工程材料与成型技术基础复习总结

合集下载

工程材料与成型技术_复习要点与答案

工程材料与成型技术_复习要点与答案

第一章1、按照零件成形的过程中质量 m 的变化,可分为哪三种原理?举例说明。

按照零件由原材料或毛坯制造成为零件的过程中质量m的变化,可分为三种原理△m<0(材料去除原理);△m=0(材料基本不变原理);△m>0(材料累加成型原理)。

2、顺铣和逆铣的定义及特点。

顺铣:铣刀对工件的作用力在进给方向上的分力与工件进给方向相同的铣削方式。

逆铣;铣刀对工件的作用力在进给方向上的分力与工件进给方向相反的铣削方式。

顺铣时,每个刀的切削厚度都是有小到大逐渐变化的逆铣时,由于铣刀作用在工件上的水平切削力方向与工件进给运动方向相反,所以工作台丝杆与螺母能始终保持螺纹的一个侧面紧密贴合。

而顺铣时则不然,由于水平铣削力的方向与工件进给运动方向一致,当刀齿对工件的作用力较大时,由于工作台丝杆与螺母间间隙的存在,工作台会产生窜动,这样不仅破坏了切削过程的平稳性,影响工件的加工质量,而且严重时会损坏刀具。

逆铣时,由于刀齿与工件间的摩擦较大,因此已加工表面的冷硬现象较严重。

顺铣时的平均切削厚度大,切削变形较小,与逆铣相比较功率消耗要少些。

3、镗削和车削有哪些不同?车削使用围广,易于保证零件表面的位置精度,可用于有色金属的加工、切削平稳、成本低。

镗削是加工外形复杂的大型零件、加工围广、可获得较高的精度和较低的表面粗糙度、效率低,能够保证孔及孔系的位置精度。

4、特种加工在成形工艺方面与切削加工有什么不同?(1)加工时不受工件的强度和硬度等物理、机械性能的制约,故可加工超硬脆材料和精密微细零件。

(2)加工时主要用电能、化学能、声能、光能、热能等去除多余材料,而不是靠机械能切除多余材料。

(3)加工机理不同于切削加工,不产生宏观切屑,不产生强烈的弹塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。

(4)加工能量易于控制和转换,故加工围广、适应性强。

(5)各种加工方法易复合形成新工艺方法,便于推广。

工程材料与成形技术基础总结

工程材料与成形技术基础总结

工程材料与成形技术基础主要内容1、工程材料的分类工程材料一般可分为金属材料、高分子材料、陶瓷材料和复合材料等几大类。

2、金属材料的主要性能(1)力学性能是金属材料重要的使用性能,主要有:弹性、塑性、刚度、强度、硬度、冲击韧性、疲劳强度、断裂韧性等,要求掌握各种性能的定义。

(2) 常用的力学性能指标有:弹性极限(σe )、屈服强度(σs ,σ0.2 )、抗拉强度(σb )、延伸率(δ)、断面收缩率(φ)、冲击韧性(αk )、硬度(HB ,HRC ,HV )和疲劳强度(σ-1)等。

3、掌握金属材料的物理性能、化学性能和工艺性能的概念。

4、名词解释:(1)、合金(2)组元(3)固溶体(4)相图(5)金属化合物(6)结晶(7)晶体(8)晶格(9)晶面(10)晶胞(11)固溶强化(12)金属热处理(13)退火(14)正火(15)淬火(16)回火(17)调质处理5、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体和莱氏体。

6、掌握铁碳合金相图中的特性点和特性线的含义,要求默画铁碳合金相图。

7、了解铁碳合金中典型合金的结晶过程分析。

8、掌握铁碳合金的成分、组织和性能的变化规律。

9、掌握金属热处理的定义及作用。

10、重点掌握常用的金属热处理工艺方法的定义、目的、特点及应用。

常用热处理工艺包括退火、正火、淬火、回火及表面热处理和表面化学热处理。

11、了解钢在加热和冷却时的转变过程。

12、掌握常用金属材料的分类。

重点掌握碳钢的分类(按质量、用途、含碳量)、铸铁的分类(两种分类法)和合金钢的分类。

13、掌握碳钢、铸铁、合金钢的编号方法、成分、性能和应用。

能正确选用螺栓、齿轮、轴、床身、箱体、弹簧、模具、刀具等典型零件的相关材料(名称和编号)。

14、了解机械零件选材的一般原则。

第二部分材料成形工艺基础一、铸造1、了解合金的铸造性能及相关影响因素。

2、了解常见铸件缺陷及产生的主要原因。

3、掌握砂型铸造的工艺过程及应用范围。

材料成型技术基础知识点总结

材料成型技术基础知识点总结

第一章铸造1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。

2.充型:溶化合金填充铸型的过程。

3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。

4.充型能力的影响因素:金属液本身的流动能力(合金流动性)浇注条件:浇注温度、充型压力铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构流动性是熔融金属的流动能力,是液态金属固有的属性。

5.影响合金流动性的因素:(1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。

(2)化学成份:纯金属和共晶成分的合金流动性最好;(3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。

