值的性质课件出示填空题:|5|=________;|-5|=________;|+7|=________;|-7|=________;|4|=________;|-4|=________;|+1.7|=________;|-1.7|=________;|0|=________.让学生完成填空,并提出问题:同学们能从中得到什么规律吗?教师引导学生思考:通过对具体数的绝对值的讨论,观察正数的绝对值有什么特点,负数的绝对值有什么特点.学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)负数的绝对值是它的相反数;(3)0的绝对值是0.即:若a>0,则|a|=a;若a<0,则|a|=-a;若a=0,则|a|=0.总结:由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.3.利用绝对值比较两个负数的大小教师:利用数轴我们已经会比较有理数的大小了,同学们试比较-8和-3的大小.学生完成后举手回答.教师:我们能否用今天所学的绝对值来比较这两个数的大小呢?。

最新北师大版七年级上册数学全册优质公开课学案

最新北师大版七年级上册数学全册优质公开课学案

1.1 生活中的立体图形---------知识与技能的某些特征。

----------过程与方法经历从现实世界中抽象出图形的过程,通过丰富的生活实例,进一步认识立体图形的形状及结构特征---------情感、态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功本节的重点是认识常见的几何体,并用语言描述它们的某些特征,了解点、线、,在中学阶段,常见的几何体是重要的研究对象,是中考内容之一,同学们应结合具体的实例来认识并了解他们的特征.本节难点是对几何体的分类,因为初中同学对分类标准不熟悉,所以同学们可从某些几何体的特征入手,找出共同特征作为一类.在学习中注意两点:①多与现实生活联系⑵多动手制作实践或画图1.你学过长方体,正方体吗?画出其立体图形,并描述一下它的形状组成.长方体立方体2.长方体\立方体都是几何体,你平常在生活中还见过那些几何体?讨论并答出:圆柱\棱柱\圆锥\棱锥\圆台\棱台\球.试一试:描述它们的形状特征------自主学习(出示挂图)1.看书思考;p1---42.问题导学:①试一试,把挂图中的几何体分类②议一议,描述棱柱与圆柱的相同点和不同点-------合作交流①学生发表见解②自主思考, p4想一想联系实例:饮水机\蒙古包,分析多个几何体构成的物体结构.-------归纳总结----柱体---圆柱\棱柱几何体------ ---- 锥体---圆锥\棱锥----球体-------例题解析1.下列图形中那些是柱体?2.引导:⑴按柱、锥、球分⑵按组成几何体的面的平曲分⑶按有没有顶点分---------当堂训练1. p4随堂练习2.习题1.1 1----3题-----------学习笔记本节课你得到了那些知识?学习了那些方法?课下训练1.下面几种图形①三角形、②长方形③正方体、④圆⑤圆锥⑥圆柱。

其中属于立体图形的是()。

A.③、⑤、⑥B.①、⑵、③.C.③、⑥。

北师大版七年级上册数学教案(精选5篇)

北师大版七年级上册数学教案(精选5篇)

北师大版七年级上册数学教案(精选5篇)北师大版七班级上册数学教案精选篇1教学目标1、学问:熟悉简洁的空间几何棱柱、圆柱、圆锥、球等,把握其中的相同之处和不同之处2、力量:通过比较,学会观看物体间的特征,体会几何体间的联系和区分,并能依据几何体的特征,对其进行简洁分类。

3、情感:有意识地引导同学乐观参加到数学活动过程中,培育与他人合作沟通的力量。

教学重点:熟悉一些基本的几何体,并能描述这些几何体的特征教学难点:描述几何体的特征,对几何体进行分类。

教学过程:一、设疑自探1.创设情景,导入新课在学校的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?2.同学设疑让同学自己先思索再提问3.老师整理并出示自探题目①生活常见的几何体有那些?②这些几何体有什么特征③圆柱体与棱柱体有什么的相同之处和不同之处④圆柱体与圆锥体有什么的相同之处和不同之处⑤棱柱的分类⑥几何体的分类4.同学自探(并有简明的自学方法指导)举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?说说它们的区分二、解疑合探1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的熟悉不彻底进行再探2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类2.活动原则:学困生回答,中等生补充、优等生评价,老师引领点拨提升总结。

