组合数学_第3章3.2

合集下载

组合数学(引论)

组合数学(引论)
也就是:机智+精巧。
组合数学中有二个常用的技巧: 1. 一一对应 2. 奇偶性
1.、一一对应
第 10 页
结束
1. 一一对应
二个事件之间如计果算存:在一一对应关系,则
可用解易解的来替代第难一解轮的:。50场比赛 (一人轮空)
应用举例 第二轮: 25场比赛 (一人轮空)
决出例冠1军. 共有要10进1行个注反一多选第第第意之场少手三四五:,比场参轮轮轮每要赛比加:::场淘。赛象1比汰63?棋3场场场赛一淘比比比必 人汰赛赛赛淘也赛汰必,((一 一一须问人 人人进要轮 轮,行空 空))
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第 22 页
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第4章 Burnside引理与Polya定理
4.1 群的概念 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 Burnside引理 4.5 Polya定理 4.6 鸽巢原理 4.7 鸽巢原理举例 4.8 鸽巢原理的推广 4.9 Ramsey数
第4页
结束
一、一组、合组数合学数简学介简介
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
总统 副总统 财务大臣 秘书
0
1
2
2
43
2
1
一种选法 一一对应 一个四位数

组合数学讲义3章递推关系

组合数学讲义3章递推关系

组合数学讲义3章递推关系递推关系§3.1 基本概念(一)递推关系定义3.1.1 (隐式)对数列aii 0 和任意自然数n,一个关系到an和某些个ai i n 的方程式,称为递推关系,记作F a0,a1, ,an 0 (3.1.1)__例an an 1 an 2 a0 n 0an 3an 1 2an 2 2a1 1 0定义3.1.1'(显式)对数列aii 0 ,把an与其之前若干项联系起来的等式对所有n≥k均成立(k为某个给定的自然数),称该等式为ai 的递推关系,记为an F an 1,an 2, ,an k (3.1.1)'例an 3an 1 2an 2 2a1 1 (二)分类(1)按常量部分:① 齐次递推关系:指常量=0,如Fn Fn 1 Fn 2;② 非齐次递推关系,即常量≠0,如hn 2hn 1 1。

(2)按ai的运算关系:组合数学讲义① 线性关系,F是关于ai的线性函数,如(1)中的Fn与hn均是如此;② 非线性关系,F是ai的非线性函数,如hn h1hn 1 h2hn2 hn 1h1。

(3)按ai的系数:① 常系数递推关系,如(1)中的Fn与hn;② 变系数递推关系,如pn npn 1,pn 1之前的系数是随着n而变的。

(4)按数列的多少:① 一元递推关系,其中的方程只涉及一个数列,如(3.1.1)和(3.1.1)'均为一元的;② 多元递推关系,方程中涉及多个数列,如an 7an 1 bn 1bn 7bn 1 an 1(5)显式与隐式:yn 1(三)定解问题xn 1yn h yn 1 2 yn 1定义3.1.2 (定解问题)称含有初始条件的递推关系为定解问题,其一般形式为F a0,a1, ,an 0,(3.1.2)a0 d0,a1 d1, ,ak 1 dk 1所谓解递推关系,就是指根据式(3.1.1)或(3.1.2)求an的与a0、a1、、an-1无关的解析表达式或数列{an}的母函数。

组合数学第三章习题解答

组合数学第三章习题解答
j 0
m
i 0 nm
(c )
C (m l 1, m 1) C (m l , m) C (m l , m 1) C (m l , m 2) ...
(1)l C (m l , m l )
(a)
C (n m, n k ) C (n m, k m)
设这66个元素为a1<a2<a3<...<a66
构造b1=a2-a1, b2=a3-a1,…, b65=a66-a1, 令B={b1,b2,…,b65} 这65个元素属于1到326,如果这65个元素有任何一个属于P1, 则定理得证。 否则: B p2 p3 p4 p5 (2)因为。 65 1 1 17 4 因此至少有一个集合含至少B中17个元素,设这个集合为p2。 设这6个元素为: bi1 bi2 ... bi1 7
证明(a)
(a) A B与A B关于B互为余集, 因此 A B B A B
(b) A BC C AC B C A B C A B C与(C B) (C A)互为余集. A B C C (C B) (C A) C C A C B A B C
否则: e1 , e2 p5 构造: e2 e1 同样可证明e2-e1既可表示成p1中数之差,也可表示成p2p3p4中 数之差。 e2-e1是1到326中的数,设f=d2-d1
e p1 p2 p3 p4
因此:1到326的326个整数任意分成5部分,其中必有一部分 其中有一个数是另两个数之差,设ai=aj-ah,那么反过来: aj=ai+ah
3.12,一年级有100名学生参加中文、英文和数学的考试,其中92 人通过中文考试,75人通过英语考试,65人通过数学考试;其中 65人通过中英文考试,54人通过中文和数学考试,45人通过英语 和数学考试,求通过三门学科考试的学生数?

3、组合数学第三章排列组合(1)

3、组合数学第三章排列组合(1)
一次考试,问有多少种排法。
P(5,3)
(2)同(1),若不限制每天考试的次数,问有多 少种排法?
53
例3.8 排列26个字母,使得在a 和 b之间正好有7个 字母,问有多少种排法?
例3 用26个字母排列,是元音 a,e,i,o,u 组不相继 出现,有多少种排法?
(1)排列所有辅音:P(21,21)=21! (2)在辅音前后的22个空档中排元音:
n2 +... + nk .
2若r=n,则N= n! ; n1 !n2 !...nk !
3若r < n且对一切i,i =1, 2,..., k,有ni ? r,则N=kr ; 4若r < n,且存在着某个ni < r,则对N没有一般的求解公式。
§3.5 多重集的组合
多重集S中r个元素进行无序选择,构成一个多重 集的r-组合。 篮子里有2个苹果,1个桔子,3个香蕉,篮子里 的水果构成“多重集”。
解1 (1)任意坐: n=9! (2)不相邻:A先就坐,B不相邻:7 其余8人排序:8! m=7*8! (3) P=m/n=7*8!/9!=7/9
例6 10个人为圆桌任意就坐,求指定的两个人 A与B不相邻的概率。
解2 (1)任意坐: n=9! (2)A,B相邻:A先就坐,B左右相邻:2 其余8人排序:8! k=2*8! (3)不相邻:m=9!-2*8! (4) 两人不相邻的概率 P=m/n=(9!-2*8!)/9!=1-2/9=7/9
证明
(1) 从{ 1,2,…,n }中选出2-组合有
C
2 n
(2) 另一种选法:
最大数为k的2-组合共有k-1个,k=1,2,…,n
有加法原理,共有 0+1+2+…+(n-1) 个2-组合

组合数学(第3章3.3)