6.金属的凝固方式:①逐层凝固方式②体积凝固方式或称“糊状凝固方式”。

③中间凝固方式7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。

收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。

8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。

液态收缩和凝固收缩,通常以体积收缩率表示。

液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。

合金的固态收缩,通常用线收缩率来表示。

固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。

9.影响收缩的因素(1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。

??? (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。

??? (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。

???(4)铸型和型芯对铸件的收缩也产生机械阻力10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。

大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。

缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。

《工程材料及成型技术基础》期末考试重点总结

《工程材料及成型技术基础》期末考试重点总结

1、金属三种晶格类型:体心立方晶格、面心立方晶格、密排六方晶格。

2、晶体缺陷:点缺陷、线缺陷、面缺陷。

位错属于线缺陷。

3、材料抵抗外物压入其表面的能力称为硬度。

HRC表示洛氏硬度,HB表示布氏硬度,HV维氏硬度4、金属塑性加工性能用塑性和变形抗力衡量。

5、铸造应力分为:热应力和机械应力。

其中热应力属于残余应力。

6、单相固溶体压力加工性能好,共晶合金铸造加工性能好。

7、金属经过冷塑性变形后强度提高,塑性降低的现象称为形变强化。

8、铸造性能是指:流动性和收缩性。

9、板料冲压成形基本工序:分离工序和成形工序两大类。

10、工艺选择四条基本原则:①使用性能足够原则②工艺性能良好原则③经济性能合理原则④材料、成形工艺、零件结构相适应原则。

11、HT200是灰铸铁材料,其中200表示:最低抗拉强度为200MPa。

12、确定钢淬火加热温度的基本依据是:Fe-3C相图。

13、为保证铸造质量,顺序凝固适合于:缩孔倾向大的铸造合金。

14、锤上锻模时,锻件最终成型是在终锻模膛中完成的,切边后才符合要求。

15、材料45钢、T12、20钢、20Gr.中,焊接性能最好的是20钢(含碳量越高,焊接性能越差)16、机床床身用灰铸铁铸造成型17、固溶体分为:置换固溶体和间隙固溶体18、金属件化合物:正常价化合物、电子化合物、间隙化合物。

19、塑性衡量:伸长率和断面收缩率。

20、晶粒大小:①常温下晶粒越小,金属的强度、硬度越高,塑性、韧性越好。

②晶粒大小与形核率和长大速度有关③影响因素:过冷度和难溶杂质④细化晶粒:增大过冷度,变质处理。

机械搅拌21、单相固溶体合金塑性好,变形抗力好,变形均匀,不易开裂,加工性能好22、单相固溶体塑性变形形式:滑移和孪生23、退火:目的:1,、降低硬度,改善切削加工性2、消除残余应力,稳定尺寸,减少变形与开裂倾向3、细化晶粒,调整组织,消除组织缺陷。

完全退火:适用于亚共析钢,锻件及焊接件。

加热到Ac3以上使奥氏体化,作用:使加热过程中造成的粗大不均匀组织均匀细化,降低硬度,提高塑性,改善加工性能,消除内应力。

材料成型技术基础知识点总结

材料成型技术基础知识点总结

材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。

材料成型技术在各个行业的制造过程中起着重要的作用。

下面将对材料成型技术的基础知识点进行总结。

1.材料成型的分类:材料成型可分为热成型和冷成型两类。

热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。

冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。

2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。

材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。

热量作用主要是为了降低材料的硬度,提高其变形能力。

3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。

模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。

加工设备的选择与调试要根据材料的成型要求和加工量来确定。

成型过程的操作要严格控制力和热的加工参数,保证制品的质量。

4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。

材料的性能对成型工艺的选择和制品的质量有着重要影响。

成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。

设备的性能如精度、刚度、压力等也会影响到成型的结果。

5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。

汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。

航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。

电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。

建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。

综上所述,材料成型技术是制造过程中不可或缺的一部分。

通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。

常见的成形方法包括压力成形、热成形、热力复合成形等。

不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。

2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。

常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。

这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。

3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。

常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。

热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。

4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。

常见的热力复合成形技术包括焊接、热压焊、热胶合等。

这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。

5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。

工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。

工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。

6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。

工具设计包括毛坯设计、凸模设计、模具结构设计等。

材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。

7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。

常用的监测和控制技术包括传感器、自动控制系统等。

这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。

工程材料及成型技术基础复习总结

工程材料及成型技术基础复习总结

工程材料与成型技术根底1.材料强度是指材料在到达允的变形程度或断裂前所能承受的最大应力。

2.工程上常用的强度指标有屈服强度和抗拉强度。

3.弹性模量即引起单位弹性变形所需的应力。

4.载荷超过弹性极限后,假设卸载,试样的变形不能全部消失,将保存一局部剩余成形,这种不恢复的参与变形,成为塑性变形。

5.产生塑性变形而不断裂的性能称为塑性。

6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。

7.发生塑性变形而力不增加时的应力称为屈服强度。

8.硬度是指金属材料外表抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。

9.硬度是检验材料性能是否合格的根本依据之一。

10.11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。

12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。

13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。

14.疲劳度是指材料在无限屡次的交变载荷作用而不会产生破坏的最大应力。

的熔点。

16.晶格:表示金属部原子排列规律的抽象的空间格子。

晶面:晶格中各种位的原子面。

晶胞:构成晶格的最根本几单元。

17.体心立晶格:α-Fe 、鉻〔Cr〕、钼〔Mo〕、钨〔W〕。

面心立晶格:铝〔Al〕、铜〔Cu〕、银〔Ag〕、镍(Ni)、金〔Au〕。

密排六晶格:镁〔Mg〕、锌〔Zn〕、铍〔Be〕、镉〔Cd〕。

18.点缺陷是指长、宽、高三个向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。

19.线缺陷是指在一个向上尺寸较大,而在另外两个向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。

20.面缺陷是指在两个向上尺寸较大,而在另一个向上尺寸很小的缺陷,如晶界和亚晶界。

21.原子从一种聚集状态转变成另一种规那么排列的过程,称为结晶。

结晶过程由形成晶核和晶核长大两个阶段组成。

22.纯结晶是在恒温下进展的。

23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。

工程材料和成型基础知识点整理

工程材料和成型基础知识点整理

PPT填空题和简答题1 一、填空题1、金属结晶包括形核与长大两个过程。

3、晶粒和晶粒之间的界面称为晶界。

4、在结晶过程中.细化晶粒的措施有提高冷却速度、变质处理、振动。

5、由于溶质原子的溶入•固溶体发生晶格畸变•变形抗力增大•使金属的强度、硬度升高的现象称为固溶强化。

6、常见的金属晶格类型体心立方、面心立方和密排立方。

7、在晶体缺陷中.点缺陷主要有空位、间隙原子、置换原子.线缺陷主要有刃型位错、螺型位错.面缺陷主要有晶界、亚晶界8、金属结晶时.实际结晶温度必须低于理论结晶温度•结晶过冷度主要受冷却速度影响。

