小升初应用题解题技巧
小学数学奥数解题技巧 第96讲典型应用题
3
小升初数学解题技巧 第96讲 典型应用题
【平均数问题】
例3 某班在一次数学考试中,平均成绩是78分,男、女生各自的平均成绩是 75.5分和81分。问:这个班男、女生人数的比是多少?
讲析:因男生平均比全班平均少2.5分,而女生平均比全班平均的多3分, 故可知
6
小升初数学解题技巧 第96讲 典型应用题
【行程问题】
例3甲班与乙班学生同时从学校出发去某公园。甲班步行的速度是每小时4千 米,乙班步行的速度是每小时3千米。学校有一辆大客车,它的速度是每小时 48千米。这辆车恰好能坐一个班的学生。为了使两班学生在最短时间内到达, 那么甲班学生与乙班学生需要步行的距离之比是____。
讲析:如图5.30,当乙丙在D点相遇时,甲已行至C点。可先求出乙、两相 遇的时间,也就是乙行距离AD的时间。 乙每分钟比甲多走 10米,多少分钟就多走了CD呢?而CD的距离,就是甲、 丙2分钟共行的距离:(70+50)×2=240(米)。
于是可知,乙行AD的时间是240÷10=24(分钟)。 所以,AB两地相距米数是(70+60)×24=3120(米)
如果评1个一等奖,2个二等奖,3个三等奖时,每个一等奖的奖 金为:
9
小升初数学解题技巧 第96讲 典型应用题
【倍数问题】
例3 甲、乙两个小朋友各有一袋糖,每袋糖都不到20粒。如果甲给乙一定数量 的糖后,甲的糖就是乙的糖粒数的2倍。如果乙给甲同样数量的糖后,甲的糖 就是乙的糖粒数的3倍。那么,甲、乙两个小朋友共有糖____粒。
5
小升初数学解题技巧 第96讲 典型应用题
【行程问题】
例2 甲、乙两车分别从A、B两城同时相向而行,第一次在离A城30千米处相 遇。相遇后两车又继续前行,分别到达对方城市后,又立即返回,在离A城42 千米处第二次相遇。求A、B两城的距离。
数学应用题答题技巧
数学应用题答题技巧
1. 嘿,仔细读题可是关键啊!就像你走路得看清路一样。
比如题目说小明有 5 个苹果,给了小红 2 个,问还剩几个。
你要是没看清数字,那不就答错啦!所以读题要认真仔细,可别马虎哟!
2. 画图解题超有用的呀!这就好比给你一团乱麻,你画个图不就理清啦。
像有道题是算几个图形的面积,你画个图出来,一目了然,答案不就轻松找到啦!
3. 找关键信息很重要呢!好比在一堆东西里找宝贝。
比如题目里说周末去公园,那这就是个重要提示呢,做题可得抓住这些关键啊,不然咋答对呢!
4. 大胆假设也不错呀!就像摸着石头过河。
比如算一个数除以另一个数是多少,你先假设一个数试试看,说不定就能找到规律呢!
5. 检查答案可不能忘啊!这就像出门前得照照镜子看看有没有问题。
做完题检查下步骤对不对,算的数对不对,这样才放心呀!
6. 多思考几种方法呀,别在一棵树上吊死!好比去一个地方可以走好几条路呢。
一道题可能有多种解法,都试试,说不定有更简单快捷的呢!
7. 不要死磕难题呀,该放就放!就像爬山遇到陡壁,先绕过去嘛。
要是一道题难住了,别一直纠结,先去做后面的,最后再回来看看,说不定就有灵感啦!