三、质疑再探:说说你还有什么怀疑或问题(由同学或老师来解答所提出的问题)四、运用拓展:1.引导同学自编习题。

请结合本节所学的学问举例说明生活简洁基本的几何体,并说说其特征2.老师出示运用拓展题。

(要依据教材内容尽可能要试题类型全面且有代表性)3.课堂小结4.作业布置五、教后反思北师大版七班级上册数学教案精选篇2一、教学目标:通过观看生活中的大量物体,熟悉基本的几何体。

经过比较不同的物体学会观看物体间的不同特征,体会几何体间的联系与区分。

二、教学过程:1、引入:(1)幻灯投影P2的彩图,利用现实生活的背景让同学说出熟识的几何体(如球体、长方体、正方体等) (2)展出圆柱、圆锥、正方体、棱柱、球的模型,让同学分别说出这几种几何体的名称。

北师大版七年级数学上册全册导学案教案

北师大版七年级数学上册全册导学案教案

第一章丰富的图形世界导学案第一节生活中的立体图形【学习目标】1.经历从现实世界中抽象出形象的过程,感受图形世界的丰富多彩。

2.在具体情境中,认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。

3.通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系。

4.在对图形进行观察、操作等活动中,积累处理图形的经验,发展空间观念。

【学习方法】自主探究与合作交流相结合【学习重难点】重点:认识常见的几何体的基本元素,了解棱柱的一些基本概念及其某些特性。

难点:用语言描述常见几何体的某些特征及对几何体的分类。

【学习过程】模块一预习反馈一、学习准备1.在小学学习了的立体图形有2.长方体有____个面,每一个面都是_______,正方体有____个面,每一个面都是__________ 长方体的表面积=_________________________,长方体的体积=_________________________ 正方体的表面积=_________________________,正方体的体积=_________________________3.阅读教材:p2—p6第1节《生活中的立体图形》,并完成随堂练习和习题二、教材精读4.写出下列几何体的名称____________________________________________________________________________ 5.棱柱的有关概念及其重要特点:(1)棱柱的有关概念:在棱柱中,相邻两个面的交线叫做;相邻两个侧面的交线叫做。

(2)棱柱的三个特征:一是棱柱的所有侧棱长都;二是棱柱的上下底面的形状,都是形;三是侧面都是形。

(3)棱柱的分类:根据底面多边形的将棱柱分为、、、……;它们的底面分别是、、……。

(4)棱柱中的元素之间的关系:底面多边形的边数n,可确定该棱柱是棱柱,它有个顶点,条棱,其中有条侧棱,有个面,个侧面实践练习:请你按适当的标准对下列几何体进行分类。

新北师大版七年级数学(上)有理数---导学案(详尽版)

新北师大版七年级数学(上)有理数---导学案(详尽版)

1.有理数一、学习目标〔1〕借助生活中的实例,理解有理数的含义,体会负数引入的必要性和有理书应用的广泛性.〔2〕会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量.二、重点难点重点:认识负数及有理数的分类。

难点:有理数的分类及如何表示生活中具相反意义的量。

三、学法指导指导学生自学、合作探究例题、指导学生独立完成课堂检测。

四、学导过程 〔一〕自主学习用小学学过的数能表示右边的温度吗. 〔二〕合作交流根据课本第23页计算某班二个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进展小组合作讨论.得出新知后,利用新的知识完成表格。

现在我们用带有“+〞号和“-〞号的数表示各队的得分情况,试完成下表答对题的得分 答错题的得分 未答复题的得分 第一队 第二队例1零上5ºC 零下5ºC新北师大版七年级数学〔上〕导学案(1)某大米包装袋上标注着“净含量:10kg±150g〞这里的“10kg±150g〞表示什么.(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?(4)如果向东运动4m记作+4m,那么向西运动7m应记作什么.假设在原地不动又记作什么.〔三〕课堂检测1、填空题〔1〕如果零上5℃记作+5 ℃,那么零下3 ℃记作______________.〔2〕东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示___________,物体原地不动记作________。