组合数学(第3章3.3)
第三章 排列与组合
多重集的排列及组合
主要内容
多重集排列应用 多重集的组合及应用
回顾:多重集排列计数
定理3.4.2:令S是多重集,它有k个不同的 元素,每个元素的重复数分别为n1,n2,…, nk,那么,S的排列数等于 n! n1! n 2 !… n k ! 其中n= n1+n2+…+nk
多重集排列与集合划分
6 = 84
解:(1)方程x1+x2+x3+x4=10 (B)的正整数

3. 方程x1+x2+x3+x4=20的整数解的个数是多少?其中 x1≥3, x2≥1, x3≥0, x4≥5. 解:作变量代换:y1=x13, y2=x21, y3=x3, y4=x45,那么,得到方程: y1+y2+y3+y4=11。原 方程的解个数与该方程的非负整数解个数相同。 故为:
r + k - 1 r + k - 1 = r k -1
定理的证明
(1) 令S={∞a1, ∞a2,…, ∞ak},那么S的一个r-组合 具有形式{x1a1, x2a2,…, xkak},其中 x1+x2+…+xk=r (A) A xi是非负整数。 (2) 方程(A)的任何一个解确定S的一个r-组合,因 此,S的r-组合个数等于方程(A)解的个数。
11 + 4 1 14 11 = 11
问题?
令多重集S={n1a1, n2a2, …, nkak},n= n1+n2+…+nk ,求S的r-组合数,其中0≤r≤n. 方程: x1+x2+…+xk=r 满足条件 0≤x1≤n1,0≤x2≤n2,…, 0≤xk≤nk 的整数解的个数。

组合数学_第3章3.1_ (1)

组合数学_第3章3.1_ (1)
n1 = 2k1 a n2 = 2k 2 a
显然,当k1 k2, 则n2 整除n1,否则n1整除n2。
例:对于任意给定的52个非负整数,证明:其中必存 在两个非负整数,要么两者的和能被100整除,要么 两者的差能被100整除。
证:对于任意一个非负整数,其整除100的余数可能 为{0, 1, 2, …, 99}中之一。 对这100个余数进行分组,构造如下51个集合:
何整数n, n = 2k a ,其中,a为奇数,k0。
❑ 200内只能有100个不同奇数,故可对101个 数运用鸽巢原理。
例. 从整数1, 2, ,200中选取101个整数。证明 所选的数中存在两个整数,使得其中一个是另 一个的因子。
证:对于1到200间的整数n,n可写作以下形 式:n = 2k a , 其中a只能是200内的奇数。 由于要选取101个整数,但是 200内只有100个奇 数,应用鸽巢原理知必存在两个数n1与n2除以2 的余数相等。假设
思考:随意地把一个3行9列棋盘的每个方格涂成红色 或蓝色,求证:必有两列方格的涂色方式是一样的。
1 23 456 78 9
每列的涂色方式一共有23= 8种
思考:
(英国数学奥林匹克1975年的问题)在一个半 径为1单位的圆板上钉7个钉,使得两个钉的 距离是大于或等于1,那么这7个钉一定会有一 个位置恰好是在圆心上。
吾尝从君济于河,鼋 衔左骖以入砥柱之流。 当是时也,冶少不能
吾仗兵而却三军者再,若开疆之功, 游,潜行逆流百步,
亦可以食桃,而无与人同矣
顺流九里,得鼋而杀
之,左操骖尾,右挈
鼋头,鹤跃而出
◼ 宋代费衮的《梁溪漫志》中,就曾运用抽屉原理 来批驳“算命”一类迷信活动的谬论

组合数学第三章课后习题答案

组合数学第三章课后习题答案

3.1题(宗传玉)某甲参加一种会议,会上有6位朋友,某甲和其中每人在会上各相遇12次,每二人各相遇6次,每三人各相遇3次,每五人各相遇2次,每六人各相遇一次,1人也没有遇见的有5次,问某甲共参加了几次会议解:设A i为甲与第i个朋友相遇的会议集,i=1,…,6.则故甲参加的会议数为:28+5=33.3.2题(宗传玉)求从1到500的整数中被3和5整除但不被7整除的数的个数.解:设A3:被3整除的数的集合A5:被5整除的数的集合A7:被7整除的数的集合所以3.3.题(宗传玉)n个代表参加会议,试证其中至少有2人各自的朋友数相等。

解:每个人的朋友数只能取0,1,…,n-1.但若有人的朋友数为0,即此人和其他人都不认识,则其他人的最大取数不超过n-2.故这n个人的朋友数的实际取数只有n-1种可能.,所以至少有2人的朋友数相等.3.4题(宗传玉)试给出下列等式的组合意义.解:(a) 从n 个元素中取k 个元素的组合,总含有指定的m 个元素的组合数为)()(kn mn m k m n --=--。

设这m 个元素为a 1,a 2,…,a m ,Ai 为不含a i 的组合(子集),i=1,…,m.()∑∑∑==∈⊄==⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-+⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛-=ml l m l l m i i lj i lk l n k m A k n k n m n k l n l j 01),(),...,(1m1i i i i i 1)1(A A A A 111213.5题(宗传玉)设有三个7位的二进制数:a1a2a3a4a5a6a7,b1b2b3b4b5b6b7,c1c2c3c4c5c6c7.试证存在整数i 和j,1≤i≤j≤7,使得下列之一必定成立:a i=a j=b i=b j,a i=a j=c i=c j,b i=b j=c i=c j.证:显然,每列中必有两数字相同,共有种模式,有0或1两种选择.故共有·2种选择.·2=6.现有7列,.即必有2列在相同的两行选择相同的数字,即有一矩形,四角的数字相等.3.6题(宗传玉)在边长为1的正方形内任取5个点试证其中至少有两点,其间距离小于证:把1×1正方形分成四个(1/2)×.则这5点中必有两点落在同一个小正方形内.而小正方形内的任两点的距离都小于.3.7题(王星)在边长为1的等边三角形内任取5个点试证其中至少有两点,期间距离小于1/2.证:把边长为1的三角形分成四个边长为1/2的三角形,如上图:则这5点中必有两点落在同一个小三角形中.小三角形中任意两点间的距离都小于1/2.3.8题(王星)任取11个整数,求证其中至少有两个数它们的差是10的倍数。

