生物化学知识点
生物化学知识点

生物化学名词解释及根本概念整理第一章蛋白质化学Ⅰ根本概念1、等电点〔pI〕:使氨基酸离解成阳性离子和阴性离子的趋势和程度相等,总带电荷为零〔呈电中性〕时的溶液pH值.A溶液pH<pI,氨基酸带正电荷,在电泳时向负极运动;B pH=pI,氨基酸所带总电荷为零,在电泳时不移动;C pH>pI,氨基酸带负电荷,在电泳时向正极运动。
2、修饰氨基酸〔稀有氨基酸〕:蛋白质合成后,氨基酸残基的某些基团被修饰后形成的氨基酸。
没有相应的密码子,如甲基化、乙酰化、羟基化、羧基化、磷酸化等。
3、肽键〔peptide bond〕:合成肽链时,前一个氨基酸的α-羧基与下一个氨基酸的α-氨基通过脱水作用形成的酰胺键,具有局部双键性质。
4、肽键平面〔酰胺平面〕:参与肽键的六个原子位于同一平面,该平面称为肽键平面。
肽键平面不能自由转动。
5、蛋白质构造:A一级构造:是指多肽链从N端到C端的氨基残基种类、数量和顺序。
主要的化学键:肽键,二硫键。
B 二级构造:是指蛋白质分子中某一段肽链的局部空间构造,即蛋白质主链原子的局部空间排布〔不涉及侧链原子的位置〕。
分α-螺旋( α -helix):较重要,为右手螺旋,每圈螺旋含3.6个氨基酸残基〔13个原子〕,螺距为0.54nm、β-片层〔β-折叠,β-pleated sheet〕、β-转角(β-turn )、无规那么卷曲〔randomcoil〕、π-螺旋(π -helix )。
维持二级构造的化学键:氢键。
模体:蛋白质分子中,二级构造单元有规那么地聚集在一起形成混合或均有的空间构象,又称超二级构造。
C 构造域:蛋白质三级构造中,折叠紧凑、可被分割成独立的球状或纤维状,具有特定功能的区域,称为构造域。
为构成三级构造的根本单元。
D三级构造:是指整条多肽链中所有氨基酸残基的相对空间位置(肽链上所有原子的相对空间位置).化学健:疏水键和氢键、离子键、德华力等来维持其空间构造的相对稳定。
E 四级构造:蛋白质分子中几条各具独立三级构造的多肽链间相互结集和相互作用,排列形成的更高层次的空间构象。
生物化学知识点总结

生物化学知识点总结第一部分:名词解释1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.氨基酸: 含有氨基和羧基的一类有机化合物的通称。
3.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
4.肽键:一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。
5.蛋白质的别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
6.蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。
7.蛋白质的变性:蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。
8.凝胶过滤:利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离9.层析:待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。
10.胶原蛋白:胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。
P62 11.结构域:相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。
12.免疫球蛋白:是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一 13.波尔效应:pH对血红蛋白氧亲和力的这种影响。
14.热休克蛋白:是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。
当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。
15.次级键:除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。
16.肽平面:肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。
生物化学知识点

生物化学知识点生物化学是关于生物体内各种化学反应和物质组成的研究领域。
本文将探讨生物化学的几个重要知识点,包括生物大分子、酶的功能和调控、代谢途径及其调节以及核酸的结构和功能。
一、生物大分子生物大分子是生物体内重要的有机分子,包括蛋白质、核酸、多糖和脂类。
这些分子是组成细胞和生命活动的基本单位。
1. 蛋白质蛋白质是生物体内功能最为多样和复杂的生物大分子之一。
它们由氨基酸组成,通过肽键连接成长链。
蛋白质扮演着酶、结构蛋白、激素和抗体等重要角色。
2. 核酸核酸是生物体内负责储存和传递遗传信息的分子。
DNA和RNA是两种常见的核酸。
DNA以双螺旋结构存储遗传信息,RNA则参与蛋白质的合成过程。
3. 多糖多糖是由单糖分子通过糖苷键连接而成的聚合物。
多糖包括淀粉、糖原和纤维素等,它们在生物体内具有能量储存和结构支持的功能。
4. 脂类脂类是由甘油和脂肪酸组成的生物大分子。
它们在细胞膜的构建、能量储存和信号传导中起到重要作用。
二、酶的功能和调控酶是生物体内调节化学反应速率的生物催化剂。
酶可以加速反应速率、选择性催化和在温和条件下进行反应。
1. 酶的催化机制酶通过降低反应的活化能,使反应更容易发生。
酶与底物结合形成酶底物复合物,进而发生化学反应。
最终生成产物和释放酶。
2. 酶的调控酶的活性可以通过多种机制进行调控。
常见的调控方式包括底物浓度、温度、酸碱度以及激活剂和抑制剂的作用。
三、代谢途径及其调节代谢是生物体内物质和能量的转化过程。
生物体通过代谢途径来满足对营养物质的需求,并产生能量和代谢产物。
1. 糖代谢糖代谢是生物体内获得能量的重要途径。
它包括糖原的分解和糖酵解产生乳酸或乙醇,以及细胞呼吸中糖的氧化生成ATP。
2. 脂肪代谢脂肪代谢是能量储存的主要方式。
脂肪通过脂肪酸的β氧化产生ATP,而合成脂肪酸需要NADPH和ATP的供应。
3. 蛋白质代谢蛋白质代谢包括蛋白质的降解和合成。
降解过程中,蛋白质被降解为氨基酸,供给细胞合成新的蛋白质。
基础生物化学知识点

基础生物化学知识点一、蛋白质1. 蛋白质的组成:-主要由碳、氢、氧、氮等元素组成。
-基本单位是氨基酸,氨基酸通过肽键连接形成多肽链。
2. 氨基酸的结构:-具有一个氨基(-NH₂)、一个羧基(-COOH)、一个氢原子和一个侧链(R 基团)。
-根据侧链的性质不同,可分为不同的氨基酸类型,如酸性氨基酸、碱性氨基酸、中性氨基酸等。
3. 蛋白质的结构层次:-一级结构:指多肽链中氨基酸的排列顺序。
-二级结构:主要有α-螺旋、β-折叠等,是通过氢键维持的局部空间结构。
-三级结构:多肽链在二级结构的基础上进一步折叠形成的三维结构,主要由疏水作用、离子键、氢键等维持。
-四级结构:由多个具有独立三级结构的亚基通过非共价键结合而成。
4. 蛋白质的性质:-两性电离:在不同的pH 条件下,蛋白质可带正电、负电或呈电中性。
-胶体性质:蛋白质分子颗粒大小在胶体范围,具有胶体的一些特性。
-变性与复性:在某些物理或化学因素作用下,蛋白质的空间结构被破坏,导致其生物活性丧失,称为变性;变性的蛋白质在适当条件下可恢复其天然构象和生物活性,称为复性。
-沉淀反应:在适当条件下,蛋白质可从溶液中沉淀出来,如加入盐、有机溶剂等。
二、核酸1. 核酸的分类:-脱氧核糖核酸(DNA):是遗传信息的携带者。
-核糖核酸(RNA):参与遗传信息的表达。
2. 核酸的组成:-由核苷酸组成,核苷酸由磷酸、戊糖(DNA 为脱氧核糖,RNA 为核糖)和含氮碱基组成。
-含氮碱基有腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T,DNA 特有)和尿嘧啶(U,RNA 特有)。
3. DNA 的结构:-双螺旋结构:两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,由氢键和碱基堆积力维持稳定。
-特点:右手螺旋、碱基互补配对(A 与T 配对,G 与C 配对)。
4. RNA 的种类和结构:-mRNA(信使RNA):携带遗传信息,从DNA 转录而来,作为蛋白质合成的模板。
- tRNA(转运RNA):呈三叶草形结构,在蛋白质合成中负责转运氨基酸。
生物化学知识点总结

两性化合物: 在同一分子中带有性质相反的酸、碱两种解离基团的化合物。
等电点: 当溶液pH为某一pH值时, 氨基酸分子中所含的正负数目正好相等, 净电荷为0。
这一pH值即为氨基酸的等电点, 简称pI。
在等电点时, 氨基酸既不向正极也不向负极移动, 即氨基酸处于两性离子状态。
①pI 〉pH: 分子显正电性。
氨基酸在等电点时溶解度最小, 易发生沉淀在等电点pH条件下, 蛋白质为电中性, 比较稳定。
其物理性质如导电性、溶解度、粘度和渗透压等都表现为最低值, 易发生絮结沉淀。
在近紫外区(200-400nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。
通过离子交换、电泳、或等电沉淀等技术进行氨基酸的分离、制备或分析鉴定。
除脯氨酸、羟脯氨酸和茚三酮反应产生黄色物质外, 所有α-氨基酸和蛋白质都能和茚三酮反应生成紫色物质。
但能与茚三酮发生紫色反应的不一定是氨基酸和蛋白质,2.4-二硝基氟苯反应、丹磺酰氯反应、苯异硫氰酸酯反应亦称Edman反应用来鉴定蛋白质或多肽的N-末端氨基酸残基。
层析法是生化最为有效的常用分离氨基酸的方法层析法由三个基本条件构成:⊙水不溶性惰性支持物⊙流动相能携带溶质沿支持物流动⊙固定相是附着在支持物上的水或离子基团。
能对各种溶质的流动产生不同的阻滞作用。
蛋白质的一级结构指蛋白质多肽连中氨基酸的排列顺序, 包括二硫键的位置。
它是蛋白质生物功能的基础。
组成肽链的氨基酸单元称为氨基酸残基肽键中的C-N键具有部分双键性质, 不能自由旋转组成肽键的四个原子和与之相连的两个(碳原子都处于同一个平面内, 此刚性结构的平面叫肽平面或酰胺平面氨基酸的顺序是从N-端的氨基酸残基开始, 以C-端氨基酸残基为终点的排列顺序。
肽链N-末端和C-末端氨基酸残基的确定2,4-二硝基氟苯(DNFB)法丹磺酰氯(DNS)法羧肽酶法: 从多肽链的C-端逐个的水解氨基酸肼解法:多肽与肼在无水条件下加热, C-端氨基酸即从肽链上解离出来, 其余的氨基酸则变成肼化物。
生物化学必看知识点总结优秀