〔3〕某仓库运进面粉7.5吨,那么运出3.8吨应记作_______________。

2、+1350米表示高于海平面1350米,低于海平面200米,记作.3、如果上升10米记作+10米,那么下降12米,记作.4、如果规定向西走30米记作+30米,那么-40米,表示.5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.把以下数分别填在对应的括号:13,-0.5,2.7,123,0,2/5 ,-4,7/4 .〔1〕分数〔〕;〔2〕负整数〔〕;〔3〕正分数〔〕;〔4〕有理数〔〕.8、以下各数中,哪些是正整数.哪些是负整数.哪些是正分数.哪些是负分数.哪些是正数.哪些是负数.7,-9.25,-9/10,-301,4/27,31.25,7/15,-3.59、请举出3对具有相反意义的量,并分别用正、负数表示.10、在4个不同时刻,对同一水池中的水位进展测量,记录如下:上升3厘米,下降6厘米,下降1厘米,不升不降,如果上升3厘米记为+3厘米,那么其余3个记录怎样表示.11、〔1〕如果节约20千瓦·时电记作+20千瓦·时,那么浪费10千瓦·时电记作什么.〔2〕如果-20.50元表示赔本20.50元,那么+100.57元表示什么?〔3〕如果+20%表示增加20%,那么-6%表示什么.99国债(3)__________;01债券________;01三峡债券___________.13、某厂方案每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,你能正、负数表示该厂每天的超产量吗.14、.去超市买食品时经常看到包装袋上写着净重150g±5g.这里表示什么意思.〔四〕课堂小结小组交流讨论回忆本节课的学习过程,交流完毕后由学生对本节课的容进展总结.1、正数与负数都来自于实际生活;用正、负数可以表示实际问题中具有相反意义的量,例如…2、小学里学过的数除0外都是正数;正数前面添上“-〞号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限。

七年级数学上册相反数学案1北师大版

七年级数学上册相反数学案1北师大版

相反数(预习显现课)组别:第组号 姓名:学习目标: 1.知道数轴上两点对于原点对称的见解,并会找一点对于原点的对称点.2.记着相反 数的见解. 3 .会求一个数的相反数.一、学一学:A C DE F B1 . 如图 1 数轴上的点A 所对应的数是,-4 -3 -2 -10 1 2 3 45点 A 到原点的距离是.点 B 所对1 图应的数是,点 B 到原点的距离是 .点 A 与点 B 可否对于原点对称?A答:.再说出两对对于原点对称的-4 -3 -2-11 2 3 4 5点 和 , 和 ,他们所对应的数分别是和 ,和。

图 22 .如图2 数轴上点 A 对应的数是,点 A 对于原点的对称点所对应的数是.数轴上点 E 、 F 对于原点对称,若点 E 对应 的数是 ,则点 F 所对应的数是,若点 F 对应的数是0.5 ,则点 E 所对应的数是, 若点 E 对应的数是 0,则点 F 所对应的数是.概括总结:设 a 是一个正数,数轴上与原点距离是a 的点有 两个,分别在原点左右表示 -a 和 a ,我们说这两点 对于原点对称 。

像 4 和 4 、和2.5 、和、和,它们 只有符号不同样,则这样的数叫做互为相反数,0的相反数是0.请你再举几个例子:例如.二、练一练:(1) 0 的相反数是 . 3 的相反数是,6 的相反数是,的相反数是.1的的相反数是, 的相反数是,数 a 的相反数是.-5即求一个数的相反数就是在这个数前面加上一个“-” ,新的数就表示原数的相反数.如:求 6 的相反数,即 6 的相反数是6 ,也就是 (6) 6.(2)求 2.的相反数,即3(3)求b 的相反数,即.(4) m 的相反数是 ; -a 的相反数是; m+3的相反数是.三、议一议:(--7)-01. (-+7)的相反数; 的相反数; 是 的相反数 .是 是2. 若是 a=-a ,那么表示数 a 的点在数轴上的什么地点?a=.3. 互为相反数的两个数在数轴上所对应的点拥有怎样的关系?答.4. 一 个数的相反数大于它自己, 那么 , 这个数是.一个数的相反数等于它自己,这个数是,一个数的相反数小于它自己, 这个数是.四、知识商场:1.- 2 的相反数是,0.5 的相反数是, 0 的相反数是。

北师大版七年级上册数学全册学案设计

北师大版七年级上册数学全册学案设计

1.1 生活中的立体图形---------知识与技能在具体的情景中认识圆柱、圆锥、长方体、正方体、棱柱、球,并能用自己的语言描述它们的某些特征。

----------过程与方法经历从现实世界中抽象出图形的过程,通过丰富的生活实例,进一步认识立体图形的形状及结构特征---------情感、态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,并敢于表现自己,丰富学习数学的成功体验,激发对空间与图形的好奇心。