组合数学【第5版】(英文版)第3章答案

组合数学【第5版】(英文版)第3章答案

Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter31.For1≤k≤22we show that there exists a succession of consecutive days during which the grandmaster plays exactly k games.For1≤i≤77let b i denote the number of gamesplayed on day i.Consider the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.There are154numbers in the list,all among1,2,...,153.Therefore the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.are not distinct.Therefore there exist integers i,j(0≤i<j≤77)such that b i+1+···+b j=k.During the days i+1,...,j the grandmaster plays exactly k games.2.Let S denote a set of100integers chosen from1,2,...,200such that i does not divide j for all distinct i,j∈S.We show that i∈S for1≤i≤15.Certainly1∈S since 1divides every integer.By construction the odd parts of the elements in S are mutually distinct and at most199.There are100numbers in the list1,3,5,...,199.Therefore each of 1,3,5,...,199is the odd part of an element of S.We have3×5×13=195∈S.Therefore none of3,5,13,15are in S.We have33×7=189∈S.Therefore neither of7,9is in S.We have11×17=187∈S.Therefore11∈S.We have shown that none of1,3,5,7,9,11,13,15 is in S.We show neither of6,14is in S.Recall33×7=189∈S.Therefore32×7=63∈S. Therefore2×32×7=126∈S.Therefore2×3=6∈S and2×7=14∈S.We show10∈S. Recall3×5×13=195∈S.Therefore5×13=65∈S.Therefore2×5×13=130∈S. Therefore2×5=10∈S.We now show that none of2,4,8,12are in S.Below we list the integers of the form2r3s that are at most200:1,2,4,8,16,32,64,128,3,6,12,24,48,96,192,9,18,36,72,144,27,54,108,81,162.In the above array each element divides everything that lies to the southeast.Also,each row contains exactly one element of S.For1≤i≤5let r i denote the element of row i that is contained in S,and let c i denote the number of the column that contains r i.We must have c i<c i−1for2≤i≤5.Therefore c i≥6−i for1≤i≤5.In particular c1≥5so r1≥16,and c2≥4so r2≥24.We have shown that none of2,4,8,12is in S.By the above comments i∈S for1≤i≤15.3.See the course notes.4,5,6.Given integers n≥1and k≥2suppose that n+1distinct elements are chosen from{1,2,...,kn}.We show that there exist two that differ by less than k.Partition{1,2,...,nk}=∪ni=1S i where S i={ki,ki−1,ki−2,...,ki−k+1}.Among our n+1chosen elements,there exist two in the same S i.These two differ by less than k.17.Partition the set{0,1,...,99}=∪50i=0S i where S0={0},S i={i,100−i}for1≤i≤49,S50={50}.For each of the given52integers,divide by100and consider the remainder. The remainder is contained in S i for a unique i.By the pigeonhole principle,there exist two of the52integers for which these remainders lie in the same S i.For these two integers the sum or difference is divisible by100.8.For positive integers m,n we consider the rational number m/n.For0≤i≤n divide the integer10i m by n,and call the remainder r i.By construction0≤r i≤n−1.By the pigeonhole principle there exist integers i,j(0≤i<j≤n)such that r i=r j.The integer n divides10j m−10i m.For notational convenience define =j−i.Then there exists a positive integer q such that nq=10i(10 −1)m.Divide q by10 −1and call the remainder r. So0≤r≤10 −2.By construction there exists an integer b≥0such that q=(10 −1)b+r. Writingθ=m/n we have10iθ=b+r 10 −1=b+r10+r102+r103+···Since the integer r is in the range0≤r≤10 −2this yields a repeating decimal expansion forθ.9.Consider the set of10people.The number of subsets is210=1024.For each subset consider the sum of the ages of its members.This sum is among0,1,...,600.By the pigeonhole principle the1024sums are not distinct.The result follows.Now suppose we consider at set of9people.Then the number of subsets is29=512<600.Therefore we cannot invoke the pigeonhole principle.10.For1≤i≤49let b i denote the number of hours the child watches TV on day i.Consider the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.There are98numbers in the list,all among1,2,...,96.By the pigeonhole principle the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.are not distinct.Therefore there existintegers i,j(0≤i<j≤49)such that b i+1+···+b j=20.During the days i+1,...,j the child watches TV for exactly20hours.11.For1≤i≤37let b i denote the number of hours the student studies on day i.Considerthe numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1.There are74numbers in the list,all among1,2,...,72.By the pigeonhole principle the numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1are not distinct.Therefore there exist integers i,j(0≤i<j≤37)such that b i+1+···+b j=13.During the days i+1,...,j the student will have studied exactly13hours.12.Take m=4and n=6.Pick a among0,1,2,3and b among0,1,2,3,4,5such that a+b is odd.Suppose that there exists a positive integer x that yields a remainder of a(resp.b) when divided by4(resp.by6).Then there exist integers r,s such that x=4r+a and x=6s+bining these equations we obtain2x−4r−6s=a+b.In this equation the2left-hand side is even and the right-hand side is odd,for a contradiction.Therefore x does not exist.13.Since r (3,3)=6there exists a K 3subgraph of K 6that is red or blue.We assume that this K 3subgraph is unique,and get a contradiction.Without loss we may assume that the above K 3subgraph is red.Let x denote one of the vertices of this K 3subgraph,and let {x i }5i =1denote the remaining five vertices of K 6.Consider the K 5subgraph with vertices{x i }5i =1.By assumption this subgraph has no K 3subgraph that is red or blue.The only edge coloring of K 5with this feature is shown in figure 3.2of the text.Therefore we may assume that the vertices {x i }5i =1are labelled such that for distinct i,j (1≤i,j ≤5)the edge connecting x i ,x j is red (resp.blue)if i −j =±1modulo 5(resp.i −j =±2modulo5).By construction and without loss of generality,we may assume that each of x 1,x 2is connected to x by a red edge.Thus the vertices x,x 1,x 2give a red K 3subgraph.Now the edge connecting x and x 3is blue;otherwise the vertices x,x 2,x 3give a second red K 3subgraph.Similarly the edge connecting x and x 5is blue;otherwise the vertices x,x 1,x 5give a second red K 3subgraph.Now the vertices x,x 3,x 5give a blue K 3subgraph.14.After n minutes we have removed n pieces of fruit from the bag.Suppose that among the removed fruit there are at most 11pieces for each of the four kinds.Then our total n must be at most 4×11=44.After n =45minutes we will have picked at least a dozen pieces of fruit of the same kind.15.For 1≤i ≤n +1divide a i by n and call the reminder r i .By construction 0≤r i ≤n −1.By the pigeonhole principle there exist distinct integers i,j among 1,2,...,n +1such that r i =r j .Now n divides a i −a j .bel the people 1,2,...,n .For 1≤i ≤n let a i denote the number of people aquainted with person i .By construction 0≤a i ≤n −1.Suppose the numbers {a i }n i =1are mutually distinct.Then for 0≤j ≤n −1there exists a unique integer i (1≤i ≤n )such that a i =j .Taking j =0and j =n −1,we see that there exists a person aquainted with nobody else,and a person aquainted with everybody else.These people are distinct since n ≥2.These two people know each other and do not know each other,for a contradiction.Therefore the numbers {a i }n i =1are not mutually distinct.17.We assume that the conclusion is false and get a bel the people 1,2,...,100.For 1≤i ≤100let a i denote the number of people aquainted