总之,掌握这些数学应用题答题技巧,做题就会又快又准,不信你试试呀!。
做数学应用题的技巧
做数学应用题的技巧做数学应用题的技巧一.归一问题解答含义及方法牢记题中的数量关系,仔细阅读应用题给出的意思。
含义:在解答应用题时,先要求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
数量关系:总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数解答思路及方法:先求出单一量,以单一量为标准,求出所要求的数量。
二.归总问题解答含义及方法含义:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路和方法: 先求出总数量,再根据题意得出所求的数量。
三.和差问题解答含义及方法含义:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
数量关系:大数=(和+差)÷ 2 小数=(和-差)÷ 2解题思路和方法:简单的题目可以直接套用公式;复杂的题目变通后再用公式。
四.和倍问题解答含义及方法含义:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
数量关系:总和÷(几倍+1)=较小的数总和 - 较小的数 = 较大的数较小的数×几倍 = 较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。
五.差倍问题解答含义及方法含义:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
数量关系:两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。
小升初分数应用题
小升初分数应用题 专题简析解答分数应用题关键是正确理解、运用单位“1”。
题中如果有几个不同的“1”,必须根据具体情况,将不同的单位“1”转化成统一的“1”,使数量关系简单化,达到解决问题的效果。
在解答分数应用题时,要注意以下几点: 1、题中有几种量相比较时,要选择与各个已知条件关系密切,便于直接解答的数量为“1”。
2、题中数量发生变化的,一般要选择不变量为“1”。
3、掌握转化单位“1”的方法。
如x 是Y 的a b ,则y 是x 的b a ,则x 是总数的ba a,诸如此类的一些转化方法。
4、是中有明显的等量关系,也可以用列方程的方法去解。
5、分数应用题也可用把未知量具体化的方法去解答。
典型例题例1.幼儿园老师把一袋糖分给甲、乙、丙三个小朋友。
先把总数的51多6粒分给甲,再把剩下的51多9粒分给乙,最后剩下的都给了丙,结果3人得至的糖一样多。
这袋糖共有多产粒?例2.水果市场运来香蕉、苹果、橘子、梨四种水果,其中橘子、苹果共30吨,香蕉、橘子、梨共45吨。
橘子正好占运来水果总数的132。
一共运来水果多少吨?例3.某车间男工人数是女工人数的两倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?例4.人民公园里原来柳树是树木总棵数的52。
今年又栽了50棵。
这样柳树的棵数就占了全部的115。
原来一共有多少棵?例5.新胜小学原来短跳绳的根数是长短跳绳总数的85。
后来又买进24根长跳绳,这时短跳绳是总数的125。
短跳绳有多少根?例6.甲、乙、丙三人合做一批零件。
甲做的是乙、丙的21,乙做的是甲、两的31,丙做了25个,这批零件有多少个?例7.甲筐苹果比乙筐苹果得14千克。
甲筐卖出74,乙筐卖出52后,两筐剩下的苹果的重量相等。
原来甲筐朋多少千克苹果?例8.一辆汽车由甲地开住乙地,31的路程是平路,速度是每小时40千米。
31的路程是上坡路,速度是每小时30千米;31的路程是下坡路,速度是每小时60千米。
小升初数学应用题工程问题专题解题技巧练习题
工程问题应用题的解答方法1、工程问题的基本数量关系是:工作总量=工作效率×工作时间。
解题时,要抓住这一关系,灵活地运用这一数量关系提高解题能力。
2、以工作效率为突破,工作效率是解答工程问题的要点。
如果能直接求出工作效率,再解答其他问题就较容易,如果不能直接求出工作效率,就要仔细分析单独或合作的情况,想方设法求出单独做的工作效率或合作的工作效率。
3、抓住完成工作的几个过程或几种变化,工程问题中常出现单独做,几人合作或轮流做,分析时一定要对应工作每一阶段的工作量、工作时间来确定单独做或合作的工作效率。