引言概述:生物化学是研究生物体内化学成分的组成、结构、功能以及各种生物化学过程的机理的学科。
掌握生物化学的基本知识是理解生物体内各种生命现象的基础,也是进一步研究生物医学、生物工程等领域的必备知识。
本文将从分子生物学、酶学、代谢、蛋白质和核酸等五个方面,总结生物化学中必看的知识点。
正文内容:1.分子生物学1.1DNA的结构和功能1.1.1DNA的碱基组成1.1.2DNA的双螺旋结构1.1.3DNA的复制和转录过程1.2RNA的结构和功能1.2.1RNA的种类和功能区别1.2.2RNA的结构和特点1.2.3RNA的转录和翻译过程1.3蛋白质的结构和功能1.3.1氨基酸的结构和分类1.3.2蛋白质的三级结构和四级结构1.3.3蛋白质的功能和种类1.4基因调控1.4.1转录调控和翻译调控1.4.2基因的启动子和转录因子1.4.3RNA的剪接和编辑1.5遗传密码1.5.1遗传密码的组成和特点1.5.2密码子的解读和起始密码子1.5.3用户密码监测2.酶学2.1酶的分类和特点2.1.1酶的命名规则和酶的活性2.1.2酶的结构和功能2.1.3酶的催化机制2.2酶促反应动力学2.2.1酶反应速率和反应速率常数2.2.2酶的最适温度和最适pH值2.2.3酶的抑制和激活调节2.3酶的应用2.3.1酶工程和酶的改造2.3.2酶在医学和工业上的应用2.3.3酶和药物相互作用3.代谢3.1糖代谢3.1.1糖的分类和代谢路径3.1.2糖酵解和糖异生3.1.3糖的调节和糖尿病3.2脂代谢3.2.1脂的分类和代谢途径3.2.2脂肪酸的合成和分解3.2.3脂的调节和脂代谢疾病3.3氮代谢3.3.1氨基酸的合成和降解3.3.2尿素循环和氨的排出3.3.3蛋白质的降解和合成3.4核酸代谢3.4.1核酸的合成和降解途径3.4.2核酸的功能和结构特点3.4.3DNA修复和基因突变3.5能量代谢调节3.5.1ATP的合成和利用3.5.2代谢途径的调节和平衡3.5.3能量代谢和细胞呼吸4.蛋白质4.1蛋白质的结构和维持4.1.1蛋白质结构的层次和稳定性4.1.2蛋白质质量控制和折叠4.2蛋白质表达和合成4.2.1蛋白质的翻译和翻译后修饰4.2.2蛋白质的定位和运输4.2.3蛋白质合成的调节和失调4.3蛋白质与疾病4.3.1蛋白质异常与疾病的关系4.3.2蛋白质药物和治疗策略4.3.3蛋白质组学在疾病研究中的应用5.核酸5.1DNA的复制和修复5.1.1DNA复制的机制和控制5.1.2DNA损伤修复和维持稳定性5.1.3DNA重组和基因转座5.2RNA的合成和调控5.2.1RNA转录的调节和翻译5.2.2RNA剪接和编辑5.2.3RNA和疾病的关系5.3RNA干扰和基因沉默5.3.1RNA干扰机制和调控5.3.2RNA干扰在基因治疗中的应用5.3.3RNA沉默和抗病毒防御总结:生物化学是研究生物体内化学成分和生物化学过程的重要学科,掌握其中的关键知识点对于理解生命的本质和生物体的正常功能至关重要。
生物化学知识点总整理

生物化学知识点总整理一、蛋白质1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。
2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。
3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。
4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。
5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。
6.半胱氨酸连接用二硫键(—S—S—)7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。
8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的α羧基,称为羧基端或C端。
9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。
10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要 3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。
生物化学知识点总结