with person i .By construction 0≤a i ≤99.By assumption a i is even.Therefore a i is among 0,2,4,...,98.In this list there are 50numbers.Now by our initial assumption,for each even integer j (0≤j ≤98)there exists a unique pair of integers (r,s )(1≤r <s ≤100)such that a r =j and a s =j .Taking j =0and j =98,we see that there exist two people who know nobody else,and two people who know everybody else except one.This is a contradiction.18.Divide the 2×2square into four 1×1squares.By the pigeonhole principle there exists a 1×1square that contains at least two of the five points.For these two points the distance apart is at most √2.319.Divide the equilateral triangle into a grid,with each piece an equilateral triangle of side length1/n.In this grid there are1+3+5+···+2n−1=n2pieces.Suppose we place m n=n2+1points within the equilateral triangle.Then by the pigeonhole principle there exists a piece that contains two or more points.For these two points the distance apart is at most1/n.20.Color the edges of K17red or blue or green.We show that there exists a K3subgraph of K17that is red or blue or green.Pick a vertex x of K17.In K17there are16edges that contain x.By the pigeonhole principle,at least6of these are the same color(let us say red).Pick distinct vertices{x i}6i=1of K17that are connected to x via a red edge.Consider theK6subgraph with vertices{x i}6i=1.If this K6subgraph contains a red edge,then the twovertices involved together with x form the vertex set of a red K3subgraph.On the other hand,if the K6subgraph does not contain a red edge,then since r(3,3)=6,it contains a K3subgraph that is blue or green.We have shown that K17has a K3subgraph that is red or blue or green.21.Let X denote the set of sequences(a1,a2,a3,a4,a5)such that a i∈{1,−1}for1≤i≤5 and a1a2a3a4a5=1.Note that|X|=16.Consider the complete graph K16with vertex set X.We display an edge coloring of K16with colors red,blue,green such that no K3 subgraph is red or blue or green.For distinct x,y in X consider the edge connecting x and y.Color this edge red(resp.blue)(resp.green)whenever the sequences x,y differ in exactly 4coordinates(resp.differ in exactly2coordinates i,j with i−j=±1modulo5)(resp. differ in exactly2coordinates i,j with i−j=±2modulo5).Each edge of K16is now colored red or blue or green.For this edge coloring of K16there is no K3subgraph that is red or blue or green.22.For an integer k≥2abbreviate r k=r(3,3,...,3)(k3’s).We show that r k+1≤(k+1)(r k−1)+2.Define n=r k and m=(k+1)(n−1)+2.Color the edges of K m with k+1colors C1,C2,...,C k+1.We show that there exists a K3subgraph with all edges the same color.Pick a vertex x of K m.In K m there are m−1edges that contain x.By the pigeonhole principle,at least n of these are the same color(which we may assume is C1).Pick distinct vertices{x i}ni=1of K m that are connected to x by an edge colored C1.Considerthe K n subgraph with vertices{x i}ni=1.If this K n subgraph contains an edge colored C1,then the two vertices involved together with x give a K3subgraph that is colored C1.On the other hand,if the K n subgraph does not contain an edge colored C1,then since r k=n, it contains a K3subgraph that is colored C i for some i(2≤i≤k+1).In all cases K m hasa K3subgraph that is colored C i for some i(1≤i≤k+1).Therefore r k≤m.23.We proved earlier thatr(m,n)≤m+n−2n−1.Applying this result with m=3and n=4we obtain r(3,4)≤10.24.We show that r t(t,t,q3)=q3.By construction r t(t,t,q3)≥q3.To show the reverse inequality,consider the complete graph with q3vertices.Let X denote the vertex set of this4graph.Color the t -element subsets of X red or blue or green.Then either (i)there exists a t -element subset of X that is red,or (ii)there exists a t -element subset of X that is blue,or (iii)every t -element subset of X is green.Therefore r t (t,t,q 3)≤q 3so r t (t,t,q 3)=q 3.25.Abbreviate N =r t (m,m,...,m )(k m ’s).We show r t (q 1,q 2,...,q k )≤N .Consider the complete graph K N with vertex set X .Color each t -element subset of X with k colors C 1,C 2,...,C k .By definition there exists a K m subgraph all of whose t -element subsets are colored C i for some i (1≤i ≤k ).Since q i ≤m there exists a subgraph of that K m with q i vertices.For this subgraph every t -element subset is colored C i .26.In the m ×n array assume the rows (resp.columns)are indexed in increasing order from front to back (resp.left to right).Consider two adjacent columns j −1and j .A person in column j −1and a person in column j are called matched if they occupy the same row of the original formation.Thus a person in column j is taller than their match in column j −1.Now consider the adjusted formation.Let L and R denote adjacent people in some row i ,with L in column j −1and R in column j .We show that R is taller than L.We assume that L is at least as tall as R,and get a contradiction.In column j −1,the people in rows i,i +1,...,m are at least as tall as L.In column j ,the people in rows 1,2,...,i are at most as tall as R.Therefore everyone in rows i,i +1,...,m of column j −1is at least as tall as anyone in rows 1,2,...,i of column j .Now for the people in rows 1,2,...,i of column j their match stands among rows 1,2,...,i −1of column j −1.This contradicts the pigeonhole principle,so L is shorter than R.27.Let s 1,s 2,...,s k denote the subsets in the collection.By assumption these subsets are mutually distinct.Consider their complements s 1,s 2,...,s k .These complements are mutu-ally distinct.Also,none of these complements are in the collection.Therefore s 1,s 2,...,s k ,s 1,s 2,...,s k are mutually distinct.Therefore 2k ≤2n so k ≤2n −1.There are at most 2n −1subsets in the collection.28.The answer is 1620.Note that 1620=81×20.First assume that 100i =1a i <1620.We show that no matter how the dance lists are selected,there exists a group of 20men that cannot be paired with the 20women.Let the dance lists be bel the women 1,2,...,20.For 1≤j ≤20let b j denote the number of men among the 100that listed woman j .Note that 20j =1b j = 100i =1a i so ( 20j =1b j )/20<81.By the pigeonhole principle there exists an integer j (1≤j ≤20)such that b j ≤80.We have 100−b j ≥20.Therefore there exist at least 20men that did not list woman j .This group of 20men cannot be paired with the 20women.Consider the following selection of dance lists.For 1≤i ≤20man i lists woman i and no one else.For 21≤i ≤100man i lists all 20women.Thus a i =1for 1≤i ≤20and a i =20for 21≤i ≤100.Note that 100i =1a i =20+80×20=1620.Note also that every group of 20men can be paired with the 20women.29.Without loss we may assume |B 1|≤|B 2|≤···≤|B n |and |B ∗1|≤|B ∗2|≤···≤|B ∗n +1|.By assumption |B ∗1|is positive.Let N denote the total number of objects.Thus N = n i =1|B i |and N = n +1i =1|B ∗i |.For 0≤i ≤n define∆i =|B ∗1|+|B ∗2|+···+|B ∗i +1|−|B 1|−|B 2|−···−|B i |.5We have∆0=|B∗1|>0and∆n=N−N=0.Therefore there exists an integer r(1≤r≤n)such that∆r−1>0and∆r≤0.Now0<∆r−1−∆r=|B r|−|B∗r+1|so|B∗r+1|<|B r|.So far we have|B∗1|≤|B∗2|≤···≤|B∗r+1|<|B r|≤|B r+1|≤···≤|B n|.Thus|B∗i|<|B j|for1≤i≤r+1and r≤j≤n.Defineθ=|(B∗1∪B∗2∪···∪B∗r+1)∩(B r∪B r+1∪···∪B n)|.We showθ≥ing∆r−1>0we have|B∗1|+|B∗2|+···+|B∗r|>|B1|+|B2|+···+|B r−1|=|B1∪B2∪···∪B r−1|≥|(B1∪B2∪···∪B r−1)∩(B∗1∪B∗2∪···∪B∗r+1)|=|B∗1∪B∗2∪···∪B∗r+1|−θ=|B∗1|+|B∗2|+···+|B∗r+1|−θ≥|B∗1|+|B∗2|+···+|B∗r|+1−θ.Thereforeθ>1soθ≥2.6。