9、当金属化合物呈细小颗粒均匀分布在固溶体基体上时•将使合金的强度、硬度及耐磨性明显提高•这一现象称为固溶强化。

10、再结晶退火的前提是冷变形+足够高的温度.它与重结晶的区别在于无晶体结构转变。

1.奥氏体的晶格类型是面心立方。

2.铁素体的晶格类型是体心立方。

11、亚共析钢的室温组织是F+P 。

1.钢的淬透性是指钢淬火时所能达到的最高硬度值。

23.渗碳钢渗碳后的热处理包括淬火和低温回火.以保证足够的硬度。

24.在光学显微镜下观察.上贝氏体显微组织特征是羽毛状.下贝氏体显微组织特征呈针状。

5.零件失效的基本类型为表面损伤、过量变形、断裂。

2.线型无定型高聚物的三种力学状态为玻璃态、高弹态、粘流态。

1、一个钢制零件.带有复杂形状的内腔.该零件毛坯常用铸造方法生产。

2、金属的流动性主要决定于合金的成分3、流动性不好的铸件可能产生冷隔和浇不足缺陷。

4、铸造合金充型能力不良易造成冷隔和浇不足等缺陷.12、过共析钢的室温组织是P+Fe3C 。

13、共晶反应的产物是Ld1.20钢齿轮、45钢小轴、T12钢锉的正火的目的分别是:提高硬度.满足切削加工的要求作为最终热处理.满足小轴的使用要求、消除网状渗碳体。

2.在正火态的20钢、45钢、T8钢;、T13钢中.T8 钢的c b值最高。

3.在正火态的20钢、45钢、T8钢;、T13钢中.T13钢的HBS值最高。

工程材料与成形工艺(机械)期末复习总结

工程材料与成形工艺(机械)期末复习总结

工程材料与成形技术基础 概念定义原理规律小结材料部分材料在外力作用下抵抗变形和断裂的能力称为材料的 材料在外力作用下显现出的塑性变形能力称为材料的 拉伸过程中, 载荷不增加而应变仍在增大的现象称为称为材料的 屈服点 。

拉伸曲线上D 点的应力b b 称为材料的抗拉强度,它表明了试样被拉断前所能承载的最大应力。

硬度是指材料抵抗其他硬物压入其表面的能力, 它是衡量材料软硬程度的力学性能指标。

况下,材料的硬度越高,其耐磨性就越好。

韧性 是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料塑性和强度的综合表现。

材料在交变应力作用下发生的断裂现象称为 疲劳断裂 。

疲劳断裂可以在低于材料的屈服强度的应力下 发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的 后果是十分严重的。

晶体的结构: 在晶体中,原子(或分子 )按一定的几何规律作周期性地排列; 晶体表现出各向异性; 具有的凝固点或熔点。

而在非晶体中,原子(或分子)是无规则地堆积在一起。

常见的有 体心立方晶格、 面心立方晶格 和密排六方晶格 。

体心立方晶格的致密度比面心立方晶格结构的小。

晶体的缺陷: 1)点缺陷 2)线缺陷 3)面缺陷1)点缺陷 — 空位和间隙原子 在实际晶体结构中,晶格的某些结点,往往未被原子所占据,这种空着的位置称为空位。

同 时又可能在个别空隙处出现多余的原子, 这种不占有正常的晶格位置, 而处在晶格空隙之间的原子称 为间隙原子。

2) 线缺陷 — 位错晶体中,某处有一列或若干列原子发生有规律的错排现象,称为位错。

其特征是在一个方向 上的尺寸很长,而另两个方向的尺寸很短。

晶体中位错的数量通常用位错密度表示,位错密度是指单 位体积内,位错线的总长度。

3) 面缺陷 —— 晶界和亚晶界实际金属材料是多晶体材料, 则在晶体内部存在着大量的晶界和亚晶界。

晶界和亚晶界实际 上是一个原子排列不规则的区域,该处晶体的晶格处于畸变状态,能量高于晶粒内部,在常温下强度 和硬度较高,在高温下则较低,晶界容易被腐蚀等。

材料成形技术基础知识点总结

材料成形技术基础知识点总结

铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。

1、铸造的实质利用了液体的流动形成。

2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。

力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。

1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。

通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。

它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。

生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。

(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。

适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。

工程材料及成形技术基础课程复习

工程材料及成形技术基础课程复习

(0)绪论材料的分类及在机械工程技术中的应用、材料科学的发展、本课程的目的、任务和学习方法。

(一)金属材料的力学性能1、了解相关力学性能;2、理解强度、刚度、弹性、塑性、硬度、冲击韧性、疲劳强度的概念;3、理解σb、σs、σ0.2、HBS(W)、HRC、HRA、HV、δ、δ5、ψ、σ-1等的含义。