4、抓住总题中的工作时间比、工作效率比、工作量比或隐蔽的条件来确定工作效率,或者确定工作效率之间的关系。
一般来说,单独的工作效率或合作的工作效率是解答工程问题的关键。
◎工程问题能力提升训练1、修一条路,甲队单独修20天可以修完,乙队单独修25天可以修完。
现在两队合修,中途甲队休息3天,乙队休息若干天,这样一共用了15天才修完。
乙队休息了几天?2、一项工作,如果单独做,小张需10天完工,小李需12天完工,小王需15天完工。
现在三人合作,中途小张先休息了1天,小李再休息3天,而小王一直工作到完工为止。
这样一共用了几天时间?3、加工一批零件,甲独做需6天完成,乙独做需8天完成,两人同时加工,完成任务时,甲比乙多做30个,这批零件共有多少个?4、两支粗细、长短不同的蜡烛,长的一支可以点6小时,短的一支可以点9小时,将它们同时点燃,两小时后,两支蜡烛所余下的长度正好相等。
原来短蜡烛的长度是长蜡烛长度的几分之几?5、搬运一个汽车的货物,甲需12天,乙需15天,丙需20天。
有同样的装货汽车M和N,甲搬运M汽车的货物,乙同时搬运N汽车的货物。
丙开始帮助甲搬运,中途又去帮助乙去搬运,最后同时搬完两个汽车的货物。
丙帮助甲搬运了几小时?6、一项工程,甲独做需12小时,乙独做需18小时,若甲先做1小时,然后乙接替甲做1小时,再由甲接乙做1小时,……,两人如此交替工作,问完成任务时共用多少小时?7、一项工程,甲独做需15小时完成,乙独做需18小时,丙需20小时完成。
【免费】小升初数学:4大类必考应用题解题方法和技巧详解
小升初数学:4大类必考应用题解题方法和技巧详解对于基础知识的复习,我们要弄清来龙去脉,沟通相互关系,掌握推证过程,注意表达形式,归纳记忆方法,明确主要用途。
1一般应用题一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。
●要点:从条件入手?从问题入手?从条件入手分析时,要随时注意题目的问题从问题入手分析时,要随时注意题目的已知条件。
●例题如下:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。
剩下的如果平均每天生产150个,还需几天完成?●思路分析:已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。
已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。
2典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。
(一)求平均数应用题●解答求平均数问题的规律是:总数量÷对应总份数=平均数注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。
●例题如下:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?●思路分析:要求这天平均每小时碾米约多少千克,需解决以下三个问题:1、这一天总共碾了多少米?(一天包括上午、下午)。
2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。
3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。
)(二)归一问题●归一问题的题目结构是:题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。
●解题规律先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。
小学数学应用题解题技巧大全
⼩学数学应⽤题解题技巧⼤全⼩升初应⽤题⼤全,可分为⼀般应⽤题与典型应⽤题。
1、归⼀问题【含义】在解题时,先求出⼀份是多少(即单⼀量),然后以单⼀量为标准,求出所要求的数量。
这类应⽤题叫做归⼀问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求⼏份的数量另⼀总量÷(总量÷份数)=所求份数【解题思路和⽅法】先求出单⼀量,以单⼀量为标准,求出所要求的数量。
例1:买5⽀铅笔要0.6元钱,买同样的铅笔16⽀,需要多少钱?解(1)买1⽀铅笔多少钱?0.6÷5=0.12(元)(2)买16⽀铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。