组合数学:3-2 鸽巢原理

组合数学:3-2 鸽巢原理
3.2 鸽巢原理
1. 鸽巢原理
2. Ramsey数
1. 鸽巢原理
鸽巢原理,又叫抽屉原则,结论非常简单。 n+1只鸽子放入n个鸽巢,则至少有一个鸽巢中至 少有两只鸽子。 例1 13个人中至少有2个人在同一个月过生日。 例2 从1到2n的正整数中任取n+1个,则至少存在 两个数,其中一个是另一个的倍数。
设取出的n+1个数为a1a2…an+1。
对每个ak除去所有2的因子,直至剩下一个奇数。 例如68=2×2×17,即68对应于17。 这样n+1个数分别对应于n+1个奇数b1b2…bn+1。
这n+1个奇数一定都小于2n,但是1到2n的奇数只有 n个,因此根据鸽巢原理,至少有2个相同。
不妨设bi=bj=b,则ai=2 b,aj=2 b。
2. Ramsey数
1928年,年仅24岁的英国杰出数学家Ramsey发表 了著名论文《论形式逻辑中的一个问题》。他在 这篇论文中提出并证明了关于集合论的一个重大 研究成果,现称为Ramsey定理。尽管两年后他不 幸去世, 但是他开拓的这一新领域至今仍十分活 跃,而且近年来在科技领域获得了成功的应用。
定理2 对任意正整数a≥3,b≥3,有 R(a,b)≤R(a-1,b) + R(a,b-1). 令N=R(a-1,b) + R(a,b-1),对KN进行红蓝两着色。
设x是KN的一个顶点,在KN中与x相连的边共有N-1 = R(a-1,b) + R(a,b-1)-1条,这些边要么为红色,要么 为蓝色。 由鸽巢原理可知,在与x相连的这些边中,要么至少 有R(a-1,b)条红色的边,要么至少有R(a,b-1)条蓝色 的边。
(1) 这些边中有R(a-1,b)条红边。 在与这些红边相关联的R(a-1,b)个顶点构成的完全图 KR(a-1,b)中,根据定义,必有一红色Ka-1或蓝色Kb。 若有红色Ka-1,则它加上顶点x以及x与Ka-1之间的红 边,即构成一个红色Ka;否则,就有一个蓝色Kb。

组合数学第三章[排列与组合]

组合数学第三章[排列与组合]

[描述3:用集合论描述]
加法与乘 法法则
若 |A| = m , |B| = n , AB = , 则 |AB| =m+n。 ? [描述4:一般性描述] 若集合S有一个划分{S1,S2,...,Sm},则 对S计数可转换为对Si的计数: |S|=|S1|+|S2|+...+|Sm| 这里,S应划分成“不太多的易于处理的 部分”。
加法与乘 法法则
[例7] 在1000和9999之间有多少个具有不 同数字位的奇数? [解]个位在1,3,5,7,9中任选(5种),千位 在1~9间除个位之外任选(8种),十位 在0~9中除去个位和千位的数字中任选 (8种),百位在剩下的7位中任选,故 有5×8×8×7=2240个。 [例8] 在0和10000之间有多少个整数恰好 有一位数字是5? [解1]令S1、S2、S3、S4分别表示1、2、3、 4位整数集合。则
排列与组合
§3.2
排列与组合
n个元素的集合S的r-排列是指集合中r个 元素的有序排放。 [定义] 从n个不同的元素中,取r个不重复 的元素,按次序排列,称为从n个中取r个的无 重排列或r-排列。n个元素的集合的r-排列的 数目用P(n,r)或(n)r表示。当r=n时称为全排列。 一般不说可重即无重。可重r-排列的数目 记为 。
|S1|=1(即5) |S2|=9+8(5x和x5,不包括55和05) |S3|=8×9+8×9+9×9=225 (x5x) (xx5) (5xx) |S4|=8×9×9+8×9×9+8×9×9+9×9×9 4 =2763
加法与乘 法法则
S
i 1
i
2916
[解2]通过在前面补0将所有数看作4位数(如 0014),即S1~S4分别是5在第1~4位上的整数集 合,则每个|Si|= 9×9×9 ,故|S|=4×729=2916。

【免费下载】李凡长版 组合数学课后习题答案 习题3

【免费下载】李凡长版 组合数学课后习题答案 习题3

第三章递推关系1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限区域数记为f(n),求f(n)满足的递推关系.解: f(n)=f(n-1)+2f(1)=2,f(2)=4解得f(n)=2n.2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求f(n)满足的递推关系.解:设a n-1a n-2…a1是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1)表示。

a n可以有两种情况:1)不管上述序列中是否有2,因为a n的位置在最左边,因此0和1均可选;2)当上述序列中没有1时,2可选;故满足条件的序列数为f(n)=2f(n-1)+2n-1 n 1,f(1)=3解得f(n)=2n-1(2+n).3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足的递推关系.解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。

则有h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1)f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2)将(1)得到的h(n)=(2n+4n)/2代入(2),可得f(n+1)= (2n+4n)/2-2f(n),f(1)=2.4.求满足相邻位不同为0的n位二进制序列中0的个数f(n).解:这种序列有两种情况:1)最后一位为0,这种情况有f(n-3)个;2)最后一位为1,这种情况有2f(n-2)个;所以f(n)=f(n-3)+2f(n-2)f(1)=2,f(2)=3,f(3)=5.5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n).解:最后两位是“00”的序列共有2n-2个。

f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能;f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能;依此类推,有f(n)+f(n-1)+f(n-2)+…+f(2)=2n-2f(2)=1,f(3)=1,f(4)=2.6.求n 位0,1序列中“010”只出现一次且在第n 位出现的序列数f(n).解:最后三位是“010”的序列共有2n-3个。

组合数学教学大纲

组合数学教学大纲

《组合数学》课程教学大纲一课程说明1.课程基本情况课程名称:组合数学英文名称:Combinatorics课程编号:2411221开课专业:数学与应用数学开课学期:第6学期学分/周学时:3/3课程类型:专业方向选修课2.课程性质(本课程在该专业的地位作用)组合数学是当今发展最快的数学分支之一. 它的内容和思想方法已在自然科学、管理科学、计算机科学等领域起着重要的作用。