本节的重点是认识常见的几何体,并用语言描述它们的某些特征,了解点、线、面及其之间的关系,在中学阶段,常见的几何体是重要的研究对象,是中考内容之一,同学们应结合具体的实例来认识并了解他们的特征.本节难点是对几何体的分类,因为初中同学对分类标准不熟悉,所以同学们可从某些几何体的特征入手,找出共同特征作为一类.在学习中注意两点:①多与现实生活联系⑵多动手制作实践或画图--------前置准备1.你学过长方体,正方体吗?画出其立体图形,并描述一下它的形状组成.长方体立方体2.长方体\立方体都是几何体,你平常在生活中还见过那些几何体?讨论并答出:圆柱\棱柱\圆锥\棱锥\圆台\棱台\球.试一试:描述它们的形状特征------自主学习(出示挂图)1.看书思考;p1---42.问题导学:①试一试,把挂图中的几何体分类②议一议,描述棱柱与圆柱的相同点和不同点-------合作交流①学生发表见解②自主思考, p4想一想联系实例:饮水机\蒙古包,分析多个几何体构成的物体结构.-------归纳总结----柱体---圆柱\棱柱几何体------ ---- 锥体---圆锥\棱锥----球体-------例题解析1.下列图形中那些是柱体?1. p4随堂练习2.习题1.1 1----3题-----------学习笔记本节课你得到了那些知识?学习了那些方法?课下训练1.下面几种图形①三角形、②长方形③正方体、④圆⑤圆锥⑥圆柱。

北师大初一上册数学教案

北师大初一上册数学教案

北师大初一上册数学教案以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的详细设计和支配的一种有用性教学文书。

下面是我给大家整理的北师大初一上册数学教案,仅供参考盼望能够关心到大家。

北师大初一上册数学教案1教学目标1,把握相反数的概念,进一步理解数轴上的点与数的对应关系;2,通过归纳相反数在数轴上所表示的点的特征,培育归纳力量;3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特征学问重点相反数的概念教学过程(师生活动)设计理念设置情境引入课题问题1:请将以下4个数分成两类,并说出为什么要这样分类4,2,5,+2允许同学有不同的分法,只要能说出道理,都要难予鼓舞,但老师要做适当的引导,渐渐得出5和5,+2和2分别归类是具有较特征的分法。

(引导同学观看与原点的距离)思索结论:教科书第13页的思索再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。

以开放的形式创设情境,以同学进行商量,并培育分类的力量培育同学的观看与归纳力量,渗透数形思想深化主题提炼定义给出相反数的定义问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?同学思索商量沟通,老师归纳总结。

规律:一般地,数a的相反数可以表示为a思索:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做预备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义给出规律解决问题问题3:(+5)和(5)分别表示什么意思?你能化简它们吗?同学沟通。

分别表示+5和5的相反数是5和+5练一练:教科书第14页其次个练习利用相反数的概念得出求一个数的相反数的方法小结与作业课堂小结1,相反数的定义2,互为相反数的数在数轴上表示的点的特征3,怎样求一个数的相反数?怎样表示一个数的相反数?本课作业1,必做题教科书第18页习题1.2第3题2,选做题老师自行支配本课教育评注(课堂设计理念,实际教学效果及改良设想) 1,相反数的概念使有理数的各个运算法则简单表述,也揭示了两个特别数的特征.这两个特别数在数量上具有相同的肯定值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义绽开,渗透数形结合的思想.2,教学引人以开放式的问题人手,培育同学的分类和发散思维的力量;把数在数轴上表示出来并观看它们的特征,在复习数轴学问的同时,渗透了数形结合的数学方法,数与形的互相转化也能加深对相反数概念的理解;问题2能关心同学精确把握相反数的概念;问题3事实上给出了求一个数的相反数的方法.3,本教学设计表达了新课标的教学理念,同学在老师的引导下进行自主学习,自主探究,观看归纳,重视同学的思维过程,并给同学留有发挥的余地.北师大初一上册数学教案2教学目标1,把握数轴的概念,理解数轴上的点和有理数的对应关系;2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会依据数轴上的点读出所表示的有理数;3,感受在特定的条件下数与形是可以互相转化的,体验生活中的数学。