生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学.其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达.生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题1生物化学的发展史分为哪几个阶段生物化学的发展主要包括三个阶段:①静态生物化学阶段20世纪之前:是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段20世纪初至20世纪中叶:是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段20世纪中叶以后:这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系.2组成生物体的元素有多少种第一类元素和第二类元素各包含哪些元素组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素.第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素.第二章蛋白质1. 名词解释1蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物2氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点3蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点4N端与C端:N端也称N末端指多肽链中含有游离α-氨基的一端,C端也称C末端指多肽链中含有α-羧基的一端5肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽6氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基7肽单元肽单位:多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转8结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域.结构域具有以下特点①空间上彼此分隔,具有一定的生物学功能②结构域与分子整体以共价键相连,一般难以分离区别于蛋白质亚基③不同蛋白质分子中结构域数目不同,同一蛋白质分子中的几个结构域彼此相似或很不相同9分子病:由于基因突变等原因导致蛋白质的一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病10蛋白质的变构效应:蛋白质或亚基因与某小分子物质相互作用而发生构象变化,导致蛋白质或亚基功能的变化,称为蛋白质的变构效应酶的变构效应称为别构效应11蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应,其中具有促进作用的称为正协同效应,具有抑制作用的称为负协同效应12蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,变性的本质是非共价键和二硫键的破坏,但不改变蛋白质的一级结构.造成变性的因素有加热、乙醇等有机溶剂、强碱、强酸、重金属离子和生物碱等,变形后蛋白质的溶解度降低、粘度增加,结晶能力消失、生物活性丧失、易受蛋白酶水解14蛋白质复性:若蛋白质的变性程度较轻,去除变性因素后,蛋白质仍可部分恢复其原有的构象和功能,称为复性2. 问答题1组成生物体的氨基酸数量是多少氨基酸的结构通式、氨基酸的等电点及计算公式组成生物的氨基酸有22种,组成人体和大多数生物的为20种,结构通式如右图.氨基酸的等电点指当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点,计算公式如下:中性氨基酸)''(2121pKpKpI+=一氨基二羧基氨基酸)''(2121pKpKpI+=二氨基一羧基氨基酸)''(2132pKpKpI+=2氨基酸根据R基团的极性和在中性条件下带电荷的情况如何分类并举例分类名称结构缩写丙氨酸AlaA缬氨酸ValV非极性氨基酸疏水,8种非极性氨基酸疏水,8种亮氨酸LeuL异亮氨酸IleI脯氨酸ProP甲硫氨酸也称蛋氨酸MetM苯丙氨酸PheF色氨酸TrpW极性氨基酸亲水,12种甘氨酸中性氨基酸,不带电GlyG丝氨酸中性氨基酸,不带电SerS苏氨酸中性氨基酸,不带电ThrT半胱氨酸中性氨基酸,不带电CysC酪氨酸中性氨基酸,不带电TyrY极性氨基酸亲水,12种天冬酰胺中性氨基酸,不带电AsnN谷氨酰胺中性氨基酸,不带电GlnQ天冬氨酸酸性氨基酸,带负电AspD谷氨酸酸性氨基酸,带负电GluE极性氨基酸亲水,12种赖氨酸碱性氨基酸,带正电LysK精氨酸碱性氨基酸,带正电ArgR组氨酸碱性氨基酸,带正电HisH3蛋白质中氮含量是多少,如何测定粗蛋白的氮含量各种蛋白质的氮含量很接近,平均为16%.生物样品中,每得得1g氮就相当于100/16=6.25g蛋白质.通常采用定氮法测量蛋白质含量,其中较为经典的是凯氏定氮法粗蛋白测定的经典方法4蛋白质的二级结构有哪几种形式其要点包括什么蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规卷曲四种.①α-螺旋要点:多肽链主链围绕中心轴形成右手螺旋,侧链伸向螺旋外侧;每圈螺旋含个氨基酸,螺距为;每个肽键的亚胺氢和第四个肽键的羰基氧形成的氢键保持螺旋稳定,氢键与螺旋长轴基本平行②β-折叠要点:多肽链充分伸展,相邻肽单元之间折叠形成锯齿状结构,侧链位于锯齿的上下方;两段以上的β-折叠结构平行排列,两链间可以顺向平行,也可以反向平行;两链间肽键之间形成氢键,以稳固β-折叠,氢键与螺旋长轴垂直③β-转角要点:肽链内形成180°回折;含4个氨基酸残基,第一个氨基酸残基与第四个氨基酸残基形成氢键;第二个氨基酸残基常为Pro脯氨酸④无规卷曲要点:没有确定规律性的肽链结构;是蛋白质分子的一些没有规律的松散的肽链构象,对蛋白质分子的生物功能有重要作用,可使蛋白质在功能上具有可塑性5一个螺旋片段含有180个氨基酸残基,该片段中共有多少圈螺旋计算该片段的轴长螺旋数为180/=50,轴长为×50=27nm6维持蛋白质一级结构的作用力有哪些维持空间结构的作用力有哪些维持蛋白质一级结构的作用力主要的化学键:肽键,有些蛋白质还包括二硫键维持空间结构的作用力:氢键、疏水键、离子键、范德华力等统称次级键非化学键和二硫键7简述蛋白质结构与功能的关系蛋白质的一级结构:一级结构是空间构象的基础;同源蛋白质在不同生物体内的作用相同或相似的蛋白质的一级结构的种属差异揭示了进化的历程,如细胞色素C;一级结构的变化引起分子生物学功能的减退、丧失,造成生理功能的变化,甚至引起疾病;肽链的局部断裂是蛋白质的前体激活的重要步骤蛋白质的空间结构:变构蛋白可以通过空间结构的变化使其能够更充分、更协调地发挥其功能,完成复杂的生物功能;蛋白质的变性与复性与其空间结构关系密切;蛋白质的构象改变可影响其功能,严重时导致疾病的发生蛋白质构象病,如疯牛病8简述蛋白质的常见分类方式根据分子形状分类:球状蛋白质、纤维状蛋白质、膜蛋白质根据化学组成分类:简单蛋白质、结合蛋白质结合蛋白质=简单蛋白质+非蛋白质组分辅基根据功能分类:酶、调节蛋白、贮存蛋白、转运蛋白、运动蛋白、防御蛋白和毒蛋白、受体蛋白、支架蛋白、结构蛋白、异常蛋白9简述蛋白质的主要性质①两性解离和等电点:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团.当蛋白质溶液处于某一pH时,蛋白质解离成正负离子的趋势相等,即成为兼性离子,净电荷为0,此时溶液的pH为蛋白质的等电点②蛋白质的胶体性质:蛋白质属生物大分子,其分子直径可达1-100nm之间,为胶粒范围之内,因而具有胶体的性质③蛋白质的变性、沉淀和凝固:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失,称为变性.若变性程度较轻,除去变性因素后蛋白质仍可恢复或部分恢复其原有的构象及功能,称为复性.在一定条件下,蛋白疏水侧链暴露在外,肽链因互相缠绕继而聚集,因而从溶液中析出,称为蛋白质的沉淀,变性的蛋白易于沉淀,有时蛋白质发生沉淀,但并不变性.蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易溶解于强酸和强碱中,称为蛋白质的凝固作用④蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有波长的特征性吸收峰,其吸收率和蛋白质浓度成正比用来测含量⑤蛋白质的显色反应:经水解产生的氨基酸可发生于茚三酮的反应;蛋白质和多肽分子中的肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色称为双缩脲反应,用以检测水解程度第三章核酸1. 名词解释1核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物,在大多数情况下,核苷是由核糖或脱氧核糖的C1β-羟基与嘧啶碱或嘌呤碱的N1或N9进行缩合生成的化学键称为β,N糖苷键2核苷酸:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核苷酸两类,由于与磷酸基团羧基缩合的位置不同,分别生成2’-核苷酸、3’-核苷酸和5’-核苷酸最常见为5’-核苷酸3核酸的一级结构:核苷酸通过3’,5’-磷酸二酯键连接成核酸即多聚核苷酸,DNA的一级结构就是指DNA分值中脱氧核糖核苷酸的排列顺序及连接方式,RNA的一级结构就是指RNA分子中核糖核苷酸的排列顺序及连接方式4DNA的复性与变性:核酸的变性指核酸双螺旋区的多聚核苷酸链间的氢键断裂,形成单链结构的过程,使之是失去部分或全部生物活性,但其变性并不涉及磷酸二酯键的断裂,所以其一级结构并不改变.能够引起核酸变性的因素很多,升温、酸碱度改变、甲醛和尿素都可引起核酸变性.注意,DNA的变性过程是突变性的.复性指变性核酸的互补链在适当的条件下重新地和成双螺旋结构的过程5分子杂交:在退火条件下,不同来源的DNA互补链形成双链,或DNA单链和RNA单链的互补区域形成DNA-RNA杂合双链的过程称为分子杂交6增色效应:核酸变性后,260nm处的紫外吸收明显增加,这种现象称为增色效应7减色效应:核酸复性后,紫外吸收降低,这种现象称为减色效应8基因与基因组:基因指遗传学中DNA分子中最小的功能单位,某物种所含有的全部遗传物质称为该生物体的基因组,基因组的大小与生物的复杂性有关9Tm熔解温度:通常把加热变形使DNA的双螺旋结构失去一半时的温度或紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度,又称熔解温度或熔点10Chargaff定律:①所有的DNA分子中A=T,G=C,即A/T=G/C=1②嘌呤的总数等于嘧啶的总数相等即A+T=G+C③含氮基与含酮羰基的碱基总数相等A+C=G+T④同一种生物的所有体细胞DNA 的碱基组成相同,与年龄、健康状况、外界环境无关,可作为该物种的特征,用不对称比率A+T/G+C衡量⑤亲缘越近的生物,其DNA碱基组成越相近,即不对称比率越相近11探针:在核酸杂交的分析过程中,常将已知顺序的核苷酸片段用放射性同位素或荧光标记,这种带有一定标记的已知顺序的核酸片段称为探针2. 问答题1某DNA样品含腺嘌呤%按摩尔碱基计,计算其余碱基的百分含量由已知A=%,所以T=A=%,因此G+C=%,又G=C,所以G=C=%2DNA和RNA在化学组成、分子结构、细胞内分布和生理功能上的主要区别是什么①化学组成:DNA的基本单位是脱氧核糖核苷酸,每一分子脱氧核糖核苷酸包含一分子磷酸,一分子脱氧核糖和一分子含氮碱基,DNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T四种;RNA的基本单位是核糖核苷酸,每一分子核糖核苷酸包含一分子磷酸、一分子核糖和一分子含氮碱基,RNA的含氮碱基有腺嘌呤A、鸟嘌呤G、胞嘧啶C、尿嘧啶U四种.②分子结构:DNA为双链分子,其中大多数是是链状结构大分子,也有少部分呈环状;RNA为单链分子.③细胞内分布:DNA90%以上分布于细胞核,其余分布于核外如线粒体、叶绿体、质粒等;RNA 在细胞核和细胞液中都有分布.④生理功能:DNA分子包含有生物物种的所有遗传信息;RNA主要负责DNA遗传信息的翻译和表达,分子量要比DNA小得多,某些病毒RNA也可作为遗传信息的载体3简述DNA双螺旋结构模型的要点及生物学意义DNA双螺旋结构的要点:①DNA分子由两条多聚脱氧核糖核苷酸链DNA单链组成.两条链沿着同一根轴平行盘绕,形成右手双螺旋结构.螺旋中两条链的方向相反,其中一条链的方向为5’→3’ ,另一条链的方向3’→5’.②碱基位于螺旋的内侧,磷酸和脱氧核糖位于螺旋外侧,碱基环平面与轴垂直,糖基环平面与碱基环平面呈90°角.③螺旋横截面的直径为2nm,每条链相邻碱基平面之间的距离为,每10个核酸形成一个螺旋,其螺距高度为.④维持双螺旋的力是链间的碱基对所形成的氢键,碱基的互相结合具有严格的配对规律,嘌呤碱基的总数等于嘧啶碱基的总数生物学意义:双螺旋结构模型提供了DNA复制的机理,解释了遗传物质自我复制的机制.模型是两条链,而且碱基互补.复制之前,氢键断裂,氢键断裂,两条链彼此分开,每条链作为一个模板复制除一条新的互补链,这样就得到了两对链,解决了遗传复制中样板的分子基础4DNA的三级结构在原核生物和真核生物中各有什么特征绝大多数原核生物的DNA都是共价封闭的环状双螺旋,如果再进一步盘绕则形成麻花状的超螺旋三级结构.真核生物中,双螺旋的DNA分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构,称为核小体,属于DNA的三级结构5细胞内含哪几种主要的RNA其结构和功能是什么细胞内的主要RNA是mRNA、tRNA和rRNA.mRNA:单链RNA,功能是将DNA的遗传信息传递到蛋白质合成基地——核糖核蛋白体tRNA:单链核酸,但在分子中的某些局部部位也可形成双螺旋结构,保守性最强.二级结构由于局部双螺旋的形成而呈现三叶草形,三级结构由三叶草形折叠而成,呈倒L型.功能是将氨基酸活化搬运到核糖体,参与蛋白质的合成rRNA:细胞中含量最多RNA总量的80%,与蛋白质组成核蛋白体,作为蛋白质生物合成的场所.在原核生物中,有5S、16S、23S,16S 的rRNA参与构成蛋白体的小亚基,5S和23S的rRNA参与构成核蛋白体的大亚基;在真核生物中,rRNA有四种5S、、18S、28S,其中18S参与构成核蛋白体小亚基,其余参与构成核蛋白体大亚基6简述tRNA的二级结构要点tRNA的二级结构呈三叶草形,包含以下区域:①氨基酸接受区:包含tRNA的3’-末端和5’-末端,3’-末端的最后三个核苷酸残基都是CCA,A为核苷,氨基酸可与之形成酯,该去区在蛋白质合成中起携带氨基酸的作用②反密码区:与氨基酸接受区相对的一般含有七个核苷酸残基的区域,中间的三个核苷酸残基称为反密码子③二氢尿嘧啶区:该区域含有二氢尿嘧啶④T ψC区:该区与二氢尿嘧啶区相对,假尿嘧啶核苷-胸腺嘧啶核糖核苷组成环TψC由7个核苷酸组成,通过由5对碱基组成的双螺旋区TψC臂与tRNA其余部分相连,除个别例外,几乎所有的tRNA在此环中都含有TψC⑤可变区:位于反密码去与TψC 之间,不同的tRNA在该区域中变化较大7简述核酸的主要性质①一般理化性质:固体DNA为白色纤维状固体,RNA为白色粉末状固体,均溶于水,不溶于一般的有机溶剂,在70%乙醇中形成沉淀,具有很强的旋光性,DNA粘度较大,RNA粘度小得多②两性和等电点:由于核酸分子中既具有酸性基团,有具有碱性基团,因而核酸具有两性性质.DNA的等电点为4至,RNA的等电点2至RNA存在核苷酸内的分子内氢键,促进电离③紫外吸收:核酸的吸收峰为260nm左右的紫外线④核酸的水解:核酸的水解有碱水解和酶水解两种方式,前者通过在碱性条件下没有选择性地断裂磷酸二酯键完成,后者可采用DNA水解酶或RNA水解酶,可以有选择性地切断磷酸二酯键限制性核酸内切酶或者没有选择性地切断⑤核酸的变性:核酸的变性本质上是氢键的断裂,变成单链结构.DNA的热变性过程是突变的,在很窄的温度区间内完成,其熔解温度满足Tm—=100G+C;RNA由于只有局部的双螺旋区,所以变性行为引起的性质变化不明显⑥核酸的复性:在适当条件下,变性核酸的互补链能够重新结合成双螺旋结构,DNA的生物活性只能得到部分恢复,且出现减色效应,将热变性的DNA骤然冷却时,DNA不可能复性,缓慢冷却可以复性,分子量越大复性越困难,浓度越大,复性越困难⑦核酸的分子杂交:在退火条件下,不同来源的DNA互补链能够形成双链或者DNA单链和RNA单链的互补区形成DNA-RNA 杂合双链⑧含氮碱基的性质:存在酮式-烯醇式或氨式-亚胺式的互变异构,具有芳环、氨、酮、烯醇等相应的化学性质,并且具有弱碱性第四章糖1. 名词解释糖:糖指多羟基醛或者多羟基酮及其衍生物或缩聚物的总称,俗称碳水化合物2. 问答题1简述糖的功能及分类并举例说明糖的功能:糖是生物体的能源物质,是细胞的结构组分,具有细胞识别、机体免疫、信息传递的作用.糖的分类:根据大小分为单糖大约20种、寡糖2-10种、多糖和糖缀合物.单糖按照其中碳原子的数目分为丙糖醛糖如甘油醛,酮糖如二羟丙酮、丁糖醛糖如赤藓糖,酮糖如赤藓酮糖、戊糖醛糖如核糖,酮糖如核酮糖、己糖醛糖如葡萄糖、半乳糖、甘露糖,酮糖如果糖、山梨糖、庚糖景天酮糖.寡糖按照所含糖基多少分为二糖蔗糖、麦芽糖、乳糖、三糖棉籽糖…六糖.多糖分为均多糖淀粉、糖原、甲壳素、纤维素和杂多糖半纤维素、粘多糖.糖缀合物分为糖蛋白和糖脂两类2说明麦芽糖组成淀粉的基本单位、纤维二糖组成纤维素的基本单位所含单糖的种类、糖苷键的类型.一分子麦芽糖中含有两分子α-葡萄糖1-C和4-C上的羟基均在环平面下方,糖苷键为1-4糖苷键;一分子纤维二糖中含有两分子β-葡萄糖1-C和4-C上的羟基均在环平面上方,糖苷键为1-4糖苷键3列举出四种多糖的名称均多糖由一种单糖聚合而成:淀粉有直链淀粉和支链淀粉两种,后者存在1-6糖苷键,两者均是植物细胞的能源储存形式、糖原动物及细菌的储能物质,贮存于动物的肝脏和肌肉中,结构于支链淀粉类似,遇碘显红紫色、纤维素葡萄糖β1-4糖苷键连接而成的无分支的同多糖,形成植物细胞细胞壁、甲壳素2-N-乙酰-D-氨基葡萄糖β1-4糖苷,基本单位为β-葡萄糖的2-C上经过氨基修饰后的产物杂多糖由几种不同的单糖聚合而成:半纤维素存在于植物细胞壁中的所有杂多糖的总称、粘多糖糖胺聚糖.是含氨基己糖的杂多糖的总称,表现为一定的粘性和酸性,如透明质酸和肝素、药物多糖中药的有效成分、其他杂多糖如琼脂和果胶第五章脂类及生物膜1. 名词解释脂:指由酸和醇发生脱水酯化反应形成的化合物,包括某些不溶于水的大分子脂肪酸和大分子的醇类,分为简单脂不与脂肪酸结合的脂,如固醇类、萜类、前列腺素和结合脂与脂肪酸结合的脂,如三酰甘油酯、磷脂酰甘油酯、鞘脂、蜡和脂蛋白2. 问答题1简述脂的功能.①脂是生物细胞重要的储能物质,因为其具有热值高、不溶于水、易于聚集的特点②位于体表的脂类具有机械性的保护作用③脂类磷脂酰甘油酯是组成细胞膜的主要成分④简单的脂类在体内是维生素及激素的前体物质2简述生物膜的流动镶嵌模型生物膜分为细胞膜和细胞器膜,其共同特点是单层的生物膜细胞膜是流动的磷脂双分子层构成的连续体,蛋白质无规则地分布在磷脂双分子层中.脂类的流动性使得生物膜具有一定的流动性,方便蛋白质的运动,也使得细胞可变形;膜的流动性与脂的种类和温度有关.蛋白质是选择性透过的运输通道,同时也是细胞间信息传递、识别的受体.细胞器膜的结构与细胞膜类似,但由于功能的分化而多为双层膜,内层膜出现扩大现象,成为新陈代谢的部位.第6章酶1. 名词解释1酶:酶是一类具有高效性和专一性的生物催化剂2单酶单纯蛋白酶:除了蛋白质外,不含有其他物质的酶,如脲酶等一般水解酶3全酶结合蛋白酶:含酶蛋白脱辅酶,决定反应底物的种类,即酶的专一性和非蛋白小分子物质传递氢、电子、基团,决定反应的类型、性质的酶.酶蛋白与辅助因子单独存在时,没有催化活力,两部分结合称为全酶4辅酶:与酶蛋白结合较松、容易脱离酶蛋白、可用透析法除去的小分子有机物或金属离子等辅助因子,如辅酶I和辅酶II 5辅基:与酶蛋白结合较为紧密、不能通过透析除去,需要经过一定的化学处理才能与蛋白分开的小分子物质,如细胞色素氧化酶中的铁卟啉※辅酶可辅基之间没有严格的界限,只是辅酶和辅基与酶蛋白结合的牢固程度不同。
生物化学核心知识点考点总结