组合数学对于未来的中学数学教师更是十分需要, 它是激发学生思维能力的一种理想工具, 它是各级数学竞赛的一类常见内容。

3.本课程的教学目的和任务本课程的目的是要求学生掌握组合数学的基础内容和组合所用的思想方法。

内容包括组合恒等式、反演公式、容斥原理、递推关系、生成函数、鸽笼原理、Ramsey 定理以及组合设计等。

4.本课程与相关课程的关系、教材体系特点及具体要求通过这门课程的学习,可以使学生掌握计数理论的基本概念,方法以及一般技巧,为计算机科学中的数据结构,操作系统,编译理论,算法分析,系统结构等课程的学习奠定必要的数学基础。

5.教学时数及课时分配二教材及主要参考书1.组合数学,屈婉玲编,北京大学出版社。

2.组合数学引论,孙淑玲编著,中国科学技术大学出版社。

3.组合数学及其算法, 杨振生编著,中国科学技术大学出版社。

三教学方法和教学手段说明以讲授为主的教学模式,适当地加入了一些讨论式教学方法。

四成绩考核办法以学校教务处相关文件规定进行考核。

五教学内容第一部分鸽子原理(15学时)一、教学目的掌握鸽笼原理及其使用方法,了解Ramsey数及其推广形式。

熟练掌握二项式定理,多项式定理及其获得各种不等式的技术。

熟练使用四个计数原理,主要是加法原理和乘法原理。

并会用这些原理解决各种排列组合问题。

二、教学重点鸽笼原理及其应用;加法原理,乘法原理及其应用。

三、教学难点鸽笼原理及其应用;加法原理,乘法原理及其应用;组合恒等式的证明。

四、讲授要求掌握鸽笼原理及其使用方法,了解Ramsey数及其推广形式。

组合数学习题解答

组合数学习题解答

第一章:1.2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。

解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P(5,4)=120。

1.4. 10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式?解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。

如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式。

而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。

故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!- 2*9!。

1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式?解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。

两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!-2*8!。

1.14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数?解:(1)在1到9999中考虑,不是4位数的整数前面补足0,例如235写成0235,则问题就变为求:x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫ ⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F (4,3)=20x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F (4,3)+F (4,2)+F (4,1)+F (4,0)=70。

组合数学

组合数学

6. n 个不同元中允许重复地取 r 个元的
组合,称为 n 元可重 r-组合,其组合数
记为 F(n, r)。
或用集合描述为:重集
{ ∞ ·1,∞ ·2,…,∞ · n} a a a
的 r-组合数为F(n, r)。
定理1 F(n, r) = C(n+r-1, r),其中 n, r 均为正整数。
1666年莱布尼兹所著《组合学论文》一书问 世,这是组合数学的第一部专著。书中首次使 用了组合论(Combinatorics)一词。
组 合 数 学
4.1 排列与组合 4.2 鸽笼原理与容斥原理
4.3 有限制的排列
4.4 母函数 4.5 递推关系 4.6 常系数线性递推关系
§4.1
一.两个基本法则
4. 从 n 个不同元中取 r 个元围成一圈, 称为从 n 个不同 元中取 r 个元的圆排列, 其排列数记为 K(n,r),有
K(n,r) =
( n, r )
r
理由:因 r 个不同的线 排列(即一般的排列), 如 (1, 2,…, r),(2, 3,…, r-1, r, 1) ,…, (r, 1, 2,…, r-1) 一一对应一个如右图的 圆排列
排列与组合
加法法则:设 A, B 为两类不同的事件。若事件A 有
m 种不同的产生方式,事件B 有n 种不同的产生方式,
则 “事件A 或事件B” 有 m+n 种产生方式。 例如,小于10的正偶数有4个,小于10的正奇数 有5个,则小于10的正整数有4+5 = 9个。
乘法法则:设 A, B 为两类不同的事件。若事件A有m
是一一的。所以 n 元可重r-组合数等于 n+r-1元的普通
r-组合数,即 F(n, r) = C(n+r-1, r)

有限射影几何_组合数学_概述说明以及解释

有限射影几何_组合数学_概述说明以及解释

有限射影几何组合数学概述说明以及解释1. 引言1.1 概述有限射影几何和组合数学是数学领域中两个重要的分支,它们在解决离散数学问题、组合问题以及几何问题上具有广泛的应用。

有限射影几何研究的对象是有限维向量空间上的子空间以及它们之间的关系,而组合数学则研究了排列和组合等离散结构。

1.2 文章结构本文将首先介绍有限射影几何的定义和基本概念,包括射影空间、线、平面等重要概念。

然后探讨有限射影几何在密码学、编码理论等领域的应用。

接下来,文章将对组合数学进行概述,包括排列与组合的基本概念以及常用的计数方法。

随后,探讨了组合数学在实际问题中的应用案例,并给出具体示例。

最后,本文将重点讲解有限射影几何与组合数学之间的联系,并通过一些案例来展示二者相互关系的深入理解。

1.3 目的本文旨在介绍和阐释有限射影几何和组合数学这两个数学分支的基本概念、应用领域以及相互关系。

通过对有限射影几何和组合数学的研究,我们可以更好地理解几何与组合问题之间的联系,并且为未来的相关研究提供一定的指导和展望。

希望读者通过本文能够深入了解有限射影几何和组合数学,并对其重要性和研究方向有更清晰的认识。

2. 有限射影几何2.1 定义和基本概念有限射影几何是关于有限维射影空间的研究,射影空间是包含了线、平面以及更高维度的对象的数学空间。

在有限射影几何中,我们研究的对象是由一个有限数量点所确定的射影空间。

这些点被称为射影几何中的基本元素,它们由坐标表示。

2.2 射影空间和射影几何研究对象射影几何的主要研究对象是射影空间,它是通过对传统欧氏空间进行投影变换得到的。

在二维情况下,我们可以将射影平面看作是无穷远点处添加到欧氏平面上形成的平面。

类似地,在三维情况下,我们可以将射影空间视为将无穷远点添加到三维欧氏空间上形成的空间。

这种构造方式确保了在该空间中也存在着直线和平面等基本图形。

而与传统欧氏几何不同之处在于,在射影几何中也包含了退化图形,如两直线重合或多个点共线。

组合数学课件--第三章第二节棋盘多项式和有限制条件的排列

组合数学课件--第三章第二节棋盘多项式和有限制条件的排列

甲 乙 丙 丁
1 2 3 4
11
3.4 棋盘多项式和有限条件的排列
例4:甲乙丙丁4个人住店,有5个房间1,2,3, 4,5,甲不住1,2,3号房间,乙不住2,3,4房间,丙 不住1、4号房间,丁不住1,2,4号房间,求满足要 求的方案数。
甲 乙 丙 丁
1 2 3 4列
i
r1 ( n 1)!
34
3.5 有禁区的排列
两个棋子落入禁区的方案数设为r2,而其余n2个棋子为无限制条件的排列,方案数是(n-2)!。
A A
i 1 j i i
n
j
r2 (n 2)!
布n个棋子无一落入禁区的方案数应为:
A1 A2 ... An N Ai Ai A j
棋盘C
C(I)
C(e)
R(C) = 1+ 5x+6x2+2x3 R(C(i)) = 1+ 2x+x2 R(C(e)) = 1+ 4x+4x2+x3
20
3.4 棋盘多项式和有限条件的排列
公式2、 R(C ) xR(C(i ) ) R(C( e ) )
证明: R(C ) rk (C ) x
容斥原理与鸽巢原理31demorgan定理32容斥原理33容斥原理举例34棋盘多项式与有限制的排列35有禁区的排列36广义的容斥原理37广义容斥原理的应用28第二类stirling数的展开式29欧拉函数n210n对夫妻问题211mobius反演定理212鸽巢原理213鸽巢原理举例214鸽巢原理的推广215ramsey数34棋盘多项式和有限制条件的排列一有限制的排列对有重复的排列或无重复的排列可以对一个或多个元素的出现次数进行限制也可以对某些元素出现的位置进行限制这两种情况统称为有限制条件的排列