北师大版七年级上册数学学案

北师大版七年级上册数学学案

第一课时 §1.1 生活中的立体图形一、学习目标:1、通过观察生活中的大量物体,认识根本的几何体。

2、经过比拟不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。

3、进一步认识点、线、面、体,感受点、线、面、体之间的关系;4、通过观察、操作等实践活动,进一步开展学生的空间观念;学习重点:1、在具体的情境中,认识一些根本的几何体,并能描述这些几何体的特征。

2、认识点、线、面、体,感受点、线、面、体之间的关系学习难点:1、是描述几何体的特征,对几何体进展分类。

2、认识点、线、面、体,感受点、线、面、体之间的关系二、自学导引自学检测:1、画出在小学的时候学习的平面图形和几何图形,并将它们分类,说出分类的标准和理由。

——————————————————————————————————————2、在生活你还见到那些几何体? 三、典例精析1、指出以下几何体的名称2、讨论并填写下表:①生活常见的几何体有那些? ②这些几何体有什么特征 ③圆柱体与圆锥体有什么的一样之处和不同之处 ④圆柱体与棱柱体有什么的一样之处和不同之处? ⑤棱柱的分类 ;⑥几何体的分类〔1〕正方体是由_____个面围成的;圆柱是由______个面围成的;它们都是平的吗?〔2〕圆柱的侧面和底面相交成_____条线?它们是直的还是曲的?〔3〕正方体有______个顶点?经过每个顶点有______条边?〔4〕图形是由______ _______ _______构成的。

〔5〕面与面相交得到______,线与线相交得到______。

四、随堂演练:1、用笔点一点,让点动起来,然后把你得到的图形平移,观察图形。

2、想象以下平面图形绕轴旋转一周,可以得到哪些立体图形?〔1〕〔2〕〔3〕〔4〕〔5〕 a b c d e总结:点动成,线动成,动成体。

3、你能举出更多反映“点动成线,线动成面,面动成体〞的例子吗?五、本节课你有那些收获?跟大家分享吧:六、练习设计自己动手用一白纸经过裁剪围一个三棱柱〔不必粘贴〕,再围一个四棱柱、正方体及一个五棱柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时 §1.1 生活中的立体图形一、学习目标:1、通过观察生活中的大量物体,认识基本的几何体。

2、经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。

3、进一步认识点、线、面、体,感受点、线、面、体之间的关系;4、通过观察、操作等实践活动,进一步发展学生的空间观念;学习重点:1、在具体的情境中,认识一些基本的几何体,并能描述这些几何体的特征。

2、认识点、线、面、体,感受点、线、面、体之间的关系学习难点:1、是描述几何体的特征,对几何体进行分类。

2、认识点、线、面、体,感受点、线、面、体之间的关系二、自学导引自学检测:1、画出在小学的时候学习的平面图形和几何图形,并将它们分类,说出分类的标准和理由。

—————— ——————— —————— —————— —————— ———————2、在生活你还见到那些几何体? 三、典例精析1、指出下列几何体的名称2、讨论并填写下表:①生活常见的几何体有那些? ②这些几何体有什么特征 ③圆柱体与圆锥体有什么的相同之处和不同之处 ④圆柱体与棱柱体有什么的相同之处和不同之处? ⑤棱柱的分类 ;⑥几何体的分类3、小组活动,讨论并交流下列问题及其解答:(对比观察,理解相关性质)(1)正方体是由个面围成的;圆柱是由个面围成的;它们都是平的吗?(2)圆柱的侧面和底面相交成条线?它们是直的还是曲的?(3)正方体有个顶点?经过每个顶点有条边?(4)图形是由构成的。

(5)面与面相交得到,线与线相交得到。

四、随堂演练:1、用笔点一点,让点动起来,然后把你得到的图形平移,观察图形。

2、想象下列平面图形绕轴旋转一周,可以得到哪些立体图形?(1)(2)(3)(4)(5) a b c d e总结:点动成,线动成,动成体。

3、你能举出更多反映“点动成线,线动成面,面动成体”的例子吗?五、本节课你有那些收获?跟大家分享吧:六、练习设计自己动手用一张白纸经过裁剪围一个三棱柱(不必粘贴),再围一个四棱柱、正方体及一个五棱柱。

(注意:可先找一些实物研究)第2课时§1.2展开和折叠一、教学目标1、通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;能认识棱柱的某些特性;能根据展开图判断和制作简单的立体模型。