(二)金属及合金的晶体结构与结晶1、晶体与非晶体,及其特点;掌握晶格、晶胞、晶格常数、晶面和晶向。

2、掌握晶体的3种类型:体心、面心、密排六方;及其相关知识,如原子个数、致密度、属于此类型的金属。

3、理解单晶体与多晶体;掌握晶体缺陷的3种类型:点缺陷、线缺陷、面缺陷;并能举例;位错(密度)。

4、金属结晶、过冷(度)现象、晶粒大小、金属结晶过程(形核与长大)、晶粒大小、细化晶粒的方法、铸锭组织(3个晶区)、同素异晶转变。

5、合金、组元、组织、相的基本概念、合金的相结构、固溶体(概念、种类(置换与间隙固溶体、有限与无限固溶体)、固溶强化)、金属化合物(概念、特点)、机械混合物。

6、冷、热变形加工的划分标志;实例。

(三)铁碳合金相图1、纯铁的同素异构转变、二元合金相图基本知识、匀晶相图、共晶相图分析;合金的组成与组织。

2、铁碳合金的基本组织:铁素体、奥氏体、渗碳体、珠光体、莱氏体;铁碳合金的基本相:铁素体、奥氏体、渗碳体。

3、铁碳合金相图(默画)分析:共晶反应、共析反应、相图中点、线的含义,特别是重要的点、线;铁碳合金的分类及室温组织。

4、典型合金结晶过程:共析钢、亚共析钢、过共析钢的结晶过程;共晶白口铁、亚共晶白口铁、过共晶白口铁的结晶过程。

5、铁碳合金成分、组织和性能之间的关系,相图的应用。

(四)钢的热处理1、热处理的概念、目的、种类。

2、钢加热时组织的转变:奥氏体化(以共析钢为例,其4个阶段)、晶粒的长大及控制(快速加热、短时间保温)。

3、钢冷却组织转变:过冷奥氏体的等温转变、C曲线及分析;过冷奥氏体连续冷却转变、马氏体转变。

材料成型技术基础总复习知识点归纳

材料成型技术基础总复习知识点归纳

材料成型技术基础总复习知识点归纳二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。

2.铸造方法:砂型铸造(手工造型)及两箱造型。

3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。

参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变)3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力(避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图(余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸(首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。

工程材料及成形技术基础复习(重点完整版)

工程材料及成形技术基础复习(重点完整版)

一、二元相图的建立合金的结晶过程比纯金属复杂,常用相图进行分析,相图是用来表示合金系中各金在缓冷条件下结晶过程的简明图解,又称状态图或平衡图。

合金系是指由两个或两个以上元素按不同比例配制的一系列不同成分的合金。

组元是指组成合金的最简单、最基本、能够独立存在的物质。

多数情况下组元是指组成合金的元素。

但对于既不发生分解、又不发生任何反应的合物也可看作组元,如Fe-C合金中的Fe3C。

相图由两条线构成,上面是液相线,下面是固相线。

相图被两条线分为三个相区,液相线以上为液相区L ,固相线以下为α固溶体区,两条线之间为两相共存的两相区(L+ α)。

(3) 枝晶偏析合金的结晶只有在缓慢冷却条件下才能得到成分均匀的固溶体.但实际冷速较快,结晶时固相中的原子来不及扩散,使先结晶出的枝晶轴含有较多的高熔点元素(如Cu-Ni合金中的Ni), 后结晶的枝晶间含有较多的低熔点元素,如Cu-Ni合金中的Cu)。

在一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。

与冷速有关而且与液固相线的间距有关.冷速越大,液固相线间距越大,枝晶偏析越严重枝晶偏析会影响合金的力学、耐蚀、加工等性能。

生产上常将铸件加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称作扩散退火.2、二元共晶相图当两组元在液态下完全互溶,在固态下有限互溶,并发生共晶反应时所构成的相图称作共晶相图。

以Pb-Sn 相图为例进行分析.(1) 相图分析①相:相图中有L、α、β三种相,α是溶质Sn在Pb中的固溶体,β是溶质Pb在Sn中的固溶体。

②相区:相图中有三个单相区:L、α、β;三个两相区:L+α、L+β、α+ β。

③液固相线:液相线AEB,固相线ACEDB。

A、B分别为Pb、Sn的熔点。

④固溶线: 溶解度点的连线称固溶线.相图中的CF、DG线分别为Sn在Pb中和Pb在Sn中的固溶线。

固溶体的溶解度随温度降低而下降。

材料成型技术基础复习重点

材料成型技术基础复习重点

1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。

细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。

合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。

固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。

1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。

热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。

热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。

橡胶橡胶是可改性或已被改性为某种状态的弹性体。

1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。

通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。

1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。

今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。

2.0材料的凝固理论凝固:由液态转变为固态的过程。

结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。

粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。

工程材料与成型技术基础期末考试复习(百度的答案)

工程材料与成型技术基础期末考试复习(百度的答案)

期末考试复习题型:1.单项选择题15小题占15% (基本理论知识的应用)2.名词解释6个占18% (重要名词)3.问答题3题占26%(重要知识点)4.分析题2大题占20-30%(铁碳相图,热处理)5.作图计算题或计算题占11-21% (铁碳二元相图及杠杆定律))复习范围重要名词:单晶体,单晶体是指样品中所含分子(原子或离子)在三维空间中呈规则、周期排列的一种固体状态。

