轻绳_轻杆_轻弹簧三种模型的特点及其应用
高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。
则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
弹簧,轻杆,绳件模型

弹簧,轻杆,绳件模型[模型概述]挂件问题是力学中极为常见的模型,其中绳件、弹簧件更是这一模型中的主要模具,相关试题在高考中一直连续不断。
它们间的共同之处是均不计重力,但是它们在许多方面有较大的差别。
[模型回顾]1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
[模型讲解]1、如图1中a所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态。
现将l2线剪断,求剪断瞬时物体的加速度。
(a)a=gsinθ(b)a=gstgθ2、一根细绳,长度为L ,一端系一个质量为m 的小球,在竖直面内做圆周运动,求小球通过最高点时的速度至少是多少?若将绳换为一根匀质细杆,结果又如何?1)对绳来说,是个柔软的物体,它只产生拉力,不能产生支持作用,小球在最高点时,弹力只可能向下,如图(1)所示。
浅析轻绳、轻杆和轻弹簧模型的应用

T-mgcosθ =mv2/l=0 所以,拉力为
T=mgcosθ
请想一想: 这时 OA 的拉力与 OB 断开前的拉力之 比是多少?OB 断开瞬间,小球的运动加速度是 多少?
0 2 -1
分析:在细绳烧断之前,两球受到的平衡力如图所示。 在细绳烧断瞬间间,拉力(T)消失,而弹簧弹力不变, 即
T=2 mg
根据牛顿第二定律,A、B 的加速度分别为 aA=(F-mg)/m=g--方向竖直向上。
aB=mg/m=g--方向竖直向下。
请读者想一想:如果将连接 A、B 球的细绳换成轻 杆或者轻弹簧结果如何?
T= [(ma)2+( mg)2]1/2=m (a2+g2)1/2
拉力与竖直方向的夹角θ 可表示为 θ =tg (a/g). 可以看出:θ 角随加速度 a 的增大而增大。 当 a=0 时:T= mg , θ =0---拉力竖直向上; 当 a=gtgß 时: T= mg(1+tg ß)1 /2= mg/cosθ , θ =ß---拉力沿杆方向; 注意:这个临界加速度,可以利用逆向思维方法。由θ =ß 简捷的得出。 当 a»g 时, T≈ ma,θ ≈90 ――拉力趋于水平方向。 当 a«g 时, T≈ mg,θ ≈0――拉力趋于竖直方向。 请读者想一想:如果小球由一段轻绳或者轻弹簧连接,结果如何? 例 3:如图 4 所示,质量相同的 A、B 两球用细绳相连,然后由轻弹簧竖直悬挂。求 将细绳烧断瞬间,A、B 的加速度是多少?方向如何?
轻绳、轻杆和轻弹簧模型(修)

轻绳、轻杆和轻弹簧模型的应用一、三个模型的相同点1、“轻”—不计质量,不受重力。
2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。
二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。
轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。
轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。
2、施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。
轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。
轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。
3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。
轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。
轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。
(注意:当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。
轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。
5、作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。
轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。
轻弹簧—弹力对物体作功,系统机械能守恒;弹力作正功,弹性势能减少,物体动能增加;弹力作负功,弹性势能增加,物体动能减少。
轻杆、轻绳、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:案例1如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,OB一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答:为研究方便,我们将两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mg tgθ。
(2)(3)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsinθ,所以a =gsinθ。
轻质绳、轻杆、轻弹簧模型问题剖析