例2:3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式:90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例3:5辆汽车4次可以运送100吨钢材,如果⽤同样的7辆汽车运送105吨钢材,需要运⼏次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运⼏次?105÷35=3(次)列成综合算式:105÷(100÷5÷4×7)=3(次)答:需要运3次。
2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、⼏⼩时(⼏天)的总⼯作量、⼏公亩地上的总产量、⼏⼩时⾏的总路程等。
小升初数学50道经典应用题解题思路+模板太全了
已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
2020小升初百分数应用题(商品利润问题、浓度问题)附详细答案
百分数应用题(商品利润问题)考点归纳一、利润和折扣问题利润问题是小升初考试中经常考察的内容。
解决利润问题,首先要明白利润问题里的常用词汇成本、定价(售价)、利润率、打折的意义,通过分析产品买卖前后的价格变化,从而根据公式解决这类问题。
成本:商品的进购价,也称之为买入价、成本价。
售价:商品被卖出时的标价,也称之为卖出价、标价、定价、零售价。
利润:商品卖出后商家所赚到的钱称之为利润。
二、常见的解题办法利润问题的整体难度不大,它其实是一类特殊的比例问题。
解决利润问题得主要方法有;1.逻辑思想:利用经济类公式,抓住变量(一般情况下成本是不变量)。
2.方程思想:列一元一次方程、二元一次方程解决经济问题。
3.假设思想(带入数值法):用于求利润率、百分数,不涉及实际价钱关系的时候可以用假设思想,假设一些特殊数字进行求解。
1.某商人进入了一批服装,每件成本是160元,如果按定价240元销售,每件衣服可以获利多少元?每件衣服的利润率是多少?2.一套服装,如果定价240元,将获利60%。
如果按照定价打八折出售,将获利多少元?3.商品以每双13元的价格购进一批凉鞋,售价为14.8元。
卖到还剩5双时,除去购进这批凉鞋的成本外,还获利88元。
问:这批凉鞋共有多少双?4.某商品按照定价的80%出售(即打八折)仍能获得20%的利润,定价的期望的利润百分数是多少?5.一台电视机的价格增加它的20%以后,又减少它的20%,现价格比原价降低了百分之几?6.某种商品按照定价的75%(七五折出售),仍能获得5%的利润,定价时期望获得的利润是多少?7.某种商品按20%的两条定价,然后又打八折出售,结果亏损64元,这个商品的成本是多少元?浓度问题考点归纳一、相关概念和数量关系浓度问题是一种常见的百分数应用题。
在日常生活中,“汤咸不咸”这些问题都是有关难度的问题。
汤咸的程度是有盐和水的比值所决定的。
若水的量一定,则含盐量越多,汤就越咸。
这里的水就是溶剂,盐就是溶质,盐和水在一起就是溶液,我们把盐和盐水的比值称为盐水的难度。
小升初数学第5讲 还原法解应用题
基准数目来进行变化。
3.一般所求的是最初(原来)的总数。
例题1
将小明奶奶今年的年龄依次减去15并乘1/4,再加上4 后除以1/5,恰好是100岁,小明奶奶今年多少岁?
试一试1
有一老人说:“把我的年龄加17并乘1/4,再减去15后除 以1/10,恰好是100岁。”这位老人今年多少岁?
与下层同样多的书放到下层,最后从下层取出与上层同样 多的书放到上层,这时三层所放的书本数 相同,这个书
架的上、中、下三层原来各有多少本书?
6、有甲乙两桶油,从甲桶倒出1/4给乙桶,又从乙桶 倒出1/3给甲桶,这样,两桶各有24千克。原来甲乙 两桶 有油各多少千克?
小升初数学第五讲 还原法解应用题
还原法:解 题时,我们从最后的结果出发,运用加与
减、乘与除之间的互逆关系,从后往前一步一步的逆推, 从而 推算出原数。也叫逆推法
能运用还原法去解答的应用题,基本含有下列特征:
1.已知的具体数量是最后的结果,把原来的总数确定
为单位“1”。
2.每一次变化都以上一次(或上上一次)所余下的为
例题6
小明和小红各有若干块糖,小明拿出20%给小红后, 小红又拿出25%给小明,这时他们各有18块糖,问小红、 小明原来各有多少块糖?
试一试 6
甲、乙两个水桶共装水24升,先从甲桶倒出1/5给乙桶 ,接着再从乙桶倒出1/4给甲桶,这时两桶装水一 样多。 原来两桶各装水多少升?