多晶体,整个物体是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体[1]。

例如:常用的金属。

原子在整个晶体中不是按统一的规则排列的,无一定的外形,其物理性质在各个方向都相同.过冷度,熔融金属平衡状态下的相变温度与实际相变温度的差值。

纯金属的过冷度等于其熔点与实际结晶温度的差值,合金的过冷度等于其相图中液相线温度与实际结晶温度的差值。

合金,合金,是由两种或两种以上的金属与非金属经一定方法所合成的具有金属特性的物质。

组元,组成合金的独立的、最基本的单元称为组元,组元可以是组成合金的元素或稳定的化合物。

相,一合金系统中的这样一种物质部分,它具有相同的物理和化学性能并与该系统的其余部分以界面分开。

合金相图,合金相即合金中结构相同、成分和性能均一并以界面分开的组成部分。

它是由单相合金和多相合金组成的。

固溶体,固溶体指的是矿物一定结晶构造位置上离子的互相置换,而不改变整个晶体的结构及对称性等。

铁素体(F), 铁或其内固溶有一种或数种其他元素所形成的晶体点阵为体心立方的固溶体。

奥氏体(A),γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

渗碳体(Fe3C),晶体点阵为正交点阵,化学式近似于碳化三铁的一种间隙式化合物。

]珠光体(P), 奥氏体从高温缓慢冷却时发生共析转变所形成的,其立体形态为铁素体薄层和碳化物(包括渗碳体)薄层交替重叠的层状复相物。

广义则包括过冷奥氏体发生珠光体转变所形成的层状复相物。

莱氏体(Ld),高碳的铁基合金在凝固过程中发生共晶转变所形成的奥氏体和碳化物(或渗碳体)所组成的共晶体。

材料成型工艺基础复习总结.doc

材料成型工艺基础复习总结.doc

铸造1铸造:将液态金属浇注到具有与零件形状及尺寸相适成的的铸型空腔屮,待冷却凝岡f获得一定形状和性能的零件或毛坯的方法。

2合金的铸造性能:合金在铸造生产中表现岀来的工艺性能。

3合金的充型能力:液态合金充满铸型型腔,获得尺、r正确,形状完整,轮廓清晰的铸件的能力。

4合金充型能力的影响因素:合金的流动性、浇注温度(高温fli炉、低温浇铸)、充型压力、铸型条件(结品温度范围越快,流动性越好,一般优先选择共品结品)。

影响合金流动性的因素:影响液态合金在铸型屮保持流动的吋间和流动速度的因素,如金属本身的化7:成分,温度,杂质含朵等,不同的结晶特点,在液态合金屮凡能形成菇熔点夹杂物的元素,均会降低介金流动性,凡能形成低熔点化介物且降低合金液黏度的元素,都能提高介金的流动性。

5合金的收缩:收缩三过程:{[液态收缩(浇注温度冷却至液ffl线温度)、凝固收缩(液相线冷却至固相线)、]表现为合金体积的收缩,用体积收缩率表示,是铸件产生缩孔缩松的主要原冈}、{固态收缩(固相线冷却至室温),表现为铸件各个方14上线尺寸的缩减,川线收缩率表示,是铸件产生(A)应力、变形和裂纹的基本原因};影响因素:化学成分、浇注温度、铸型结构与铸型条件。

6防缩孔措施及实现措施:措施:控制铸件的凝同次序,使逐渐实现顺序凝同(使逐渐按照递增的温度梯度方向从一个部分到另一个部分依次凝凼);方注:可能出现缩孔的热节处增没胃口或者冷铁,使铸件远离口的部位先凝固,然后靠近胃口部位凝固,最后口本身凝岡。

7铸造内应力:热应力,机械应力。

8热应力:由子铸件壁厚不均匀、各部分冷却速度不一致,使铸件在同一时期内各部分收缩不一致引起;预防措施:设计铸件结构时使铸件的璧厚均匀,并在铸造工艺上采川同时凝固原则(从工艺上采取必耍措施,是铸件各部分冷却速度尽量一致;具体方法就是讲浇口开在铸件的薄壁处,以减小该处的冷却速度,而在厚壁处可放置冷铁以加快K冷却速度)。

9气孔形式及防止措施:析出气孔,反应气孔、侵入气孔防止措施:1)尽量减少气孔來源2)增大砂型的透气性3)增加除气与排气装置10孕育处理过程首先熔炼出碳硅含fi低的高温原铁水,然P将块度为3~10mm3的小块或粉末状孕育剂均匀的撒到出铁槽或浇包屮,由出炉的高温铁水将孕育剂冲熔,外被吸收后搅拌, 扒渣,然后进行浇注。

工程材料及成型技术基础复习要点

工程材料及成型技术基础复习要点

《工程材料及成型技术基础》复习要点第一章(铁碳合金的)刚度、强度、塑性、硬度的基本测量方法、表示方法及影响因素。

选材的依据。

第二章常见金属的晶格类型;实际金属的晶体缺陷;什么叫结晶?合金的结晶过程(形核、长大);铁碳合金的两个典型反应:共晶、共析反应的表达式及意义;铁的同素异构体;铁碳合金固态常见的相及性能;常见铁碳合金的组织性能及代号;室温下钢的平衡组织组成及显微组织示意图;铁碳合金状态图的作用。

第三章结晶时细化晶粒的途径;C曲线图的作用;热处理的工艺组成(热处理过程)、热处理的目的、钢的“四把火”的定义及处理后的组织、性能(尤其是淬火及回火);共析钢三种等温转变产物及特性;淬透性概念及影响因素;淬硬性概念及影响因素;马氏体的特性及奥氏体向马氏体转变的特点;(注意三个图:P61图3-28、P67图3-42、P72图3-48)第四章钢的主要分类方法;钢中常存杂质有哪几种?对钢性能有什么影响?合金元素对钢的性能的影响。

掌握以下几类钢的编号、成分特点、性能特点、热处理特点、应用场合:碳素结构钢、优质碳素结构钢、碳素工具钢(含合金工具钢,主要是高速钢,尤其注意P119图4-9多次回火的目的)、合金调质钢、合金渗碳钢、合金弹簧钢、滚动轴承钢。

灰口铸铁种类及石墨形状、性能特点(另外注意灰铸铁及球墨铸铁的牌号表示法、热处理特点、应用场合)、铸铁与铸钢的性能的比较。

第六章铸造生产的特点及应用;铸造工艺性的概念,影响因素及如何影响。

铸造工艺性不好会出现哪些铸造缺陷?两种凝固原则的应用;,浇注系统的组成及作用;为什么要规定铸件的合理壁厚?铸件的结构工艺性要求;铸件与锻件的性能比较。

第七章锻造生产的特点及应用;锻造工艺性的概念,影响因素及如何影响。

自由锻的基本工序有哪些?锻造坯料加热时易出现哪些加热缺陷?自由锻锻件的结构工艺性要求。

你所学过的金属材料中,哪些适合锻造?哪些不适合锻造?会定性评价常见碳钢的锻造性。

第八章焊接生产的特点及应用;焊接电弧的形成过程;什么叫正接:什么叫反接?焊接冶金过程特点;焊接接头的组成;低碳钢焊接热影响区的组织及性能;焊接应力与变形的产生原因及预防、矫正方法;焊接变形的形式;焊条电弧焊的焊条组成及其作用、焊条酸碱性的概念及其特性;焊条电弧焊的特点;焊接(工艺)性的概念,影响因素及如何影响;会定性评价常见碳钢的焊接性。