2、经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验;在动手实践制作的过程中学会与人合作,学会交流自己的思维与方法。

3、了解立体图形可由平面图形围成,立体图形可展开为平面图形;了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;4、通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉。

重点:1、通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图;能认识棱柱的某些特性2、认识正方体的表面展开图。

难点:经历展开与折叠、模型制作等活动,发展空间观念二、典例精析1、动手操作、认识棱柱:拿出你们做好的三棱柱、四棱柱、五棱柱,观察并回答问题:(1)请学生从围成这个棱柱的各个面(底面、侧面)以及棱的角度看看棱柱有哪些特点。

(2)请同学们分小组讨论一下棱柱的特征,完成下表(3)既然都是正方体,为什么剪出的平面图形会不一样呢?(4)一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?3、展开下列几何体的表面三、随堂演练:1、下图⑴、⑵、⑶分别是、、、的展开图.⑴ ⑵ ⑶2、贴出一个正方体的展开图。

面A 、面B 、面C 的对面各是哪个面?3、下面平面图形能折成正方体吗?4、下面的图形中,是三棱柱的侧面展开图的为( )A .B .C .D .4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( ) .(A) (B)(C) (D)5.图3的展开图是( )四、本节课你有那些收获?跟大家分享吧:F E D C B A无盖M M M M图3A. B. C. D.第3课时§1.3截一个几何体一、教学目标1、让学生通过自己对一些几何体进行切和截的过程,初步了解空间图形与截面的关系,理解截面的意义.2、使学生经历观察用平面截一个正方体,猜想截面的形状,实际操作、验证,推理等数学活动过程,丰富学生对空间图形的几何直觉,激发学生的形象思维.教学重点:引导学生参与用一个平面截一个正方体的数学活动,体会截面和几何体的关系,学生充分动手操作、自主探索、合作交流.教学难点:同一几何体不同角度切截所得截面的不同形状的想象与截法,从切截活动中发现规律,并能用自己的语言来表达,能应用规律来解决问题,培养说理、交流的能力二、典例精析1、做一做(1)想一想:用一个平面去截正方体,想一想截出的面可能是什么形状?分小组讨论。

(2)做一做:拿出准备的正方体,学生分小组验证刚才的想象(3)注意事项与效果:①先商定如何切割?②想象切割后的几何体和截面分别是什么形状?可在草稿上描出草图,并指定专人执笔,作好记载.③切开实物,进行对比.④通过实验回答:用平面去截一个正方体,其截面可以是三角形?梯形?四边形,六边形,七边形吗?2、一个几何体被平面所截后,得到一个圆形,则原几何体可能是什么形状?如果是三角形呢?3、探究题:用平面去截一个棱柱,你能得到哪几种平面图形?三、随堂演练1.用平面去截一个几何体,若截面形状是圆,则原几何体一定不是().A、三棱柱B、圆柱C、球D、圆锥2.指出图中几何体截面的形状是()A B C D3.一个正方体截去一个角后,余下几何体的棱有条四、本节课你有那些收获?跟大家分享吧第4课时 §1.4从不同方向看一、教学目标1、能识别简单物体的三视图,会画立方体及其简单组合的三视图,能根据三视图描述基本几何体或实物原形。

2、经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象;在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;让学生学会用自己的语言、合理清晰地向别人表述自己的思维过程,能画出简单组合物体的三视图。