课内练习
试一试4
有一批水泥,第一天用去了总数1/2多1吨,第二天用 去了余下的1/3少2吨,第三天用去了再余下1/4, 最后还 剩下12吨,原来这批水泥有多少吨?
例题5
甲、乙、丙三人的钱数各不相同,甲最多,他拿
小升初数学数学应用题解题方法总结
小升初数学数学应用题解题方法总结在小升初数学中,数学应用题是一个非常重要的内容,也是考察学生综合能力的一个方面。
解题方法的灵活运用能力不仅能够帮助学生高效解决问题,还能培养他们的逻辑思维和数学思想的培养。
下面将总结一些小升初数学应用题解题方法,希望能够对学习者有所帮助。
一、整体感知法整体感知法是应用题解题的一种基本方法,它要求学生从整体上把握问题的主要内容和要求。
在解答应用题时,首先要认真阅读题目,理解题目的条件和要求,分析问题的实质,确定解题的思路。
然后,根据题目的要求制定解题计划,运用所学的数学知识解决问题,最后检查答案是否合理。
举个例子来说明整体感知法的应用。
小明买了一条裤子,单价为180元,还买了一件T恤,单价为120元,小明共花了600元,请问他买了多少条裤子和几件T恤?解:首先,我们可以设小明买了x条裤子和y件T恤。
根据题目条件,我们可以列出一个方程组:180x + 120y = 600。
根据整体感知法,我们分析题目的实质是求解方程组,因此我们需要使用代入法、消元法等求解方程组的方法,最后得到x = 2,y = 3。
因此,小明买了2条裤子和3件T恤。
二、图像表达法图像表达法是解决应用题的另一种有效的方法。
它通过绘制图形、图表等形式来分析问题,帮助学生更直观地理解问题的本质,从而找到解决问题的方法。
例如,有一个长为12cm、宽为8cm、高为5cm的长方体,现要在它的上面粘贴一个高为4cm的正方形纸片,求纸片的边长。
解:我们可以根据题意,绘制出一个长方体以及纸片的示意图,如下图所示:(图略)根据图像表达法,我们可以看出纸片的边长就等于纸片边上的线段AB的长度。
观察图中可以看出,线段AB的长度等于正方体的宽减去纸片的高,即8cm - 4cm = 4cm。
所以,纸片的边长为4cm。
三、逻辑推理法逻辑推理法是解决应用题的一种常用方法。
它通过逻辑分析和推理,利用已知条件和题目要求之间的关系,进行问题求解。
小学(初中年级及小升初)数学解题技巧 非常实用
小学(初中年级及小升初)数学解题技巧非
常实用
小学(初中年级及小升初)数学解题技巧
1.理解问题
在解题前,首先要仔细阅读并理解问题的要求。
注意理解问题中的关键词和条件,确保清楚问题的目标。
2.制定解题计划
在理解问题后,制定一个解题计划是很重要的。
将问题分解为更小的步骤或子问题,并确定解决每个步骤或子问题所需的方法。
3.使用合适的解题方法
针对不同的数学问题,选择合适的解题方法是至关重要的。
研究和掌握常见的解题技巧,如分析图表、计算、估算、列方程等。
4.注重细节和精确性
在解题过程中,要注重细节和精确性。
注意计算中的运算符、单位、符号等,确保答案的准确性。
5.反复练和巩固
研究数学解题技巧需要持续的练和巩固。
反复练不同类型的数学问题,提高解题能力和熟练度。
6.寻求帮助和互助
在解题过程中,如遇到难题或困惑,不要犹豫寻求帮助。
可以向老师、同学或家长请教,互相交流解题的思路和方法。
以上是小学(初中年级及小升初)数学解题的一些实用技巧,希望对你有所帮助!。
小升初数学应用题之鸡兔同笼问题解题技巧
小学数学应用题
——鸡兔同笼问题·解题技巧
一、数量关系
第一鸡兔同笼问题:
①假设全都是鸡,则有
兔数=(实际脚数-2×鸡兔总数)÷(4-2)
②假设全都是兔,则有
鸡数=(4×鸡兔总数-实际脚数)÷(4-2)
第二鸡兔同笼问题:
①假设全都是鸡,则有
兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)
②假设全都是兔,则有
鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)
二、鸡兔同笼公式
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
公式3:总脚数÷2-总头数=兔的只数
总只数-兔的只数=鸡的只数
公式4:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2
鸡的只数=鸡兔总只数-兔总只数
公式5:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2
兔的只数=鸡兔总只数-鸡的只数
公式6:4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)。
六年级下册数学-小升初数学《走进名校》奥数素养——解应用题常用方法与技巧问题(含解析)人教版
小升初数学《走进名校》奥数素养——解应用题常用方法与技巧问题一、巧用等量关系有些应用题已知条件间的关系比较复杂。
但是,如果能从这些复杂的关系中,找到一种合适的等量关系,则常常可使问题较简捷地解答出来。
这是一种力求寻找和巧用最佳等量关系的解题方法。
例如“甲乙二人需要做同样多的零件数,甲比乙每天多做5个,乙因病中途休息了3天,所以8天后甲做的零件数刚好是乙做的零件数的2倍。
求这时甲乙二人各做的零件个数。
”由题中的条件,可以得到两组等量关系:甲每天做的个数-乙每天做的个数=5………①甲8在做的个数=乙8天后做的个数×2………②设甲每天做x个,则乙每天做(x-5)个;设乙每天做x个,则甲每天做(x+5)个。
设元列方程以后,若使用等量关系①,很明显,方程的解答是比较繁琐的,因为分数需要通分。
于是,我们便选择等量关系②来列方程解题:设乙每天做零件x个,则甲每天做零件(x+5)个。
于是,有方程(x+5)×8=2×(8-3)x进而可知,甲每天做的是 20+5=25(个)8天后甲做的是 25×8=200(个),8天后乙做的是 20×(8-3)=100(个)(答略)36名学生到乙校学习,则甲乙两校学生人数相等。
甲乙两校原来各有学生多少?”在题目中,可以找到三组等量关系:甲校原来人数-乙校后来人数=36…………①甲校原来人数-36=乙校原来人数+36…………②经过比较,利用等量关系①列方程解题,显然比较简便:设两校共有x人,可得方程为乙校原有720-396=324(人)(答略)在利用等量关系解题时,有时候通过“单位1”,可以找到最巧妙的解法。
比方下面的这一道工程问题:“一项工程,甲独做24天完成,丙独做40天完成,甲、乙、丙三人合做,10天可以完成。
这项工程如果由乙来独做,多少天可以完成?”在题目条件中,我们可以得到下面的两组等量关系:乙工效=三人工效和-(甲+乙)的工效…………①乙工效×工时=工作总量…………………………②然后,通过巧用“单位1”,还可找到更好的办法:设乙独做,x天可以完成。
小升初数学巧解应用题:一块草地上牛吃草问题五大解题步骤
小升初数学巧解应用题:一块草地上牛吃草问题五大解题步骤英国大科学家牛顿曾经出过一道饶有趣味的题目,这就是著名的牛吃草问题:有一片牧场,已知饲牛10头,20天把草吃完;若饲牛15头,则10天把草吃完;饲牛25头,问几天把草吃完?解答此题的难点在于每天有新的草产生,草的数量总是在不断变化,也就是说这类问题的工作总量是不固定的,一直在匀速变化。
因此,解答这类题目的关键是想办法从变化中找出不变量。