生物化学核心知识点考点总结●第一章糖●所有单糖都有还原性●蔗糖无还原性●多糖无还原性●还原性:是否有游离的半缩醛或半缩酮羟基●第二章脂类●脂类组成脂肪酸和醇●脂肪甘油脂肪酸●脂肪组成一分子甘油和三分子脂肪酸●脂的命名例20:0 20为脂肪酸碳原子数目 0为双键数目●第三章维生素●脂溶性维生素 A D E K●水溶性维生素 B C●维生素B1 活体形式焦磷酸硫胺素(TPP)●维生素B2 活体形式黄素单核苷酸(FAD)●维生素B6 活体形式磷酸砒多醛磷酸砒多按●磷酸砒多醛为糖原磷酸化的组成部分●转氨作用●维生素PP NAD+ NADP+●叶酸●活体形式四氢叶酸(FH4)●FH4是一碳单位转移酶的辅酶●泛酸 CoA和ACP●维生素C 生化作用及缺乏●羟化反应●促进胶原蛋白合成●参与胆固醇转化●参与芳香族氨基酸转化●氧化还原反应●增强机体免疫力●第四章蛋白质●一氨基酸●必须氨基酸甲携来一本亮色书●代号●非极性脂肪族氨基酸 Gly Ala Val Leu Ile Pro Met●极性中性氨基酸 Ser Cys Asn Glu Thr●芳香性 Phe Trp Tyr●酸性 Asp Glu●碱性Arg His Lys●性质●等电点●氨基酸带有的正负电荷数目恰好相同,净电荷为0,此时溶液的PH●PH>PI 氨基酸带正电,PH<PI 氨基酸带负电 PH为9 正向负负向正互相吸引异电●紫外吸收性质色氨酸(Trp)280nm吸收最长波长●二蛋白质结构●一级结构氨基酸序列肽键●二级结构肽链的主链骨架本身的折叠和盘旋由氢键决定●主要为α螺旋●特征 1 较大的氨基酸残基的R侧链不利于形成α螺旋●2脯氨酸或羟脯氨酸残基存在不能形成α螺旋●3多肽链中连续存在酸性或碱性氨基酸,不利于α螺旋生成●基序相邻的二级结构彼此互相作用,形成有规则的在空间上能辨认的二级结构组合体●三级结构所有原子在三空间的排布位置●结构域几个基序单元的组合●四级结构由两个或两个以上的亚基之间互相作用,彼此以共价键相连而形成更为复杂的构象●胰岛素没有四级结构 why?●胰岛素无亚基●三蛋白质结构功能●一级结构●分子病由遗传变异引起的、在分子水平上仅存在微观差异而导致的疾病镰刀状红细胞贫血●构象病蛋白质折叠错位或折叠导致构象异常变化引起的疾病例疯牛病●二级结构α螺旋β折叠α转角无规卷曲●四蛋白质性质●理化性质改变●一般蛋白质变性后,分子结构松散,易为蛋白酶水解,因此食用变形蛋白更有利于消化●胶体性质●蛋白质表面具有水化层●蛋白质表面具有同性电荷●蛋白质沉淀反应●中性盐沉淀●无机盐:硫酸钠氯化钠硫酸铵●沉淀出蛋白质不变性●五蛋白质分离纯化●离子层析法●亲和层析法●吃熟食的好处●高温使蛋白质变性易被蛋白酶水解利于消化●使细菌蛋白质变性,失去病理失去感染力利于健康●第五章核酸●第一节概述●核酸由多个单核苷酸聚合而成,单核苷酸可以分解成核苷和磷酸核苷再进一步分解成碱基和戊糖●核酸的分子结构●DNA分子结构●一级结构●碱基排列顺序●二级结构●反向平行的多核酸链●三级结构●双螺旋的扭曲再次螺旋●核酸的主要生物学作用●核酸是传递生物遗传信息的载体●核酸是遗传变异的物质基础●RNA种类及结构●结构特征●(1) RNA 的基本组成单位是 AMP 、 GMP 、 CMP 及 UMP 。
生物化学知识点

生物化学知识点第一章糖2、构型(configuration):在立体异构体中的原子或取代基团的空间排列关系叫构型,分为D-型和L-型。
当某一物质由一种构型转变为另一种构型时,要求共价键的断裂和重新生成。
构象(conformation):在分子中由于共价键的旋转所表现出来的原子或基团的不同空间排布叫构象。
一种构象改变为另一种构象时,不要求共价键的断裂和重新生成。
构象形式有无数种。
6、糠醛和羟甲基糠醛能与某些酚类作用生成有色的缩合物。
α-萘酚与糠醛和羟甲基糠醛生成紫色,应用这一反应来鉴定糖的存在称为Molisch试验。
间二苯酚与盐酸遇酮糖呈红色,遇醛糖显很浅的颜色,根据这一特性可以区分酮糖和醛糖,这一反应称为Seliwanoff。
第二章 脂 类1、 脂类的生物功能:①构成生物膜 ②是机体代谢所需燃料的贮存形式和运输形式 ③动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素 ④某些萜类和固醇类物质具有营养代谢及调节作用 ⑤防止机械损伤与防止热量散发等保护作用 ⑥与细胞识别,种特异性和组织免疫等有密切关系 ⑦具有生物活性的某些维生素和激素也是脂类物质。
11、根据不同脂蛋白所含脂类多少,密度大小上的差别,可将血浆脂蛋白分为五个密度范围不同的组成部分:①乳糜微粒:由小肠上皮细胞合成,主要成分来自食物脂肪。
主要生理功能是转运外源性脂肪,最终被组织中脂蛋白酶、脂酶水解 ②极低密度脂蛋白(VLDL):由肝细胞合成,主要成分也是脂肪。
主要生理功能是转运内源性脂肪,最终被组织中脂蛋白酶水解③低密度脂蛋白(LDL):来自肝脏,富含胆固醇,是血浆中胆固醇的主要携带者,主要生理功能是转运内源性胆固醇经细胞膜上受体介导转递至肝细胞内水解 ④高密度脂蛋白(HDL):来自肝脏,颗粒最小,主要脂类组分是磷脂和胆固醇。
主要生理功能是转运磷脂及胆固醇酯至肝组织内水解,有清除血中胆固醇的作用 ⑤极高密度脂蛋白(VHDL):属清蛋白-游离脂肪酸性质。
生物化学知识点汇总