21 0 1年 第 6期 ( 半 月 ) 上
Vo12 No 41 . 9 . 8 ( 62 1 . 9 S) . O1 2
轻 质 绳 杆 弹 簧 模 型 问 题 剖 析 轻 轻
程 少 华
西 南 大 学 西 南 民族 教 育 与 心 理 研 究 中心 , 庆 市 北 碚 区 4 0 0 重 070
CO S
aca ( ) 当 a= g・ a 0 , N的 方 向 是 沿 斜 rtn 笠 ; : = tn 时 F
a
杆 的方 向 。
注: 如果 将杆 改为 轻质绳 , 其他条 件 不变 , 则 当小 车水平 向右 以加 速 度 a运 动时 , 球仅 受 重 小
② 同一 轻弹簧 的两端 和中间各点 的张力相 等 ;
③ 既 能 承 受 拉 力 也 能 承 受 压 力 , 的 方 向 力 与 弹簧 的形 变方 向相 反 ; ④ 受力 时 发 生 形 变 的过 程 需 要 一 段 时 间 , 所 以在瞬 时 问题 中弹 簧 的弹力 不 能发 生 突变 , 大 小 和 方 向 均 不 变 ; 是 当 弹 簧 被 剪 断 时 , 力 立 但 弹
解析 未 剪 断 L 之 前 , 小球 受 L 的拉 力
F 、 。 拉 力 F 和 小 球 的 重 力 G共 同 作 用 , 力 。L 的 三
③ 只能产 生 拉力 。 能 产生 压 力 , 其 他 物 与
体相 互作 用 时总是 沿 绳 f方 向 ; ④ 在 瞬 时 问 题 中轻 绳 的拉 力 发 生 突 变 , 不
故 Fl— rgc s u o0
( )轻 杆 模 型 : 2
① 不能伸长或压缩 , 质量和重力可以视为零 ; ② 同~根轻杆 的两端 和中间各点 的张力相 等 ;
轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较河南陈超众在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。
下面就这三种模型的特点和不同之处及应用进行归纳,希望对大家有所帮助。
一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1. 静止或匀速直线运动时例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件,方向是沿着绳子向上。
可知,绳子对小球的弹力为F mg若将轻绳换成轻弹簧,其结果是一样的。
例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
轻绳轻杆轻弹簧三种模型之比较

精心整理图4轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型,在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。
一.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端例1.如图1所示,PQ 是固定的水平导轨,两端有两个小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮,不计滑轮的摩擦,系统处于静止时,α=37°,β=53°,若B 重10N ,A 重20N ,A 与水平导轨间摩擦因数0.2μ=,则A 受的摩擦力()A .大小为4N ,方向向左B .大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N ,方向向右解析:要分析A 物体所受摩擦力,必须确定两绳子对A 的拉力情况。
因为两绳均为轻绳,且滑轮摩擦不计,因此绳子两端及其中间各点的张力大小相等,只要对B 物体受力分析即可知道绳子拉力大小情况。
如图2所示,B 受重力、两绳拉力1F 、2F 而平衡,由力的平衡知识即平行四边形法则可知:1=sin =6B F G N α,1=cos =8B F G N α。
再以A 物体为研究对象,如图可知,A 物体所受摩擦力为21862f F F N N N =-=-=,方向向左。
本题C 选项符合题意。
(2)软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子。
注意轻绳“拉紧”和“伸直”的区别:有张力,而“伸直”的轻绳,还没有发生形变,没有张力。
例2.物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体A 上施加一个力F ,如图所示,60θ=︒,要使两绳都能伸直,求力F 的大小范围。
解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将拉紧,因Q B A αAP Q 图1 BAαAP Q图2αA图此,拉力F的最小值minF,出现在绳C恰好伸直无弹力,而绳B张紧时。
轻杆模型

中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,笔者拟对这三种模型的特点及区别应用作一些简单的讨论。
一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。
因为细绳只能被拉伸,则绳的弹力只能是沿绳方向的拉力,设绳与竖直方向的夹角为α。
轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。
则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。
图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析

绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
轻绳、轻杆、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1) 剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆

模型3:轻弹簧 轻弹簧的质量可忽略不计,可以被压缩或拉伸。 其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能 渐变(除弹簧被剪断外); ④在弹性限度内,弹力的大小与弹簧的形变量成正比,即 F=kΔx,其中k为弹簧的劲度系数,Δx为弹簧的伸长量或缩 短量。
由于杆AB不可转动(即是“固 定杆”),所以杆所受弹力的方向 不一定沿杆AB方向.由于B点处是 滑轮,它只是改变绳中力的方向, 并未改变力的大小,滑轮两侧绳 上的拉力大小均是100 N,夹角为 120°,故滑轮受绳子作用力即是 两拉力的合力。
总结: 1.什么是活结,什么是死结? 2.什么是活动杆,什么是固定杆? 2.它们各有什么特点?
②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关.
③轻绳的弹力大小可发生突变.
模型2:轻杆 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数 非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向 力(力的方向不一定沿着杆的方向); ②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
分析:
TC mg 50N
TB cos mg
TA A
mg 50
TB cos
62.5N 0.8
TA TB sin 62.5 0.6 37.5N
B TB θ θ O
mg
例2.轻绳AB一段固定于A点,另一端自由。在绳中某处O点 打结系另一轻绳OC,下挂一质量为m的物体。现保持O点的 位置不变,在OB段由水平方向缓慢转到竖直方向的过程中, 拉力F和绳OA的张力变化?
3轻杆、轻绳、轻弹簧模型

物理建模系列(一) 轻杆、轻绳、轻弹簧模型1.模型特点轻杆、轻绳、轻弹簧都是忽略质量的理想模型,与这三个模型相关的问题在高中物理中有相当重要的地位,且涉及的情景综合性较强,物理过程复杂,能很好地考查学生的综合轻杆 轻绳轻弹簧柔软,只能发生微小(1)轻杆、轻绳、轻弹簧都是忽略质量的理想化模型.(2)分析轻杆上的弹力时必须结合物体的运动状态.(3)讨论轻弹簧上的弹力时应指明弹簧处于伸长还是压缩状态.★1、如图所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球的重力为12N ,轻绳的拉力为10N ,水平轻弹簧的拉力为9N ,则轻杆对小球的作用力的大小及其方向与竖直方向夹角θ为(C )A .12N 53°B .6N 90°C .5N 37°D .1N 90°解析: 本题考查轻绳、轻杆、轻弹簧中力的方向及大小的特点,解题时要结合题意及小球处于平衡状态的受力特点.以小球为研究对象,受力分析如图所示,小球受四个力的作用:重力、轻绳的拉力、轻弹簧的拉力、轻杆的作用力,其中轻杆的作用力的方向和大小不能确定,重力、弹簧的弹力二者的合力的大小为F =G 2+F 21=15N设F 与竖直方向夹角为α,sin α=F 1F =35,则α=37°.所以杆对小球的作用力方向与F 2方向相同,大小为F 1-F 2=5N .故选项C 正确.计算弹力大小的三种方法(1)根据胡克定律进行求解.(2)根据力的平衡条件进行求解.(3)根据牛顿第二定律进行求解.4、(多选)如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动.④弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧质量都为零,用L1、L2、L3、L4依次表示四个弹簧的伸长量,则有(CD)A.L2>L1B.L4>L3C.L1=L3D.L2=L4解析:弹簧伸长量由弹簧的弹力(F弹)大小决定.由于弹簧质量不计,这四种情况下,F弹都等于弹簧右端拉力F,因而弹簧伸长量均相同,故选项C、D正确.答案:。
力学中常见的三种模型--对“轻杆、轻绳、轻弹簧”理解与应用