牧场上原有的草总量是不变的,新长出的草虽然在变化,但因为我们假设它是匀速生长,所以每天新长出的草量也是不变的。
正确计算草地上原有的草量及每天新长出的草量,问题就会迎刃而解。
一、基本知识点1、含义牛吃草问题又称消长问题或牛顿牧场,就是牛在牧场上吃草而草又不断生长的问题,它涉及到三种数量:原有的草、新长出的草、牛吃掉的草,人们把涉及到这三种量的应用题,叫作牛吃草问题,也就牛顿问题。
2、特点(1)随着时间的增长,每天有新的草产生,草的数量总是在不断变化;(2)草的增长速度不变,即每天新长出的草量不变;(3)草场原有草的量不变;(4)每头牛每天的食草量不变。
3、口诀每牛每天的吃草量假设是份数1,A头B天的吃草量是几,M头N天的吃草量又是几,大的减去小的,除以二者对应的天数差,结果就是每天长草量。
原有草量就是A头B天的吃草量减去B天乘每天长草量。
将未知吃草量的牛分为两个部分:部分牛先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。
4、数量关系(1)每天长草量=(对应牛的头数×吃得较多天数-对应牛的头数×吃得较少天数)÷(吃得较多天数-吃得较少天数);(2)原有草量=牛头数×吃的天数-每天长草量×吃的天数;(3)吃的天数=原有草量÷(牛头数-每天长草量);(4)牛头数=原有草量÷吃的天数+每天长草量5、解题思路(1)假设1头牛1天吃草量为“1”;(2)求出每天长草量;(3)求出牧场原有草量;(4)求出每天实际消耗原有草量(牛吃的草量-每天长草量=消耗原有草量);(5)求出可吃天数。
小升初数学应用题
4、甲地到乙地的全程是 60 千米,小明骑自行车从甲地到乙地每小时行 15 千米,从乙地到 的甲地每小时行 10 千米,求小明往返的平均速度。
5、 一艘轮船从甲港出发到乙港,顺水航行每小时行 25 千米,8 小时到达乙港,接着逆水 航行往回返,每小时行 20 千米,求这艘轮船往返一次的平均速度。
6、陈林上学期期末考试成绩:语文 80 分,音乐 92 分,体育 81 分,美术 85 分,数学成绩比五科平均 成绩高 6 分。请你算一算陈林的数学成绩和五科平均成绩分别是多少?
(2)假设在水池下面安装了排水管丙管,单开丙管 3 小时可以把一满池水放完。如果三管同时开放, 多少小时才能把一空池注满水?
9、一项工程,单独完成,甲队要 50 天,乙队要 75 天,两队合做途中,乙队休息几天,这样共用 40 天完成。乙队休息了多少天?
10、一件工作,甲独做要 20 天,乙独做出差了几天?
应用题分类练习 一、工程问题:
它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。 解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵 活运用公式。 数量关系式:工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率 工作总量÷工作效率和=合作时间 例 1、 一段公路,甲队单独修 10 天完成,乙队单独修 15 天完成。两队合修几天可以完成?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出 1 小时后两车同向而行,快车在慢车后面,快车开出后多少小时 追上慢车?
5、 甲乙两人在同一道路上从相距 5 千米的 A、B 两地同向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙, 再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为 15 千米/小时,求此过程中,狗跑的总路程是多少?