3、能够熟练地画立方体及其简单组合体的三种视图。

4、会根据俯视图及其相应位置的立方体的数量,画出其主视图与左视图。

教学重点:脱离模型,画出相应的视图教学难点:根据俯视图及其相应位置的立方体的数量,画出主视图与左视图。

二、典例精析例1、画出如同所示的正方体和圆柱体的三视图。

例2、下图是两个立体图形的三视图,请你根据视图说出几何体的名称:例3、画出下面几何体的三视图:例4、如同所示是n 个小正方体搭成的几何体的俯视图,请画出它的主视图和左视图(1) (2) 例5、探究与思考下图是用大小一样的正方体搭成的某个几何体的俯视图和主视图, (1)这样的几何体是否唯一?(2)若不唯一,那么搭这样的几何体最少要几块小正方体? 最多要几块小正方体?俯视图左视图主视图俯视图左视图主视图243231俯视图 主视图三、随堂演练 画一画1. 下面是由五块积木搭成的,这几块积木都是相同的正方体.请你画出这个图形的主视图、左视图、俯视图.2. 如图是由几个小正方体块积木搭成的几何体俯视图,小正方形中的数字表示该位置的小正方体块的个数.请你画出这个图形的主视图、左视图.3.(10菏泽)如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )4.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个立方块,最多要个立方块.5.如图是由一些相同的小正方体构成几何体的三种视图,那么构成这个几何体的小正方体有 ( )A 、4个B 、5个C 、6个D 、无法确定 四、本节课你有那些收获?跟大家分享吧第5课时 §1.5生活中的平面图形1 312 1A .B .C .D .1 2 3 1 俯视图左视图主视图一、教学目标1、经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富图形.(知识技能)2、在具体的情境中认识多边形、扇形,培养学生的观察与概括能力.(能力培养)3、在丰富的活动中发展有条理的思考,培养学生的探究能力、合作精神、创新意识.(情感态度)教学重点:经历从现实世界中抽象出平面图形的过程,在具体的情境中认识多边形、扇形。

教学难点:探索分割平面图形的一些规律,感受图形世界的丰富图形,养成把数学应用于生活实际问题的习惯二、典例精析例1、从一个七边形的某个顶点出发,分别连结这个点和其余各顶点,可以把这个七边形分割成多少个三角形?想一想,在画一画,如果是五边形、十二边形呢?n(n≥3)边形呢?例2、从一个七边形的某边上一点出发,分别连结这个点和其余各顶点,可以把这个七边形分割成多少个三角形?想一想,在画一画,如果是五边形、十二边形呢?n(n≥3)边形呢?例3、从一个七边形内的某点出发,分别连结这个点和其余各顶点,可以把这个七边形分割成多少个三角形?想一想,在画一画,如果是五边形、十二边形呢?n(n≥3)边形呢?例4、在圆中任意画4条半径,可以把这个圆分成几个扇形?三、随堂演练1、下列的图看起来象什么?分别由几个三角形或四边形组成?2、我能行:以两个圆、两个三角形、两条平行线段为构件,尽可能多地构思出独特且有意义的图形,并写出一两句贴切、诙谐的解说词。

3、如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.⑴“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块和五块.⑵请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.⑶发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图.四、本节课你有那些收获?跟大家分享吧丰富的图形世界(第一章)复习一、教学目标:1、会辨认基本几何体(直棱柱、圆柱、圆锥、球等)2、了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;3、能想象基本几何体的截面形状;4、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型;5、能从丰富的现实背景中抽象出空间几何体和基本平面图形,进一步认识点、线、面。

6、获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。

7、体验数学知识之间的内在联系,初步形成对数学整体性的认识。

教学重点:在具体的情境中,认识一些基本的几何体,并能描述这些几何体的特征。

教学难点:是描述几何体的特征,对几何体进行分类。

二、设疑自探1、梳理本章知识(一)生活中有哪些你熟悉的图形?举例说明.(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体. (三)用自己的语言说一说棱柱的特征?(直棱柱) 如图是六棱柱模型,观察交流回答棱柱有以下特征: ①棱柱上有底面,它们形状大小; ②棱柱的侧面都是; ③侧棱的长度都;④侧面的个数与底面多边形边数;⑤有__个顶点,有___条棱,有___条侧棱;⑥截面形状可以是___________________________________ 三、解疑合探1、利用棱柱的特征我们可以解决哪些问题?2、能根据下列给出的正方体平面展开图指出正方体中相对的面吗?(标出A、B、C的对面),发现了什么规律?3、画出若干个具有代表性的正方体平面展开图,4、找出两种几何体,使得分别用一个平面去截它们,可以得到三角形的截面.5、以正方体为例:A 、截下的几何体与剩余几何体分别是什么立体图形?B 、每个几何体的顶点数(v ),面数(f ),棱数(e )分别有什么关系?(f +v –e =2)6、举出一种几何体,使得它的主视图,左视图和俯视图都一样,你能举出几种?与同伴进行交流. 教师引导:7、想一想:三视图相同,立体物体的形状是否唯一确定(下图呢?)四、质疑再探说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题) 五、运用拓展1、如下图中为棱柱的是( )B A AC俯视图 左视图 主视图2、如图绕虚线旋转得到的几何体是( ).(D )(B )(C )(A )3、用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码。

相关文档
最新文档