建筑材料成形复习资料

建筑材料成形复习资料

建筑材料成形复习资料建筑材料成形是建筑工程中的重要一环,它是指通过各种手段将原材料进行加工,使其成为建筑所需的各种形状和尺寸的构件或装饰材料的过程。

在建筑工程建设过程中,成形技术的应用非常广泛,因此对建筑材料成形的学习掌握显得尤为重要。

本文将从以下几个方面进行复习资料的总结。

一、基础知识建筑材料成形的基础知识是了解材料的物理力学性能和化学组合以及各种成形技术的优缺点等。

建筑材料成形技术包括锻造、冷镦、挤压、拉拔、压铸、注塑等,这些成形技术的特点各不相同,还需要根据不同的材料特性来选择不同的成形技术。

二、钢筋管钢筋管是建筑中常用的一种材料,它的成形工艺包括光纤激光切割、钢管弯曲和顶丝等,在钢筋管的加工过程中,需要掌握各种材质的性能和切割技术,并且要根据不同的需要选择不同的钢管加工方式来满足建筑材料成形需求。

三、铝合金型材铝合金型材是一种轻型、高强度、可塑性好、表面光洁度高的建材。

铝合金型材的成形技术有挤压、拉伸等,其中挤压是最为常用的一种成形技术,通常需要对预备材料进行预处理,如加热或调节材料形状和尺寸等。

四、塑料管塑料管是建筑中用途广泛的一种管道材料,其成形工艺通常涉及注塑、挤出和吹塑等技术。

在成形过程中,需要了解塑料的加工流程和机械精度控制等方面的知识,以提高塑料管加工的精度和品质。

五、石材雕刻石材雕刻是一种历史悠久的传统工艺,广泛应用于建筑装修和园林景观等领域。

在石材雕刻中,需要根据石材本身的特性和设计要求,选择不同的加工方式,如手工雕刻、机器切割等。

同时还需要了解各种石材加工工具和技术,以提高石材加工的效率和精度。

六、陶瓷制品陶瓷制品是一种广泛应用于建筑装饰的材料,它的成形方法包括手工成型、压制成型等。

在陶瓷制品加工过程中,需要注意温度和湿度等因素的控制,以保证陶瓷制品的成形质量和成品性能。

总结建筑材料成形是建筑工程建设过程中必不可少的环节,对建筑材料成形的学习和掌握有利于提高建筑工程的质量和效率。

材料成型技术基础总结

材料成型技术基础总结
P230 .(1)、
(1)冲裁变形过程的三个阶段 (1)弹性变形阶段(图8-1) (2)塑性变形阶段 (3)断裂分离阶段
1 凹模 2 板材 3 凸模
图8-1 冲裁时板料的变形过程
弯曲变形过程 弯曲时还应尽可能使弯曲线与板料纤维垂直。 若弯曲线与纤维方向一致,则容易产生破裂。 此时应增大弯曲半径。 回弹: 在弯曲结束后,由于弹性变形的 恢复,板料略微弹回一点,使被弯曲 的角度增大,此现象称为回弹。 一般回弹角为 0°~10 ° 。 因此,在设计弯曲模时:
芯撑
三、铸件壁厚的设计
1 .合理设计铸件壁厚 2 .铸件壁厚应均匀、避免厚大截面
第六章 金属塑性成形的工艺理论基础
第三节 塑性变形理论及其假设 二、塑性变形前后体积不变的假设 成形时金属流动模型—— 体积不变的假设假设+最小阻力定律 拔长时的锻造比为: Y拔=S0/S, 镦粗时的锻造比为: Y镦=H0/H. 第四节 影响塑性变形的因素 金属的锻造性能 — 衡量材料在经受压力加工时获 得优质零件难易程度的一个工艺性能。 衡量可锻性常用的指标。
⑵缩孔和缩松的防止 ①缩孔的防止
原则
消 除 缩 孔 的 方 法
定向(顺序)凝固原则
利用各种工艺措施,使铸件从远离冒口的部分到冒口之 间建立一个递增的温度梯,凝固从远离冒口的部分开始,逐 渐向冒口方向顺序进行,最后 是冒口本身凝固。这样就能 实现以厚补薄,使缩孔移至冒口,从而获得致密的铸件。
合理布置内浇道及确定浇铸工艺。 方法 合理应用冒口、冷铁和补贴等工 艺措施。
第四节铸造工艺方案及工艺图示例
复习: 第一节 铸造工艺 方案的确定
一、 浇注位置及分形面的选择
1.浇注位置的选择原则
(1) 铸件的重要加工面或主要工作面应朝下或位于侧面,避 免砂眼、气孔和夹渣 (2)铸件的大平面应朝下,减少辐射防开裂夹渣。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程材料与成型技术基础1.材料强度是指材料在达到允许的变形程度或断裂前所能承受的最大应力。