小升初应用题解题技巧
小升初应用题解题技巧小升初应用题解题技巧学好数学的关键就在于要适时适量地进行总结归类。
以下是店铺整理的小升初应用题解题技巧,欢迎阅读。
小升初应用题解题技巧篇1(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。
(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。
读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。
也可以复述条件和问题,帮助理解题意。
b选择算法和列式计算:这是解答应用题的中心工作。
从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。
c检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。
如果发现错误,马上改正。
d答案:根据计算的结果,先口答,逐步过渡到笔答。
(3)解答加法应用题:a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。
b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。
(4)解答减法应用题:a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。
b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。
c求比一个数少几的数的应用题:已知甲数是多少,,乙数比甲数少多少,求乙数是多少。
(5)解答乘法应用题:a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。
b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。
(6)解答除法应用题:a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。
b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。
c求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初应用题大全,可分为一般应用题与典型应用题。
1.归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。
这类应用题叫做归一问题。
【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。
例1买5支铅笔要元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱÷5=(元)(2)买16支铅笔需要多少钱×16=(元)列成综合算式÷5×16=×16=(元)答:需要元。
例23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。
例35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材5×7=35(吨)(3)105吨钢材7辆汽车需要运几次105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。
2.归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1服装厂原来做一套衣服用布米,改进裁剪方法后,每套衣服用布米。
原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米×791=(米)(2)现在可以做多少套÷=904(套)列成综合算式×791÷=904(套)答:现在可以做904套。
例2小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页24×12=288(页)(2)小明几天可以读完《红岩》288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。
例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克50×30=1500(千克)(2)这批蔬菜可以吃多少天1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。
3.和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。
【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。
例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。
例2长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解长=(18+2)÷2=10(厘米)宽=(18-2)÷2=8(厘米)长方形的面积=10×8=80(平方厘米)答:长方形的面积为80平方厘米。
例3有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。
由此可知甲袋化肥重量=(22+2)÷2=12(千克)丙袋化肥重量=(22-2)÷2=10(千克)乙袋化肥重量=32-12=20(千克)答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?解“从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此甲车筐数=(97+14×2+3)÷2=64(筐)乙车筐数=97-64=33(筐)答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4.和倍问题【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。
【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?解(1)杏树有多少棵248÷(3+1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:杏树有62棵,桃树有186棵。
例2东西两个仓库共存粮480吨,东库存粮数是西库存粮数的倍,求两库各存粮多少吨?解(1)西库存粮数=480÷(+1)=200(吨)(2)东库存粮数=480-200=280(吨)答:东库存粮280吨,西库存粮200吨。
例3甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?解每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。
把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为(52+32)÷(2+1)=28(辆)所求天数为(52-28)÷(28-24)=6(天)答:6天以后乙站车辆数是甲站的2倍。
例4甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?解乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;这时(170+4-6)就相当于(1+2+3)倍。
那么,甲数=(170+4-6)÷(1+2+3)=28乙数=28×2-4=52丙数=28×3+6=90答:甲数是28,乙数是52,丙数是90。
5.差倍问题【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。
【数量关系】两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
例1果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。
求杏树、桃树各多少棵?解(1)杏树有多少棵124÷(3-1)=62(棵)(2)桃树有多少棵62×3=186(棵)答:果园里杏树是62棵,桃树是186棵。
例2爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解(1)儿子年龄=27÷(4-1)=9(岁)(2)爸爸年龄=9×4=36(岁)答:父子二人今年的年龄分别是36岁和9岁。
例3商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此上月盈利=(30-12)÷(2-1)=18(万元)本月盈利=18+30=48(万元)答:上月盈利是18万元,本月盈利是48万元。
例4粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?解由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。
把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此剩下的小麦数量=(138-94)÷(3-1)=22(吨)运出的小麦数量=94-22=72(吨)运粮的天数=72÷9=8(天)答:8天以后剩下的玉米是小麦的3倍。
6.倍比问题【含义】有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。
【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。
例1100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解(1)3700千克是100千克的多少倍3700÷100=37(倍)(2)可以榨油多少千克40×37=1480(千克)列成综合算式40×(3700÷100)=1480(千克)答:可以榨油1480千克。
例2今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解(1)48000名是300名的多少倍48000÷300=160(倍)(2)共植树多少棵400×160=64000(棵)列成综合算式400×(48000÷300)=64000(棵)答:全县48000名师生共植树64000棵。
例3凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元全县16000亩果园共收入多少元?解(1)800亩是4亩的几倍800÷4=200(倍)(2)800亩收入多少元11111×200=2222200(元)(3)16000亩是800亩的几倍16000÷800=20(倍)(4)16000亩收入多少元2222200×20=(元)答:全乡800亩果园共收入2222200元,全县16000亩果园共收入元。