生物化学知识点汇总生物化学是研究生物体化学组成和生命过程中化学变化规律的科学,它是生命科学领域的重要基础学科。
以下是对生物化学中一些关键知识点的汇总。
一、蛋白质化学蛋白质是生命活动的主要承担者,具有多种重要的功能。
(一)蛋白质的组成蛋白质的基本组成单位是氨基酸,共有 20 种常见的氨基酸。
氨基酸通过肽键相连形成多肽链,多肽链进一步折叠和盘绕形成具有特定空间结构的蛋白质。
(二)蛋白质的结构蛋白质的结构层次分为一级结构、二级结构、三级结构和四级结构。
一级结构是指氨基酸的排列顺序,二级结构包括α螺旋、β折叠等,三级结构是整条肽链的空间构象,四级结构则是由多个亚基组成的蛋白质的空间排布。
(三)蛋白质的性质蛋白质具有两性解离、胶体性质、变性和复性、沉淀等性质。
变性是指蛋白质在某些物理和化学因素作用下,其特定的空间构象被破坏,导致其理化性质改变和生物活性丧失。
二、核酸化学核酸是遗传信息的携带者,分为脱氧核糖核酸(DNA)和核糖核酸(RNA)。
(一)核酸的组成核酸的基本组成单位是核苷酸,核苷酸由碱基、戊糖和磷酸组成。
DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了 T。
(二)DNA 的结构DNA 具有双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,碱基之间遵循碱基互补配对原则(A 与 T 配对,G 与 C配对)。
(三)RNA 的种类和功能RNA 主要有信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 是蛋白质合成的模板,tRNA 负责转运氨基酸,rRNA 参与核糖体的组成。
三、酶学酶是生物体内具有催化作用的蛋白质或 RNA。
(一)酶的特性酶具有高效性、专一性、可调节性和不稳定性等特点。
高效性是指酶能够大大加快反应速率;专一性是指一种酶只能催化一种或一类化学反应。
(二)酶的作用机制酶通过降低反应的活化能来加速反应的进行。
生物化学必看知识点总结

生物化学必看知识点总结(一)生物大分子的结构和功能1、组成蛋白质的20种氨基酸的化学结构和分类。
2、氨基酸的理化性质。
3、肽键和肽。
4、蛋白质的一级结构及高级结构。
5、蛋白质结构和功能的关系。
6、蛋白质的理化性质(两性解离、沉淀、变性、凝固及呈色反应等)。
7、分离、纯化蛋白质的一般原理和方法。
8、核酸分子的组成,5种主要嘌呤、嘧啶碱的化学结构,核苷酸。
9、核酸的一级结构。
核酸的空间结构与功能。
10、核酸的变性、复性、杂交及应用。
11、酶的基本概念,全酶、辅酶和辅基,参与组成辅酶的维生素,酶的活性中心。
12、酶的作用机制,酶反应动力学,酶抑制的类型和特点。
13、酶的调节。
14、酶在医学上的应用。
(二)物质代谢及其调节1、糖酵解过程、意义及调节。
2、糖有氧氧化过程、意义及调节,能量的产生。
3、磷酸戊糖旁路的意义。
4、糖原合成和分解过程及其调节机制。
5、糖异生过程、意义及调节。
乳酸循环。
6、血糖的来源和去路,维持血糖恒定的机制。
7、脂肪酸分解代谢过程及能量的生成。
8、酮体的生成、利用和意义。
9、脂肪酸的合成过程,不饱和脂肪酸的生成。
10、多不饱和脂肪酸的意义。
11、磷脂的合成和分解。
12、胆固醇的主要合成途径及调控。
胆固醇的转化。
胆固醇酯的生成。
13、血浆脂蛋白的分类、组成、生理功用及代谢。
高脂血症的类型和特点。
14、生物氧化的特点。
15、呼吸链的组成,氧化磷酸化及影响氧化磷酸化的因素,底物水平磷酸化,高能磷酸化合物的储存和利用。
16、胞浆中NADH的氧化。
17、过氧化物酶体和微粒体中的酶类。
18、蛋白质的营养作用。
19、氨基酸的一般代谢(体内蛋白质的降解,氧化脱氨基,转氨基及联合脱氨基)。
20、氨基酸的脱羧基作用。
21、体内氨的来源和转运。
22、尿素的生成--鸟氨酸循环。
23、一碳单位的定义、来源、载体和功能。
24、甲硫氨酸、苯丙氨酸与酪氨酸的代谢。
25、嘌呤、嘧啶核苷酸的合成原料和分解产物,脱氧核苷酸的生成。
生物化学知识点总结

生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。
蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。
蛋白质的功能包括酶、结构蛋白、免疫蛋白等。
在生物体内,蛋白质不断地受到合成和降解的调控。
2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。
DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。
核酸的功能包括遗传信息的传递、蛋白质的合成控制等。
3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。
生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。
在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。
4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。
脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。
二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。
酶的结构包括活性位、辅基和蛋白质结构。
酶的功能包括催化特定的反应、特异性和高效性等。
2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。
酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。
酶动力学研究为理解生物化学反应提供了重要的信息。
三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。
2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。
3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。
生物化学知识点

生物化学知识点生化知识点概述1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级、二级、三级和四级结构、蛋白质折叠、功能域。
- 核酸:DNA和RNA的结构、碱基配对、双螺旋、RNA的多样性(mRNA, tRNA, rRNA等)。
- 糖类:单糖、多糖、糖蛋白、糖脂。
- 脂质:甘油三酯、磷脂、甾体化合物。
2. 酶学- 酶的定义、特性、命名。
- 酶促反应动力学:米氏方程、酶抑制、酶激活。
- 酶的结构与机制:活性位点、催化机制、酶的调控。
3. 代谢途径- 糖酵解:步骤、调节、能量产出。
- 柠檬酸循环(TCA循环):反应、关键酶、调节。
- 电子传递链与氧化磷酸化:电子载体、质子梯度、ATP合成。
- 脂肪酸代谢:β-氧化、脂肪酸合成、脂肪酸氧化。
- 氨基酸代谢:脱氨基作用、转氨作用、氨基酸的降解和合成。
- 核苷酸代谢:碱基合成、核苷酸合成与降解。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK通路、PI3K/Akt通路、Wnt/β-catenin通路。
5. 基因表达与调控- DNA复制:复制机制、DNA聚合酶、复制起始点。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、蛋白质合成过程。
- 基因调控:表观遗传学、非编码RNA、转录因子。
6. 分子生物学技术- 克隆技术:限制性内切酶、连接酶、载体、转化。
- PCR技术:原理、引物设计、扩增程序。
- 基因编辑:CRISPR-Cas9、TALENs、ZFNs。
- 蛋白质组学:质谱分析、蛋白质芯片、蛋白质互作。
7. 细胞结构与功能- 细胞膜:脂质双层、膜蛋白、膜流动性。
- 细胞器:线粒体、内质网、高尔基体、溶酶体。
- 细胞骨架:微丝、中间丝、微管。
- 细胞周期:G1、S、G2、M期、细胞凋亡。
8. 生物化学疾病- 代谢疾病:苯丙酮尿症、糖原贮积病。
生物化学知识点总结

第一章1、掌握蛋白质的元素组成、基本组成单位,氨基酸成肽的连接方式;熟悉氨基酸的通式与结构特点。
元素组成:碳、氢、氧、氮、硫(C、H、O、N、S )以及磷、铁、铜、锌、碘、硒组成单位:氨基酸连接方式:脱水缩合通式:结构特点:不同的氨基酸其侧链(R)结构各异。
2、GSH由哪三个氨基酸残基组成?有何生理功能?组成:谷氨酸、半胱氨酸、甘氨酸生理功能:在谷胱甘肽过氧化物酶的催化下,GSH科还原细胞被产生的H2O23、蛋白质一、二、三、四级结构的定义及维系这些结构稳定的作用键?一级结构:蛋白质多肽链中氨基酸残基的排列顺序。
作用键:肽键二级结构:多肽链的主链骨架中若肽单元,各自沿一定的轴盘旋或折叠,并以氢键为主要次级键而形成的有规则或无规则的构象。
作用键:氢键三级结构:多肽链在二级结构的基础上,由于氨基酸残基侧链R基的相互作用进一步盘曲或折迭而形成的特定构象。
作用键:次级键四级结构:由两个或两个以上亚基之间彼此以非共价键相互作用形成的更为复杂的空间构象。
作用键:氢键、离子键4、蛋白质二级结构的基本形式?并试述α-螺旋的结构特点。
基本形式:α-螺旋、β-折叠、β-转角和无规卷曲。
结构特点:①螺旋的走向为顺时针方向,右手螺旋。
②形成氢键,一稳固α-螺旋结构。
5、何为蛋白质的变性?蛋白质变性后理化性质有何改变?变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物学活性的丧失。
改变:溶解度降低、溶液的粘滞度增高、不容易结晶、易被酶消化。
6、蛋白质在溶液中稳定的因素、等电点及定量方法。
因素:水化膜、电荷等电点:在某一溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,呈电中性,此时该溶液的pH值即为该氨基酸的等电点。
7、距离说明蛋白质一级结构与功能的关系。
蛋白质的一级结构决定蛋白质空间结构,进而决定蛋白质的生物学功能。
第二章核酸的结构和功能1、掌握核酸的分子组成以及核苷酸之间的连接方式。
生物化学知识点总结