【 中图分类号】 G 6 3 3 . 8
【 文献标识码 】 A
【 文章编号】 2 0 9 5 — 3 0 8 9 ( 2 0 1 3 ) 0 9 — 0 1 6 0 — 0 2
半径方 向的速度对应 的能量 转换成 绳的 内 能, 即此 极短 时间 内机械 能 不 守恒 : 高中阶段 只考虑拉伸形 变, 绳上的弹力表现 从 B至 c, 由机 械 能 守恒 :
。
V
辩 璺 图3
2 . 轻绳的形变 为拉 力 . 方 向在 绳 上 并指 向绳 子收 缩 的方 向 。 m g L( 1 一 s i n 0 ) :÷ m v 一÷ m 3 . 轻弹簧的形 变 高中阶段只考虑压缩与拉伸 两种情况, 弹 力表现为拉力或压力, 其大小根据胡克定律求解 。 ( 其中 v B = v B c o s 0 )
二 二
Байду номын сангаас
二、 弹 力作 用效 果与 实 际应 用 1 . 轻 绳 上 的弹 力 变化 具 有 瞬时性 ( 突变 ) 例 2 : 如图4 , 物体 的 质 量 为 i n . 由 两 绳 系住 处 于静 止 状 态 ,
‘ .
V c = 、 / 2 g L ( 1 一 s i n 0 ) +
一
、
图4
2 . 轻弹簧上的弹力变化具有缓慢性 ( 不 突变) 瞬 间 ,当引起 弹 簧形 变的原 因变化 后 ,弹簧
上的 弹 力不 可 能马 上恢 复 形 变 .导 致 弹 力的 变化 有一 时 间过程 。 例3 :将 例 2中的 B O 绳 换成 轻 弹簧 .剪 断 动。 O A绳瞬间. 求 绳上 的拉 力 大 小。 解析 : 剪 断 绳 OA 的 , 物体 受 两个 力 作 用 , 重力不变, 拉 力 来 解析 : ( 1 ) 小 车 匀速 运动 , 小球 受合 力 为零 , 所 以 小球 受 弹 力 不及 变化 , 所 以 BO 绳上 的拉 力仍 为 1 " 1 2 g / c o s e 。 与重 力等 大 、 反 向。 3 . 轻 绳 发 生形 变时可 能伴 随 着的 能 量 的 变化 ( 2 ) 小球也 向右匀加速运动, 根据牛顿第二定律 , 小球的弹力 应随加速度大小有多种情况 , 如图所示( 只显示两种情况) 。 例 4 : 如图 6 , 轻绳 长 L , 一 端 可 绕 。 转 动. 另 一端 系一质 量 为 m 的 小球 , 起 初将 绳 绷
圆周运动中的几种模型

圆周运动中的几种模型一.轻绳模型(一). 轻绳模型的特点:1. 轻绳的质量和重力不计;2. 只能产生和承受沿绳方向的拉力;(二).轻绳模型在圆周运动中的应用小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:2. 小球能通过最高点的条件:(当时,绳子对球产生拉力)3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是()A .0 B. mg C .3mgD 5mg分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型当小球经过最高点的临界速度为v ,则当小球以 2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则因为所以根据牛顿第三定律,小球对轨道压力的大小也是,故选 c.二.轻杆模型:(一). 轻杆模型的特点:1.轻杆的质量和重力不计;2.能产生和承受各方向的拉力和压力(二). 轻杆模型在圆周运动中的应用轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:1. 小球能通过最高点的临界条件:v=0 ,N=mg ( N为支持力)2. 当时,有( N为支持力)3 当时,有(N=0 )4 当时,有(N 为拉力)例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则()A. 外轨道受到24N的压力B. 外轨道受到6N的压力C. 内轨道受到24N 的压力D. 内轨道受到 6N的压力分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型:当小球到最高点轨道对其作用力为零时:有则,=>2m/s所以,内轨道对小球有向上的支持力,则有代入数值得: N=6N根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选 D三.圆锥摆模型:圆锥摆模型在圆周运动中的应用:如图所示:摆球的质量为m,摆线长度为L ,摆动后摆线与竖直方向成θ 角,则分析:摆球在水平面上做匀速圆周运动,加速度必定指向圆心,依据牛顿第二定律,对摆球受力分析,得:圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。
谈轻绳、轻杆和轻弹簧三种理想模型