2.工程上常用的强度指标有屈服强度和抗拉强度。

3.弹性模量即引起单位弹性变形所需的应力。

4.载荷超过弹性极限后,若卸载,试样的变形不能全部消失,将保留一部分残余成形,这种不恢复的参与变形,成为塑性变形。

5.产生塑性变形而不断裂的性能称为塑性。

6.抗拉强度是试样保持最大均匀塑性变形的极限应力,即材料被拉断前的最大承载能力。

7.发生塑性变形而力不增加时的应力称为屈服强度。

8.硬度是指金属材料表面抵抗其他硬物体压入的能力,是衡量金属材料软硬程度的指标。

9.硬度是检验材料性能是否合格的基本依据之一。

10.11.布氏硬度最硬,洛氏硬度小于布氏硬度,维氏硬度小于前面两种硬度。

12.冲击韧性:在冲击试验中,试样上单位面积所吸收的能量。

13.当交变载荷的值远远低于其屈服强度是发生断裂,这种现象称为疲劳断裂。

14.疲劳度是指材料在无限多次的交变载荷作用而不会产生破坏的最大应力。

熔点。

16.晶格:表示金属内部原子排列规律的抽象的空间格子。

晶面:晶格中各种方位的原子面。

晶胞:构成晶格的最基本几何单元。

17.体心立方晶格:α-Fe 、鉻(Cr)、钼(Mo)、钨(W)。

面心立方晶格:铝(Al)、铜(Cu)、银(Ag)、镍(Ni)、金(Au)。

密排六方晶格:镁(Mg)、锌(Zn)、铍(Be)、镉(Cd)。

18.点缺陷是指长、宽、高三个方向上尺寸都很小的缺陷,如:间隙原子、置换原子、空位。

19.线缺陷是指在一个方向上尺寸较大,而在另外两个方向上尺寸很小的缺陷,呈线状分布,其具体形式是各种类型的位错。

20.面缺陷是指在两个方向上尺寸较大,而在另一个方向上尺寸很小的缺陷,如晶界和亚晶界。

21.原子从一种聚集状态转变成另一种规则排列的过程,称为结晶。

结晶过程由形成晶核和晶核长大两个阶段组成。

22.纯结晶是在恒温下进行的。

23.实际结晶温度Tn低于理论结晶温度Tm的现象,称为过冷,其差值称为过冷度ΔT,即ΔT=Tm﹣Tn。

24.同一液态金属,冷却速度愈大,过冷度也愈大。

25.浇注时,向液态金属中加入一些高熔点、溶解度的金属或合金,当其结构与液态金属的晶体结构相似时使形核率大大提高,获得均匀细小的晶粒。

这种方法称为变质处理。

26.液态金属结晶后获得具有一定晶格结构的晶体,高温状态下的晶体,在冷却过程中晶格结构法发生改变的现象,称为同素异构转变,又称重结晶。

27.一种金属具有两种或两种以上的晶体结构,称为同素异构性。

28.当溶质原子溶入溶剂晶格,使溶剂晶格发生畸变,导致固溶体强度、硬度提高,塑性和韧性略有下降的下降,称为固溶强化。

强度、硬度、耐热性和耐磨性明显提高,这一现象称为弥散强化。

30.杠杆定律→大题(P26)。

31.相图分析→大题(P32)。

32.铁碳合金的分类33.碳钢是指碳的质量分数小于2.11%的铁碳合金。

34.碳钢的分类35.铸铁是应用广泛的一种铁碳合金,其wc﹥2.11%.36.按照石墨形貌的不同,这一类铸铁可以分为灰铸铁(片状石墨)、可锻铸铁(团絮状石墨)、球墨铸铁(球状石墨)和蠕墨铸铁(蠕虫状石墨)四种。

37.钢的热处理是将固态钢采用适当的方式进行加热、保温、和冷却,以获得所需组织结构与性能的一种工艺。

38.热处理的特点是改变零件内部组织,不改变其形状与尺寸,消除毛坯缺陷,改善毛坯切削性能,改善零件的力学性能。

即改善工艺性能和力学性能。

39.热处理分为普通热处理(退火、正火、淬火和回火)、表面热处理(表面淬火、渗碳、渗氮、碳氮共渗)及特殊热处理(形变热处理)。

40.不是所有材料都能进行热处理强化,满足条件:①有固态相变②经冷加工使组织结构处于热力学不稳定状态③表面能被活性介质的原子渗入从而改变化学成分。

41.退火作用是为了降低硬度,提高塑性改善切削性能。

42.淬火的作用:获得高硬度的马氏体。

43.奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程,珠光体向奥氏体转变。

44.奥氏体化是钢组织转变的基本条件。

45.应用等温转变曲线分析奥氏体化在连续冷却中的转变(P53)46.球化退火是使钢中碳化物球化而进行的退火,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。

热处理后的组织为珠状珠光体,应用于共析钢、过共析钢和合金工具钢。

目的:降低硬度、改善切削加工性,改善热处理工艺性能,为淬火做组织准备。

47.正火,又称常化,是将工件加热至727到912摄氏度之间以上40~60min,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。

应用于亚共析钢,铁素体和索氏体、亚共析钢,索氏体、过共析钢,索氏体和二次渗碳体。

目的:对于低碳钢、低碳低合金钢,细化晶粒,提高硬度,改善切削加工性,对于共析钢,消除二次网状渗碳体,有利于球化退火的进行。

48.钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,再以大于临界冷却速度快速冷却,从而发生马氏体转变的热处理工艺。

淬火钢得到的组织主要是马氏体(或下贝氏体),此外还有少残余奥氏体及未溶的第二相。

目的:提高钢的硬度和耐磨性。

49.回火是将淬火钢重新加热到A1以下某一温度,保温,然后冷却的热处理工艺。

50.低温回火的组织为回火马氏体,它有饱和的α相和与其共格的ε-Fe2.4C组成,低温回火的目的是保持淬火马氏体的高硬度和高耐磨性,降低淬火应力和脆性,用于各种高碳钢的道具、量具、冷冲模具、滚动轴承和渗碳工件。

51.中温回火后的组织为回火托氏体,它有尚未发生的再结晶的针状铁素体和弥散分布的极细小的片状或粒状渗碳体组成,目的是为了获得高的屈强比、高的弹性极限、高的韧性,用于各种弹簧、锻模。