生物化学知识点总结生物化学是研究生物体化学组成和生命过程中化学变化规律的科学,它是生命科学领域的重要基础学科。
以下是对生物化学一些重要知识点的总结。
一、生物大分子(一)蛋白质1、组成元素:主要由碳、氢、氧、氮,有些还含有硫、磷等元素。
2、基本组成单位:氨基酸。
氨基酸通过脱水缩合形成肽链,肽链经过盘曲折叠形成具有一定空间结构的蛋白质。
3、蛋白质的结构层次:一级结构是指氨基酸的排列顺序;二级结构有α螺旋、β折叠等;三级结构是指整条肽链的空间构象;四级结构是指由多个亚基组成的蛋白质中各个亚基的空间排布及相互作用。
4、蛋白质的性质:具有两性电离、胶体性质、变性与复性、沉淀等。
(二)核酸1、分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
2、组成元素:碳、氢、氧、氮、磷。
3、基本组成单位:核苷酸。
核苷酸由含氮碱基、戊糖和磷酸组成。
4、 DNA 的结构:双螺旋结构,两条反向平行的多核苷酸链围绕同一中心轴相互缠绕。
5、 RNA 的种类及功能:信使 RNA(mRNA)指导蛋白质合成;转运 RNA(tRNA)转运氨基酸;核糖体 RNA(rRNA)参与核糖体的组成。
(三)糖类1、分类:单糖(如葡萄糖、果糖、半乳糖)、二糖(如蔗糖、麦芽糖、乳糖)和多糖(如淀粉、糖原、纤维素)。
2、功能:主要的能源物质,也参与细胞结构的组成。
(四)脂质1、分类:脂肪、磷脂、固醇(如胆固醇、性激素、维生素 D)。
2、功能:脂肪是良好的储能物质;磷脂是生物膜的重要成分;固醇在调节生命活动中发挥重要作用。
二、酶1、本质:大多数是蛋白质,少数是 RNA。
2、特性:高效性、专一性、作用条件温和。
3、影响酶活性的因素:温度、pH、抑制剂、激活剂等。
4、酶的作用机制:降低化学反应的活化能。
三、生物氧化1、概念:物质在生物体内氧化分解并释放能量的过程。
2、呼吸链:由一系列递氢体和递电子体组成,其功能是传递电子和氢,生成水并释放能量。
3、 ATP 的生成:主要通过氧化磷酸化和底物水平磷酸化两种方式生成。
生物化学知识点总结

生物化学知识点总结第二章一、名词解释1.生物化学:生物化学是研究生物体的化学组成以及生物体内发生的各种化学变化的学科2.肽键:一个氨基酸的α–羧基与另一个氨基酸的α–氨基脱水缩合而成的酰胺键(–CO–NH–)称为肽键3.蛋白质的等电点:当蛋白质溶液处于某一PH时,蛋白质分子解离成阴阳离子的趋势相等,净电荷为零,呈兼性离子状态,此时溶液的PH称为该蛋白质的等电点4.蛋白质的一级结构:蛋白质分子中氨基酸的排列顺序称为蛋白质的一级结构5.二级结构:蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象6.亚基:四级结构中每一条具有独立三级结构的多肽链称为亚基(本章考的最多的名词解释)二、问答1.蛋白质的基本组成单位是什么?其结构特点是什么?基本组成单位:氨基酸结构特点:组成蛋白质的20种氨基酸都属于α–氨基酸(脯氨酸除外)组成蛋白质的20种氨基酸都属于L–氨基酸(甘氨酸除外)2.什么是蛋白质的变性?在某些物理或化学因素作用下,蛋白质分子中的次级键断,特定的空间结构被破坏,从而导致蛋白质理化性质改变和生物学活性丧失的现象,称为蛋白质的变性3.什么是蛋白质的二级结构?它主要有哪几种?维持二级结构稳定的化学键是什么?蛋白质的二级结构是指多肽链中主链原子的局部空间排布,不涉及侧链原子的构象种类:α–螺旋、β–折叠、β–转角、无规卷曲维持蛋白质二级结构稳定的化学键是氢键重点:蛋白质的基本组成单位:氨基酸氨基酸的结构通式维持蛋白质一级结构稳定的是肽键二级结构稳定的化学键是氢键三级结构稳定的是疏水键α–螺旋是蛋白质中最常见最典型含量最丰富的二级结构形式由一条多肽链构成的蛋白质,只有具有三级结构才能发挥生物活性。
如果蛋白质只由一条多肽链构成,则三级结构为其最高级结构只有完整的四级结构才具有生物学功能,亚基单独存在一般不具有生物学功能胰岛素虽然由两条多肽链组成,但肽链间通过共价键(二硫键)相连,这种结构不属于四级结构蛋白质的变构现象例子:老年痴呆症、舞蹈病、疯牛病蛋白质分子表面的水化膜和同种电荷是维持蛋白质亲水胶体稳定的两个因素(填空题)凝固的前提是发生变性,凝固的蛋白质一定发生变性加热使蛋白质变性并凝聚成块状称为凝固第三章一、名词解释1.核苷酸:2.增色效应:由于DNA变性后波长260nm的吸光度值会增加,这种现象称为增色效应3.DNA的变性: DNA的变性是指在某些理化因素作用下,DNA分子中碱基对之间的氢键断裂,使DNA双链结构解开变成单链的过程。
生物化学知识点总结完整版

生物化学知识点总结完整版生物化学是研究生物体在细胞、组织和器官水平上的化学过程的一门学科。
它涉及了生命体内物质的合成、降解和转化过程,以及这些过程对生命活动的调控和影响。
生物化学知识点包括了生物分子的结构及功能、生物体内的代谢过程、遗传信息的传递及表达等内容。
下面就对生物化学的一些重要知识点进行总结:一、生物分子的结构和功能1. 蛋白质:蛋白质是生物体内最丰富的一类生物大分子,由氨基酸通过肽键连接而成。
蛋白质在生物体内起着结构支持、酶催化、运输、信号传导等重要功能。
2. 碳水化合物:碳水化合物是生物体内最基本的能量来源,也是构成细胞壁、核酸、多糖等物质的重要成分。
3. 脂类:脂类是生物体内主要的能量储存物质,同时也是细胞膜的主要构成成分。
4. 核酸:核酸是生物体内的遗传物质,包括DNA和RNA两类,它们负责存储遗传信息和传递遗传信息。
二、生物体内的代谢过程1. 糖代谢:糖代谢是生物体内重要的能量来源,包括糖原合成、糖原降解、糖酵解等过程。
2. 脂质代谢:脂质代谢包括脂肪酸的合成、分解和氧化,以及胆固醇的合成和降解。
3. 蛋白质代谢:蛋白质代谢包括蛋白质合成、降解和氨基酸的代谢。
4. 核酸代谢:核酸代谢包括核苷酸的合成和降解过程。
5. 能量代谢:生物体内能量的产生主要依靠有机物的氧化和磷酸化过程。
这些过程包括糖酵解、三羧酸循环和氧化磷酸化等。
三、遗传信息的传递和表达1. DNA的结构和功能:DNA是双螺旋结构,由脱氧核苷酸通过磷酸二酯键连接而成。
DNA负责存储遗传信息,并通过转录和翻译的过程进行表达。
2. RNA的结构和功能:RNA是单链结构,由核糖核苷酸通过磷酸二酯键连接而成。
RNA包括mRNA、tRNA和rRNA等,它们分别参与遗传信息的转录、转运和翻译。
3. 蛋白质合成的过程:蛋白质合成包括转录和翻译两个过程。
转录是指DNA的信息转录成RNA的过程,而翻译是指mRNA上的密码子与tRNA上的反密码子匹配,从而在核糖体上合成蛋白质的过程。
生物化学知识点