龙源期刊网
谈轻绳、轻杆和轻弹簧三种理想模型
作者:毕海涛
来源:《数理化学习·高三版》2013年第09期
在高中物理中,轻绳、轻杆和轻弹簧三种理想化模型是极为常见的,但却并不为学生所熟知.在许多力学问题中,由于对模型特性理解得不准确,出现了学生一听就“通”,教师一讲就“痛”的现象.本文将通过深入分析,对三个模型进行全面的展示.
何为“轻”?顾名思义,质量很小,物理学中视这样的物体m=0.
为何采用“轻”模型?为了突出其产生的弹力特点而忽略其质量引起的其他问题,这体现了《高中物理课程标准》中“了解物质结构、相互作用和运动的一些基本概念和规律”的目标要求.
“轻”模型的共同特点是什么?因为m=0,根据牛顿第二定律,
F合=0,所以“轻”模型在共点力作用下始终处于平衡状态,这有助于问题的进一步探讨.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轻绳、轻杆、轻弹簧三种模型的特点及其应用
在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一. 三种模型的特点
1. 轻绳(或细绳)
中学物理中的绳和线,是理想化的模型,具有以下几个特征:
①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;
②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;
③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2. 轻杆
具有以下几个特征:
①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;
②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;
③轻杆不能伸长或压缩。
3. 轻弹簧
中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:
①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;
②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;
③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二. 三种模型的应用
例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?
解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,
F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立
即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例2. 如图3所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m 的小球,下列关于杆对小球的作用力F 的判断中,正确的是( )
A. 小车静止时,F mg =cos θ,方向沿杆向上;
B. 小车静止时,F mg =cos θ,方向垂直杆向上;
C. 小车向右以加速度a 运动时,一定有F ma
=
cos θ
; D. 小车向左以加速度a 运动时,有F ma mg =+()()22,方向斜向左上方,与竖直方
向的夹角为α=arctan()a g。
解析:由题意可知:小球与车具有相同的运动状态,小车静止,球也静止。
对球进行受力分析,静止时所受的合力为零,即杆对球的作用力应竖直向上,A 、B 错。
当小车向右加速时,球也向右加速,那么球所受的合力应向右,大小为ma 。
球所受的合力为球受到的重力和杆的作用力合成的,根据平行四边形定则,杆的作用大小为()()ma mg 2
2
+,方向斜向右上方,与竖直方向的夹角为arctan()a g
;若加速度为a g =tan θ,则杆对球的作用力一定沿杆的方向。
车向左加速与向右加速分析一样,所以本答案为D 。
例3. (1)如图4所示,质量为m 的小球被弹簧和水平细绳悬挂而处于静止,弹簧与竖直方向的夹角为θ,现剪断水平绳,此瞬间弹簧的拉力为___________;小球的加速度为_________,方向为___________。
(2)如图5所示,质量为m 的小球被一根轻钢丝和水平细绳悬挂而处于静止,轻钢丝与竖直方向的夹角为θ,现剪断水平绳,此瞬间轻钢丝的拉力为_________;小球的加速度大小为_________,方向为___________。
解析:初看这两题很相似,有的同学会不假思索的认为它们的答案相同。
实际上是对弹
簧和轻绳两种模型的特点不清楚。
(1)如图6所示,细线剪断前小球受重力mg ,弹簧的弹力F 1、细线的拉力F 2三力作用。
三力的合力为零。
F 1、mg 的合力水平向右与F 2大小相等、方向相反。
剪断细绳的瞬间,细线的拉力F 2=0;由于弹簧的弹力不能突变,弹簧的弹力F 1保持不变。
弹簧的弹力F 1和小球的重力mg 的合力大小等于未剪断细绳时细绳的拉力F 2大小,方向与其相反,如图7。
故有
F mg
1=
cos θ
,a g =tan θ,方向水平向右。
(2)若把弹簧改为钢丝,当剪断细绳的瞬间,钢丝的拉力马上发生变化,由于惯性,此
刻小球仍保持静止,在钢丝方向上的加速度为零。
如图8所示,则F mg 1=cos θ,
a g =sin θ,方向为垂直钢丝向下。