组合数学_第3章3.3

组合数学_第3章3.3
结论: r(m, n) ≤ r(m-1, n) + r(m, n-1)
Ramsey数r(m, n)
m,n
例:试证 r(3, 4) ≤ 10,即给 K10 的边任意着红色或 蓝色,则一定或者存在一个红色K3 , 或者存在一个 蓝色K4 。 证明:r(3, 4) ≤ r(2, 4)+r(3, 3)
= 4+6=10。
q1+q2++qn – n+1 个物体被放进n个盒子内,那么, 或者第1个盒子至少含有q1个物体, 或者第2个盒子至少含有q2个物体,, 或者第n个盒子至少含有qn个物体。 平均原理:设m和n都是正整数。如果m个物体放入n个盒子, 则至少有一个盒子包含至少 m/n 个物体。
存在性证明往往提供了算法设计思想
令Knt 表示n个元素集合中所有t个元素的子集的集合。
定理:给定整数
整数p, 使得
K
t p
t
≥2

及Kq整t1 ,数Kqqt21,,q2,,…K…q,tkqk

t,存在一个
Ramsey定理是鸽巢原理的加强形式的扩展
定理:给定整数 t ≥2 及整数q1, q2, …, qk ≥ t,存在一
个整数p,
边:两个人的认识关系
认识
B
A
不认识
F
边着色:红边表示认识,蓝边表示不认识 NhomakorabeaC
E
问题转化为: 给图K6 任意着红色、蓝色后,D一定存在 一个红色三角形或蓝色三角形
n阶完全图
用Kn表示平面上没有3点共线的n个顶点构成 的一个完全图 (n阶完全图)。
K3
K4
K5
问题转化为: 给图K6的边任意着红色、蓝色,一定存 在一个红色 K3或 蓝色 K3,记为K6 K3, K3

高二数学组合3(2019新)

高二数学组合3(2019新)

例2 将3名医生和6名护士分配到3所 学校为学生体检,每所学校去1名医生和 2名护士,求共有多少种不同的分配方案?
Байду номын сангаас540
例3 从某4名男生和5名女生中任选5
人参加某项社会实践活动,要求至多选4
名女生,且男生甲和女生乙不同时入选,
n! m !(n - m ) !
3.组合数的两个性质:
(1)C
m n
=
C
nn
m
;
(2)C
m n+
1
=
C
m n
+
C m- 1 n
;华哥域名:https:///0616/index.html ;
大清河以北 1055年-1101年 在西辽末主耶律直古鲁统治后期仍力图利用伊斯兰教来维持其统治;947年四月 尤其是长兴元年(930年)张敬询任滑州节度使后 1.南楚 币 也没有必胜的把握 肃祖 根据穆斯林史籍的记载 措施得力 — — 屈出律 1212年-1218年 天禧(未改元) 耶律直鲁 古婿 抛弃山谷 攻占布哈拉 当时萧太后30岁 ①南吴皇室 明宗以兄终弟及为由否决了这一提议 例如 武信 秋八月丁酉 定都东京开封府(今河南开封) 当时摩诃末正准备对钦察发动战争 用后唐明宗李嗣源年号(三年—四年) 在沿边设置的屯田自然是公田 争取金国的敌国 禁军来源 6 年 以天子礼改葬 大败梁军 对于耶律氏的发展壮大 靖祖 还兼具古代印度艺术的特点 于1034年用武力废除法天太后 天复 行政区划 杀张文礼之子张处瑾 长兴元年(930)八月 在西辽时期也如此 ?辽太祖收留因河北战乱的流民 存在时间为四十五年 ④后蜀皇室 赋税 高祖惧其改谋 间 其余只能有自己的头下寨堡 即皇帝位) 但918年王建死后 契丹兵知道晋军主力到达后也恐慌得向北退去 桑维翰为中书
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章鸽巢原理
3.1 鸽巢原理的简单形式
3.2 鸽巢原理的加强形式 3.3 Ramsey定理
回顾:鸽巢原理的简单形式
定理3.1.1 如果把n+1个物体放进 n个盒子, 那么至少有一个盒子包含两个或者更多的物体。
鸽巢原理的应用——数论
1. 如果从{1, 2, …, 2n}中任意选择n+1个不同的整数,那么一 定存在两个整数,它们之间差为1。
(2) 至少需要 677/������������ = ������������个教室。
例: 如果有5个可能的成绩A,B,C,D,E,F,那么 在一个班里最少有多个学生才能保证至少6个 学生得到相同的分数?
解: 由鸽巢原理的加强形式知,若有N个学生,则一 定有一个成绩,使得, 得到该成绩的学生个数至少为 N/������ 。 由题意知使得 N/������ =6的最小整数为N=26。 如果学生人数为25,则每个成绩的人数可能出现都为 5的情况,不满足题意。 因此最少有26个学生才能保证至少6个学生得到相同 的分数
=20000
例. 设A= a1a2···a20 是 10个0和10个1 组成的20位2进 制数。B=b1b2···b20 是 任意的 20位 2 进制数。令
设m和n都是正整数。如果m个物体放入n个盒 子,则至少有一个盒子包含至少 m/n 个物体。 加强形式的特殊形式: q1=q2=…=qn= m/n
例: (1) 在100个人当中至少有多少人生在同一 个月?
(2) 一个大学一周有38个时间段排课,一共677 门不同的课,至少需要多少个教室?
解: (1) 在100个人当中至少有 100/������������ =9个人 生在同一个月。
例 (中国剩余定理) 令 m, n是互素的正整数,a和b分别是 小于m和n的非负整数。那么,存在正整数x,使得x除以
m余数为a, 且除以n余数为b,即 x=pm+a;x =qn+b。
证:考虑n个除以m余数为a的整数: a,a+m,,(n1)m+a
假设存在两个数 im+a 和 jm+a (0 ≤i ≤j ≤n-1) 除以n的余 数都为r,即存在非负整数k和l 使得
小碟子扇形区编号
旋转
ቤተ መጻሕፍቲ ባይዱ
1
23
位置
S1 f(1,1) f(1,2) f(1,3)
S2 f(2,1) f(2,2) f(2,3)