生物化学知识点生物化学是研究生命体系中分子与分子之间相互作用及其变化的学科,它是生物学和化学的交叉领域。
生物化学的研究主要集中在生物分子的结构、功能以及它们在生命过程中的作用机制等方面。
下面将介绍几个生物化学中的重要知识点。
一、生物大分子1. 蛋白质蛋白质是生命活动的基本物质,它由一系列氨基酸通过肽键连接而成。
蛋白质在生物体内具有结构、功能和调节等多种作用,如酶、抗体、激素等。
2.核酸核酸是构成遗传物质的分子,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA具有遗传信息传递的功能,而RNA参与了蛋白质的合成以及其他生物过程。
3.多糖多糖是由多个单糖分子通过糖苷键连接而成的高分子化合物。
生物体内存在多种多糖,如淀粉、糖原和纤维素等。
多糖在生物体内的主要功能是能量储存和结构支持。
二、酶与酶促反应酶是生物体内能够催化化学反应的蛋白质。
酶促反应是生物体内化学反应发生的速度明显加快的过程。
在酶的作用下,底物被转化成产物,而酶本身并没有被消耗或改变。
三、代谢途径代谢是生物体内发生的化学反应的总称,包括物质的合成和降解过程。
常见的代谢途径包括糖酵解、脂肪酸氧化和蛋白质合成等。
这些代谢途径为生物体提供能量和构建生物分子的原料。
四、生物膜结构与功能生物膜是由脂质和一些蛋白质组成的双层结构,它是细胞的重要组成部分。
生物膜具有选择性渗透性,能够控制物质的进出。
此外,生物膜还参与细胞信号传递和细胞运输等功能。
五、生物能量转化生物能量转化是指生物体内能量的转换和利用过程。
常见的能量转化途径包括光合作用和细胞呼吸。
光合作用是光能转化为化学能的过程,细胞呼吸则是将有机物氧化释放出能量。
六、基因表达与调控基因表达是指基因信息转录成RNA,并进一步转译成蛋白质的过程。
基因调控则是生物体内对基因表达的调节。
这些过程对于维持生物体正常功能和发育具有重要作用。
总结:生物化学作为生物学和化学的交叉学科,研究生命体系中分子与分子之间的相互作用及其变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学知识点时间:2011-8-10 18:04:44 点击:486 核心提示:生物化学一、填空题 1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。
2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。
3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等...生物化学一、填空题1、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白质的基本单位是(氨基酸)。
2、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-转角)(无规则卷曲)。
3、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华力)等非共价键和(二硫键)。
4、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、(某些酸类沉淀法)、(重金属盐沉淀法)。
5、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。
构成核酸的基本单位是(氨基酸),核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。
6、核酸中嘌呤碱主要有(腺嘌呤A)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶C)、(尿嘧啶U)和(胸腺嘧啶T)三种。
7、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称为(酶促反应),酶的活性是指(酶的催化能力)。
8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。
9、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、(PH)、(激活剂)、(抑制剂)10、正常情况下空腹血糖浓度为(3.9-6.1mmol/L),糖的来源有(食物中糖的消化吸收)、(肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。
11、三羧酸循环中有(2)次脱羧(4)次脱氧反应,共生成(12)分子ATP,反应在(线粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a-酮戊二酸脱氢酶系)。
12、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中毒。
13、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的糖主要是(淀粉)。
14、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),甚至出现(糖尿)15、营养物质在(生物体)内彻底氧化生成(CO2)和(H2O),并释放能量的过程称(生物氧化),又称为(组织呼吸)或(细胞呼吸)。
16、体内重要的两条呼吸链是(NADH氧化呼吸链)和(FADH2琥珀酸氧化呼吸链),两条呼吸链ATP的生成数分别是(3ATP)和(2ATP)。
17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(H2O)的过程与(ADP)磷酸化生成(ATP)的过程相(偶联)的作用。
18、体内生成ATP的主要方式为(氧化磷酸化),其次是(底物水平磷酸化)。
19、体内CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(a-脱羧)和(B-脱羧)。
20、脂酰CoA每一次B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步骤。
生成一分子(乙酰辅酶A)和比原来少2个碳原子的(脂酰辅酶A)。
21、血浆脂蛋白密度分类法分(CM)、(VLDL)、(LDL)、(HDL)四种。
22、LDL由(蛋白质)、(脂肪)、(磷脂)、(胆固醇及胆固醇脂)四种成分组成。
23、氮平衡是指(人体每天摄入氮量与排出氮量之间的比例关系),其类型有(氮的部平衡)、(氮的正平衡)和(氮的负平衡),健康成年人应维持氮的(总)平衡,而生长期儿童应为氮的(正)平衡。
24、机体氨基酸脱氨基方式有(氧化脱氨基作用)、(转氨基作用)、(联合脱氨基作用)三种,其中以(联合脱氨基作用)方式为主,氨基酸脱氨基后产物有(a-酮酸)和(氨)两种,前者在体内的代谢去路有(转变成糖及脂肪)、(生成非必需氨基酸)、(氧化供能),后者在体内的代谢去路有(生成尿素)、(合成谷氨酰胺)、(合成非必需氨基酸、嘌呤、嘧啶等含氮化合物)。
25、尿素的合成实质上是机体对氨的一种(解毒)方式,尿素的合成部位是(肝脏),尿素的合成途径是(鸟氨酸循环)。
每合成一分子尿素可消耗(2)分子氨和(1)分子二氧化碳,合成的尿素可经(肾脏)排泄。
26、反转录是以(RNA)为模板,根据碱基配对原则,在反转录酶催化下,合成(DNA)的过程。
27、冈崎片段是(DNA)合成时的中间产物。
28、RNA有(mRNA)、(tRNA)和(rRNA)三种,它们在蛋白质生物合成中的主要功能分别是(合成蛋白质肽链的直接模板)、(活化和转运氨基酸的工具)和(蛋白质生物合成的场所)。
29、正常人体液占体重的(百分之60),其中细胞外液占体重的(百分之20),血浆占体重的(百分之5)。
30、K离子对心肌的兴奋性有(抑制)作用,Ca离子对心肌的兴奋性有(增强)作用。
31、血钙在体内以(扩散钙)和(非扩散钙)两种形式存在。
32、机体对酸碱平衡的调节主要依靠(血液的缓冲对)、(肺的调节)、(肾的调节)三方面的作用。
33、肾调节酸碱平衡,是通过(NaHCO3的重吸收)、(尿液的酸化)、(泌NH3作用)三方面来实现的。
34、剧烈呕吐丢失大量胃液,可能发生(代谢性碱)中毒,严重腹泄时可能发生(代谢性酸)中毒。
35、生物转化的第一相反应是(氧化反应)、(还原反应)、(水解反应),第二相反应是(结合反应)。
36、主要在肝进行的物质代谢有(糖代谢)、(脂类代谢)、(蛋白质代谢)、(维生素代谢)、(激素代谢)。
37、粪便的颜色主要来源是(粪胆素),尿的颜色主要来自(尿胆素),尿三胆是指(尿中胆红素)、(胆素原)、(尿胆素)生物化学名词1、生物化学:是研究生命的化学,即研究生物体内化学分子与化学反应,从分子水平探讨生命现象的科学。
2、蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序。
它是蛋白质的基本结构。
3、肽键:一个氨基酸的a-羧基与另一个氨基酸的a-氨基脱水缩合而成的化学键(-CONH-)称为肽键。
4、等电点:蛋白质在某一PH溶液时,解离成正、负离子的趋势相等,所带正、负电荷数相等,成为兼性离子(两性离子)。
此时溶液的PH 称为该蛋白质的等电点5、蛋白质的变性:在某些物理(如高温、高压、紫外线、X射线、超超波及强烈震荡)或化学因素(如强酸、强碱、重金属盐、有机溶剂)作用下,蛋白质空间结构破坏,导致理化性质改变和生物活性降低以至丧失的现象称为蛋白质的变性作用。
6、酶:是由活细胞产生的能够在体内外起催化作用的生物催化剂。
7、酶促反应:酶所催化的化学反应称为酶促反应。
8、酶的必需基团:酶分子中,与酶活性相关的化学基团称为酶的必需基团。
9、酶的活性中心:必需基团在酶的空间结构上彼此靠近,形成具有一定空间构象的区域,能与底物特异性地结合并将底物转化为产物,这一区域称为酶的活性中心。
10、酶原的激活:无活性的酶的前体称为酶原,在合适的条件下和特定的部位,无活性的酶原转变为有活性的酶的过程称为酶原的激活,其实质是酶的活性中心形成或暴露的过程。
11、同工酶:是指催化同一化学反应,但酶原蛋白的分子结构、理化性质及免疫特征等不同的一组酶。
12糖的无氧氧化(糖酵解):葡萄糖或糖原在无氧条件下分解生成乳酸的过程,称为糖的无氧氧化,由于此过程与酵母菌使糖的发酵过程相似,故又称为糖酵解。
13、糖的有氧氧化:葡萄糖或糖原在有氧条件下彻底氧化生成CO2和H2O并释放能量的过程,称为糖的有氧氧化。
14、糖尿:临床上将空腹血糖浓度高于7.22mmol/L时称为高血糖。
当血糖浓度高于8.89mmol/L,超过了肾小管对糖的重吸收能力(称为肾糖阈)时,尿中可出现葡萄糖,称为糖尿。
15、生物氧化(细胞呼吸或组织呼吸):营养物质(糖、脂肪、蛋白质)在生物体内彻底氧化生成CO2和H2O并释放能量的过程称为生物氧化,由于此过程与细胞利用氧和生成CO2有关,故又称为细胞呼吸或组织呼吸。
16、呼吸链:线粒体是物质进行彻底氧化的重要场所,在线粒体内膜上排列着一系列传递体,能将代谢物脱下的一对氢原子(2H)通过一个连续进行的链式反应逐步传递给氧生成水,由于此过程与细胞的摄氧有密切关系,因此称为呼吸链。
17、甘油三酯:脂肪是由一分子甘油和三分子脂肪酸脱水缩合成的酯称为甘油三酯。
18、脂肪动员:当饥饿或运动时贮存在人体脂肪组织中的甘油三酯,在脂肪酶的催化下,水解生成甘油和脂肪酸释放入血液,并运往全身各处组织细胞氧化利用,此过程称为脂肪动员。