52.高温回火的组织为回火索氏体,它有已再结晶的铁素体和均匀分布的细粒状渗碳体组成,失去了原来淬火马氏体的片状或板条状形态,呈现多边形颗粒状,同时渗碳体聚集长大。

目的:获得综合力学力学性能,在保持较高强度的同时,具有较好的塑性和韧性,适用于处理传递运动和力的重要零件,如:传动轴、齿轮。

53.淬火后高温回火的热处理称为调质。

54.产生回火脆性:淬火合金钢在某一温度范围内回火时,出现冲击韧性剧烈下降的现象,称为回火脆性。

在350℃附近回火,碳钢的和合金钢都会出现冲击韧性下降,产生脆化现象,这种回火脆性称为第Ⅰ类回火脆性。

它与回火的冷却方式无关,且无法消除,因此一般不在250-400℃温度范围内回火。

淬火合金钢在450-650℃回火时出现的回火脆性,称为第Ⅱ类回火脆性。

它与杂质在奥氏体晶界上的偏析有关,消除第Ⅱ类回火脆性的方法:回火后快速冷却,使杂质来不及在晶界上偏析。

(简答题)55.液态金属充型铸造,获得尺寸精确,轮廓清晰的铸件,取决于充型能力。

在液态金属充型过程中,一般伴随结晶现象,若充型能力不足,在型腔被填满之前形成晶粒将充型的通道堵塞,金属液态迫使停止流动,于是铸件将产生不足或冷隔等缺陷。

56.充型能力取决于金属液本身的流动能力。

57.影响充型能力的因素和原因58.铸件的凝固方式分为三种类型:逐层凝固方式、体积凝固(糊状凝固)方式和中间凝固方式。

59.铸件在凝固和冷却过程中,其体积和尺寸减小的现象称为收缩。

收缩是铸件许多缺陷产生的基本原因。

60.金属从浇注温度冷却到室温经过三个收缩阶段:⑴液态收缩:金属在液体状态时的收缩,其原因是由于气体排出,空穴减少,原子间间距减小。

⑵凝固收缩:金属在凝固过程中的收缩,其原因是由于空穴减少,原子间间距减小。

液态收缩和凝固收缩又称为体积收缩,是缩孔或缩松形成的基本原因。

⑶固态收缩:金属在固态过程中的收缩,其原因在于空穴减少,原子间间距减少。

固态收缩还引起铸件外部尺寸的变化,古称尺寸收缩线收缩。

线收缩对铸件形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。

61.在常用合金中,钢的收缩率最大,灰铸铁收缩率最小。

62.铸件凝固结束后常常在某些部位出现孔洞,大而集中的称为缩孔,细小而分散的孔洞称为缩松。

结晶间隔大的合金,易产生缩松,纯金属共晶成分的合金,易形成集中的缩孔。

63.金属材料经冷塑性变形后,随变形度的增加,其强度、硬度提高,塑性和韧性下降,这种现象称为加工硬化。

64.晶体只有在切应力的作用下才会发生塑性变形。

65.金属在再结晶温度以下进行的塑性变形称为冷变形加工,此时产生加工硬化。

金属在再结晶温度以上进行的塑性变形称为热变形加工。

66.热变形加工可使金属中的气孔和疏松焊合,并改善夹杂物,碳化物的形态、大小和分布,提高钢的强度、塑性及冲击韧度。

67.热变形时铸锭中的非金属夹杂物沿变形方向被拉长为纤维组织(热加工流线)。

68.自由锻用于单件、小批量锻件的生产以及大型锻件的产生。

69.自由锻相比模锻具有以下特点:模锻件形状和尺寸精度高,表面质量好,加工余量小,节省金属材料;生产率高;操作简单,易于实现自动化;模锻设备要求较高,吨位要求大,锻模结构复杂,成本高,生产准备周期较长。

70.模锻适用于中、小型锻件的成批及大量生产。

71.板料冲压是利用冲模在压力机上对材料施加压力,使材料产生分离或变形,从而获得一定形状、尺寸和性能的加工方法。

板料冲压通常在室温下进行,故又称冷冲压。

72.弯曲件在弯曲变形后,会伴随一些弹性恢复从而造成工件弯曲角度、弯曲半径与模具的形状、尺寸不一致的现象称为弯曲件的回弹现象。

73.焊接方法:熔化焊、压力焊和钎焊。

74.电阻焊是利用接触电阻热将接头加热到塑性或熔化状态,再通过电极施加压力,形成原子间结合的焊接方法。

75.钎焊分为两类:硬钎焊和软钎焊。

硬钎焊的特点是所用钎料的熔化温度高于450℃,接头的强度大,用于受力较大、温度较高的场合。

所用的钎料多为铜基、银基。

钎料熔化温度低于450℃的钎焊是软钎焊。

软钎焊常用锡铅钎料,适用于受力不大,工作温度低的场合。

76.焊接残余应力变形产生的原因:结构件在焊接以后2产生变形,内部易产生残余应力。

焊接残余应力会增加结构工作的应力,降低结构的承载能力。

焊接时,焊缝被加热,焊缝区应膨胀,但由于焊缝区域周围的金属未被加热和膨胀,所以该部分的金属制约了焊缝区受热的自由膨胀,焊缝产生塑性变形并缩短。

焊缝冷却后,焊缝区域比周围区域短,但是焊缝周围区域并没有缩短,从而阻碍焊缝区域的自由收缩,产生焊接以后工件的变形与应力。

77.低碳钢的焊接:焊接性良好,焊接时没有淬硬、冷裂倾向。

78.铸铁的焊接:铸铁碳含量高,塑性低,焊接性差。

铸铁焊接容易产生裂纹。

79.焊接时,为什么对焊接区进行保护?有哪些保护措施?答:防止空气进入熔池,减少焊缝金属中的氧、氮含量、氧含量增加,焊缝的强度、硬度、塑性、韧性下降。

相关文档
最新文档