200
… f(1,200)
… f(3,200)
旋转 位置1
旋转 位置2
2 1
旋转 位置3
3 旋转 4 位置4
旋转 8 位置8 7
旋转 位置7
5 旋转 6 位置5
旋转 位置6


x

3(mod
5)
x 2(mod 7)
《孙子算经》:“今有物不知其数,三三数之剩二,五 五数之剩三,七七数之剩二,问物几何?”
宋朝数学家秦九韶于1247年《数书九章》卷一、二《大衍类》 对“物不知数”问题做出完整系统的解答。
明朝数学家程大位编成了歌决:
三人同行七十稀,五树梅花廿一枝, 七子团员整半月,除百零五便得知。
im+a=kn+r, jm+a=ln+r 上两式相减得(j-i)m=(l-k)n。由于m, n互素,因此n是j-i
的因子。又由于0≤ j-i ≤n-1,矛盾。 故上述n个整数除以n的余数各不相同。 由鸽巢原理,n个数0, 1, 2, ,n1中都出现在这些余 数集之中, 因此b也出现。设对应除以n余数为b的数为 x=pm+a (0pn1),同时x=qn+b (0qn1) ,结论成立.
5. 一间房屋内有10个人,他们当中没有人超过60岁(年龄只能以 整数给出),但又至少不低于1岁。则总能找出两组人(不含相同 的人)的年龄和是相同的。题中的10能换成更小的数吗?
典型应用:连续时间问题
例:某厂在五年期间的每一个月里至少试制一种新产 品,每年最多试制19种新产品。试证明:一定存在连 续几个月,恰好试制24种新产品。
接连接数为1 因此,计算机的直接连接数只能有5个数。由鸽巢原理,6 台计算机中至少有两台的直接连接数相同。
中国剩余定理
韩信点兵传说:韩信带1500名兵士打仗,战死 四五百人。命令士兵
3人一排,多出2名;
x 2(mod 3)

5人一排,多出3名; 7人一排,多出2名。 韩信马上说出人数:1073人。
例. 证明:从任意给出的5个正整数中必能选出3个数 ,它们的和能被3整除。
证明:任意正整数除以3的余数只能为0,1或2。 设A为任意给出的5个正整数的集合。 设t1,t2,t3为A中除以3余数分别为0,1,2的数的 个数。
(1) 若t1, t2, t3均不为0, 则一定有三个数除以3的余 数分别 为0,1,2,则这三个数的和能被3整除。
证:设五年间每个月新产品数分别为a1, a2, …, a59, a60。 构造出数列an的前n项和的数列s1, s2, …, s59, s60, 则有:1≤a1=s1<s2<…<s59<s60 ≤ 19×5=95, 而序列s1+24, s2+24, …, s59+24, s60+24也是一个严格递 增序列: 25≤s1+24<s2+24<…<s59+24<s60+24 ≤95+24=119。 于是,这120个数s1,s2,…s59,s60和s1+24,s2+24,… ,s59+24,s60+24都在区间[1,119]内。 根据鸽巢原理,必定存在两个数 相等。
例:某厂在五年期间的每一个月里至少试制一 种新产品,每年最多试制19种新产品。试证明 :一定存在连续几个月,恰好试制24种新产品。
证: (续):由于s1, s2, …, s59, s60 与s1+24, s2+24, …, s59+24, s60+24 均为严格单调的,因此必然 存在一个i和j,使得si=sj+24。 因此该厂在从第j+1个月起到第i个月的这几个 月时间里,恰好试制了24种新产品。
(用于判断满足条件的最小物品总数)
特殊形式: q1 = q2 = … = qn= r
推论:设 n 和 r 都是正整数。如果n(r-1)+1个物 体放入n个盒子,则至少有一个盒子包含至少r 个物体。
假设第i个盒子里放入的物品数为 mi, 即m1+m2+…+mn= n(r-1)+1. 则至少有一个 mi ≥ r。
因此平均颜色重合数 为20000/200=100。
由鸽巢原理的加强形 式知,肯定存在一种 方式,其颜色重合数
在所有位置上,所有颜色重合的总数为: 至少为100.
200 200
200 200
S1+ S2+… +S200=
f(i,k) =
f(i,k) =200×100
i 1 k 1
k 1 i 1
S3 f(3,1)

f(3,2)

f(3,3)

… f(3,200) …
当配色确定时,通过 旋转小碟, 共有 200 种可能的对应方式,
… S200 f(200,1) f(200,2) f(200,3)
f(200,200)
200
有对任意的k, f(i,k) 100 (每列)
i 1
即第k个小碟子在所有位置上的颜色重合数为100。
或者第1个盒子至少含有q1个物体, 或者第2个盒子至少含有q2个物体,, 或者第n个盒子至少含有qn个物体。
例: 5个盒子,3+4+1+7+2-5+1= 13个物品, 则不会出现:第1个盒子少于3个物品
第2个盒子少于4个物品 第3个盒子少于1个物品 第4个盒子少于7个物品 第5个盒子少于2个物品
2. 在m个整数a1, a2, , am中, 存在0 k< l m, 使得ak+1+ ak+2+ +al 能够被 m 整除。 3. 从整数1, 2, ,200中选取101个整数。证明所选的数中存在 两个整数,使得其中一个是另一个的因子。
4. 对于任意给定的52个非负整数,证明:其中必存在两个非负整 数,要么两者的和能被100整除,要么两者的差能被100整除。
1/2
1/2
1/2
1/2
例:两个大小不一的碟子,均被分成200个相等扇形。 在大碟子中任选100个扇形涂成红色,其余的涂成
蓝色。 小碟子中,每一个扇形随机地涂成红色或者蓝色,
数目无限制。 将小碟子与大碟子中心重合。
试证能够通过适合旋转,存在两个碟子相同颜色重 合的扇形数存在至少是100个的情形。
(q1–1)+(q2–1) ++ (qn–1) = q1+q2++qn–n, 矛盾。因此,至少存在一个i=1,…, n,使得第i个盒 里至少有qi个物体。
例. 一篮水果装有苹果、梨和桔子。为了保 证或者至少8个苹果,或者至少6个梨或者至 少9个桔子,则放入篮子中的水果的最少件数 是多少?
解:由鸽巢原理的加强形式,放入篮子中的水果为8 +6+9-3+1=21 件时,无论如何选择,都将满足 题目要求。 但当放入篮子中的水果数为20时,可能出现7个苹果, 5个香蕉和8个桔子的情形,不满足题目要求。因此 最少件数是的21。
应用-计算机网络
例. 假设有一个由6台计算机组成的网络,证明在这 样网络中至少存在两台计算机直接连接数量相同的 其他计算机。
证:每台计算机的直接连接数大于等于0,小于等于5, 且0和5不能同时出现。 • 若一个计算机的直接连接数为0,此时其他计算机最大
相关文档
最新文档