19、激素的敏感性脂肪酶:脂肪水解是在甘油三酯(TG)脂肪酶、甘油二酯(DG)脂肪酶、甘油一酯(MG)脂肪酶的作用下完成,其中甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素的调控,因此称它为激素敏感性脂肪酶。
20、脂解激素:肾上腺素、去甲肾上腺素、肾上腺皮质激素及胰高血糖素能激活甘油三酯脂肪酶,促进脂肪动员,这些激素称为脂解激素。
21、抗脂解激素:胰岛素可降低甘油三酯脂肪酶的活性,所以称它为抗脂解激素。
22、酮血症:如果长期饥饿、严重糖尿病时,体内脂肪动员加强,肝内生成的酮体超过肝外组织利用酮体的能力,导致血中酮体升高称酮血症。
酮体是酸性物质,可引起酮症酸中毒,丙酮量增多经肺呼出,病人呼出的气味有酮味,即烂苹果味。
23、氮平衡:人体每天摄入氮量与排出氮量之间的比例关系称为氮平衡。
24、痛风症:当血浆中尿酸含量高于0.48mmol/L时,尿酸盐晶体易沉积于关节、软组织、软骨及肾等处,导致关节炎、尿路结石、肾疾病原,临床上称为痛风症。
临床上用嘌呤醇治疗痛风症。
25、中心法则:1958年Crick将遗传信息的传递方式归纳为遗传学中心法则,描述了遗传信息从DNA-DNA复制,或从DNA-RNA转录,再由RNA-蛋白质(翻译)的流动方向。
26、半保留复制:在每个子代DNA分子的双链中,一条链保留了亲代DNA的一条链,另一条链是重新合成的,故将这种复制方式称为半保留复制。
27、冈崎片段:随从链是在分段合成引物的基础上非连续合成的,这些不连续的DNA片段最先是由日本科学家冈崎在电子显微镜下发现,称为冈崎片段。
28、遗传密码或密码子:mRNA分子中含有A、G、C、U四种核苷酸,从5’-3’的方向,每三个相邻的核苷酸组成的三联体,称为遗传密码或密码子。
29、生物转化:各类非营养物质在生物体内代谢转变过程我为生物转化。
30、黄疸:各种病因导致血清总胆红素含量升高,可引起皮肤、黏膜、巩膜的黄染现象称为黄疸。
生物化学二、单项选择题1、蛋白质中氮的含量占的百分数为(C)A、6.25,B、10.5,C、16,D、19,E、252、变性蛋白分子结构未改变的是(A)A、一级结构,B、二级结构,C、三级结构,D、四级结构,E、空间结构3、DNA主要存在的部位是(C)A、细胞膜,B、细胞质,C、细胞核内染色质,D、细胞核基质,E、核糖体4、构成RNA分子的戊糖是(E)A、葡萄糖,B、果糖,C、乳糖,D、脱氧核糖,E、核糖5、关于酶的叙述哪项是正确的(C)A、所有的酶都含有辅基和辅酶,B、只能在体内起催化作用,C、大多数酶的化学本质是蛋白质,D、酶活性与溶液的PH无关,E、每一种酶只能催化一种底物发生反应6、酶原之所以没有活性是因为(B)A、酶蛋白肽链合成不完整,B、活性中心未完成或未暴露,C、酶原是普通的蛋白质,D、缺乏辅酶和辅基,E、是已经变性的蛋白质7、中年男性病人,酗酒,呕吐,急腹症,检查左上腹压痛,疑为急性胰腺炎,应测血的酶是(E)A、碱性磷酸酶,B、乳酸脱氢酶,C、谷丙转氨酶,D、胆碱脂酶,E、淀粉酶8、糖酵解的反应部位是(A)A、细胞质,B、线粒体,C、细胞质和线粒体,D、肝,E、肾脏9、糖有氧氧化的生理意义(C)A、机体在缺氧情况下获得能量以供急需的有效方式,B、是糖在体内的贮存形式,C、糖氧化供能的主要途经,D、为合成核酸提供磷酸核糖,E、与药物、毒物和某些激素的生物转化有关10、肝糖原能直接分解为葡萄糖,是因为肝中含有(B)A、磷酸化酶,B、葡萄糖-6磷酸酶,C、糖原合成酶,D、葡萄糖激酶,E、已糖激酶11、不能接受氢的物质是(C)A、NAD,B、CoQ,C、Cyt,D、FMN,E、FAD12、下列不属于高能化合物的是(D)A、乙酰CoA,B、琥珀酰CoA,C、ATP,D、6-磷酸葡萄糖,E、UTP13、运输食物脂肪的蛋白质是(A)A、CM,B、VLDL,C、LDL,D、HDL,E、IDL14、肝合成的脂蛋白是(B)A、CM,B、VLDL,C、LDL,D、HDL,E、IDL15、体内能合成的脂肪酸是(D)A、亚油酸,B、亚麻酸,C、花生四烯酸,D、软脂酸,E、DHA16、一分子软脂酸在体内彻底氧化净生多少分子ATP(C)A、38,B、131,C、129,D、146,E、3617、防止动脉硬化的脂蛋白是(D)A、CM,B、VLDL,C、LDL,D、HDL,E、IDL18、我国营养学会推荐的成人每日蛋白质需要量为(D)A、20g,B、40g,C、60g,D、80g,E、100g19、没有真正脱掉氨基的脱氨基方式是(B)A、氧化脱氨基,B、转氨基,C、联合脱氨基,D、嘌呤核苷酸循环,E、以上都是20、丙氨酸氨基转移酶活性最高的器官是(C)A、心肌,B、肾,C、肝,D、脑,E、肺21、体内氨的主要运输、贮存形式是(B)A、尿素,B、谷氨酰胺,C、谷氨酸,D、胺,E、嘌呤、嘧啶22、DNA作为遗传物质基础,下列叙述正确的是(A)A、DNA分子含有体现遗传特征的密码,B、子代DNA不经遗传密码可复制而成,C、DNA通过A-T,G-C把遗传信息转录给mRNA,D、通过tRNA直接把DNA上的遗传信息翻译成蛋白质,E、遗传信息只能从DNA传递给RNA23、DNA复制中,DNA片段中TAGCAT的互补结构是(B)A、TAGCAT,B、ATCGTA,C、ATGCTA,D、AUCGUA,E、AUGCUA24、中年男性患者,主诉关节疼痛,血浆尿酸0.55mmol/L,医生劝其不要进食动物肝脏,原因是(D)A、肝富含氨基酸,B、肝富含糖原,C、肝富含嘧啶碱,D、肝富含嘌呤碱,E、肝富含胆固醇25、下列关于肾脏对钾盐排泄的叙述错误的是(D)A、多吃多排,B、少吃少排,C、不吃也排,D、不吃不排,E、易缺钾26、对于不能进食的成人,每日的最低补液量为(D)A、100ml,B、350ml,C、500ml,D、1500ml,E、2500ml27、正常人血浆NaHCO3/H2CO3的比值为(C)A、10/1,B、15/1,C、20/1,D、25/1,E、30/128、碱储是指血浆中的(A)A、NaHCO3,B、KHCO3,C、Na2HPO4,D、NaH2PO4,E、Na2SO429、饥饿时肝的主要代谢途径是(D)A、蛋白质的合成,B、糖的有氧氧化,C、脂肪的合成,D、糖异生作用,E、糖酵解30、人体生物转化作用最重要的器官是(A)A、肝,B、肾,C、脑,D、肌肉,E、心脏31、胆汁中含量最多的有机成分是(C)A、胆色素,B、胆固醇,C、胆汁盐酸,D、糖,E、磷脂32、当肝功能受损时血液中升高的物质是(B)A、血脂,B、血氨,C、胆固醇,D、清蛋白,E、酮体生物化学三、多项选择题1、使蛋白质变性的因素有(ABCE)A、高温,B、强烈震动,C、强酸,D、中性环境,E、超声波2、核苷分子中戊糖的C-1’与碱基氮原子连接的位置是(AC)A、嘌呤N-9,B、嘌呤N-3,C、嘧啶N-1,D、嘧啶N-9,E、嘌呤N-33、下列符合DNA双螺旋结构要点的有哪项(ABCE)A、反向平行,B、碱基互补配对,C、围绕中心轴右手螺旋上升,D、碱基朝向外面作为骨架,E、磷酸和脱氧核糖作为骨架4、关于酶的活性中的叙述正确的是(ACDE)A、是酶与底物结合的部位,B、所有必需基团都位于活性中心,C、必需基团构成的部位,D、辅助因子结合的部位,E、抑制剂也可与活性中心结合5、关于同工酶,哪些说法是正确的(ABE)A、是由不同的亚基组成的多聚复合物,B、能催化同一底物发生反应,C、在电泳分离时它们的速度不同,D、免疫学性质相同,E、在临床上可用作某些疾病的诊断6、关于底物对酶促反应的影响,下列说法正确的是(AC)A、当底物浓度很低时,反应速度随底物浓度的增加而加快,B、当底物浓度很低时,反应速度随底物浓度的增加而减慢,C、随着底物浓度的增加,反应速度增加变慢,当底物浓度增高到一定程度时,反应速度趋于恒定,D、底物浓度越大,反应速度越慢,E、底物浓度不影响酶促反应速度7、下列属于糖分解代谢的途经是(BCD)A、糖异生作用,B、糖酵解,C、有氧氧化,D、磷酸戊糖途径,E、糖原的分解8、影响血糖浓度的因素有(ABCDE)A、糖氧化的速度,B、肝的功能、C、胰岛素,D、细胞膜的通透性,E、胰高血糖素8、能使氧化磷速度加快的因素是(AC)A、〈ATP〉/〈ADP〉值下降,B、〈ATP〉/〈ADP〉值升高,C、甲状腺激素,D、氰化物,E、解偶联剂9、能用于抢救氰化物中毒患者的药物是(ACD)A、亚硝酸乙戊酯,B、水杨酸,C、亚硝酸钠,D、硫代硫酸钠,E、异戊巴比妥10、生命活动所需的能量形式有(ABDE)A、机械能,B、热能,C、ATP,D、电能,E、化学能11、类脂包括以下哪几种,(BCE)A、脂肪,B、磷脂,C、胆固醇,D、软脂酸,E、糖脂12、乙酰CoA是合成以下哪些物质的原料(ACD)A、脂肪酸,B、磷脂,C、胆固醇,D、酮体,E、亚油酸13、在体内能生成乙酰CoA的物质是(ACD)A、葡萄糖,B、磷脂,C、脂肪,D、蛋白质,E、胆固醇14、血脂包括以下哪几种,(BCDE)A、必需脂肪酸,B、磷脂,C、脂肪,D、游离脂肪酸,E、胆固醇,15、酮体包括以下哪几种(ACE)A、乙酰乙酸,B、磷酸,C、B-氢丁酸,D、丙酮酸,E、丙酮16、属于鸟氨酸循环中间产物的是(ACD)A、鸟氨酸,B、谷氨酸,C、精氨酸,D、瓜氨酸,E、组氨酸17、体内氨的来源有(ABCE)A、氨基酸脱氨基作用产生,B、体内胺类分解产生,C、肾脏中谷氨酰胺分解产生,D、鸟氨酸循环生成,E、肠道吸收入体内18、下列物质中属于一碳单位的是(ABCD)A、-CH2-,B、=CH-,C、-CH=NH,D、-CH3,E、CO219、合成嘌呤核苷酸的原料有(ABD)A、甘氨酸,B、天冬氨酸,C、丙氨酸,D、谷氨酰酸,E、H2O20、DNA合成时(ABCDE)A、解开的两条链都可以做为模板,B、碱基配对为:A-T,G-C,C、新合成的DNA分子与原来的DNA分子完全相同,D、合成时需DNA聚合酶和连接酶,E、合成的原料为dNTP21、蛋白质生物合成时(CDE)A、由tRNA直接识别DNA上的遗传密码,B、氨基酸直接与三联密码连接,C、tRNA的反密码子与mRNA上的相应密码子形成碱基对,D、mRNA分子上出现UAA时,肽链合成终止,E、氨基酸的活化是在氨基酰-tRNA合成酶的催化下进行的22、下列有关钙吸收的描述正确的是(ACE)A、孕妇的吸收大于常人,B、钙的吸收与年龄成正比,C、维生素D可促进钙的吸收,D、低钙膳食时钙的吸收率低,高钙膳食时则钙的吸收率高,E、PTH可促进钙的吸收23、体内水排出的主要途径是(ABCD)A、尿液,B、汗液,C、肺脏,D、粪便,E、乳汁24、呼吸性酸中毒血浆生化指标的变化有(BDE)A、血浆PCO2降低,B、血浆PCO2升高,C、血浆H2CO3降低,D、血浆H2CO3升高,E、血浆NaHCO3升高25、下列属于固定酸的是(ABE)A、尿酸,B、乳酸,C、碳酸,D、葡萄糖,E、硫酸26、生物转化的意义是(ABD)A、使生物活性物质活性降低,B、使多数有毒物质毒性降低,C、使生物活性物质活性增强,D、使非营养物质的溶解性增高,E、使物质氧化功能增强27、阻塞性黄疸胆色素代谢改变有(ABD)A、血中游离胆红素改变不明显,B、血中结合胆红素升高,C、尿中没有胆红素,D、尿中胆素原降低,E、尿中胆色素增多28、溶血性黄疸胆色素代谢改变有(AD)A、粪便颜色加深,B、粪便颜色变浅,C、尿中有大量胆红素,D、血中游离胆红素升高,E、血中结合胆红素明显升高29、与胆红素生成有关的酶是(CD)A、羟化酶,B、脱羧酶,C、血红素加氧酶,D、胆绿素还原酶,E、转氨酶30、肝细胞性黄疸胆色素代谢改变的是(ABD)A、尿中出现胆色素,B、血中结合胆红素升高,C、血中结合胆红素降低,D、血中游离胆红素升高,E、血中游离胆红素降低生物化学简答1、核酸的分解产物是什么?答:核酸在核酸醇的作用下水解成核苷酸,核苷酸进一步水解产生核苷(或脱氧核苷)和磷酸,核苷完全水解得到戊糖和含氮碱等基本成分。