基础知识的试题 人教版高一数学必修1测试题(含答案)
人教版高中数学必修一综合测试题与答案
人教版高中数学必修一测试题一一、选择题<本大题共10小题,每小题5分,共60分> 1.已知A ={x |y =x ,x ∈R },B ={y |y =x 2,x ∈R },则A ∩B 等于 〔A.{x |x ∈R }B.{y |y ≥0}C.{<0,0>,<1,1>}D.∅2. 函数2x y -=的单调递增区间为 〔A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 3. 下列四个函数中,在<0,+∞>上为增函数的是 〔A.f <x >=3-xB.f <x >=x 2-3xC.f <x >=-11+xD.f <x >=-|x |4.函数f <x >=x 2+2<a -1>x +2在区间<-∞,4]上递减,则a 的取值范围是 〔A.[-3,+∞]B.<-∞,-3>C.<-∞,5]D.[3,+∞>5..当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是 〔.A.y =x 2-2x +2<x x 2-2x +2<x ≥1> C.y =x 2-2x <x <1> D.y =x 2-2x <x ≥1>7. 已知函数f <x >=12++mx mx 的定义域是一切实数,则m 的取值范围是 〔A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤4 8.某商场对顾客实行购物优惠活动,规定一次购物付款总额:<1>如果不超过200元,则不给予优惠;<2>如果超过200元但不超过500元,则按标价给予9折优惠;<3>如果超过500元,其500元内的按第<2>条给予优惠,超过500元的部分给予7折 优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是 〔A.413.7元B.513.7元C.546.6元D.548.7元9. 二次函数y =ax 2+bx 与指数函数y =<ab >x的图象只可能是 〔 10. 已知函数f <n >=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f <8>等于 〔A.2B.4C.6D.711、如图,设a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx ,y=dx 在同一坐标系中的图象如图, 则a,b,c,d 的大小顺序〔 A 、a<b<c<d B 、a<b<d<c C 、b<a<d<c D 、b<a<c<d12.已知0<a<1,b<-1,函数f<x>=a x +bA.第一象限;B.第二象限;C.第三象限;D.第四象限二、填空题<本大题共4小题,每小题5分,共20分> 13.已知f <x >=x 2-1<x <0>,则f -1<3>=_______. 14.函数)23(log 32-=x y 的定义域为______________15.某工厂8年来某产品产量y 与时间t 年的函数关系如下图,则:①前3年总产量增长速度增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产; ④第3年后,这种产品年产量保持不变. 以上说法中正确的是_______.16. 函数y =⎪⎩⎪⎨⎧>+≤<+≤+1)( 5-1),(030),(32x x x x x x 的最大值是_______. 三、解答题。
基础知识的试题人教版高一数学必修1测试题(含答案)
精品文档
人教版数学必修 I 测试题 高一数学 ( 答案卷 )
一、选择题(本大题共 12 道小题,每小题 5 分,共 60 分。在每小 题给出的四个选项中,只有一项是符合题目要求的) 题 1 2 3 4 5 6 7 8 9 10 11 12 号 答 DDCDB A A B CB A C 案
二、填空题(本大题共 4 道小题,每小题 5 分,共 20 分。把答案
ab
ab 。
b
.
证
明
:
由
----------------------------------------4
ab b a
则
左
边
-----------------------------------------6
a
ab
a bb
aa
知
:
分
=
分
精品文档
b
b aa
a
a
a b ab
b
a
bb
---------------------------------------- 10
填在题中横线上)
13、 2, ; 14 、 1,0 ; 15 、 1 ;
16
、
2。
三、解答题(本大题共 6 道小题,共 70 分。解答应写出文字说明、
证明过程或演算步骤) 17 、(本小题满分 10 分)设 A
4,2 a 1,a2 , B a 5,1 a,9 ,已知
AI B 9 ,求 a 的值。
解
:
a1
ab
ab
ab
分
右
边
-------------------------------------12
人教版高一数学必修1测试题(含答案)82211
人教版数学必修I 测试题一、选择题(共10题,每题5分,共50分)1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =I ( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 M N I ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、在32521,2,,y y x y x x y x x===+=四个函数中,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个5、如果1,1-<>b a ,那么函数()b ax x f +=的图象在( ) A 第一、二、三象限 B 第一、三、四象限 C 第二、三、四象限 D 第一、二、四象限6、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N U 等于( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}7、若21025x =,x 10则等于 ( )A 、15-B 、5C 、150D 、16258、函数2(01)x y a a a =+>≠且图象一定过点 ( ) A (0,1) B (0,3) C (1,0) D (3,0) 9、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )10、若()22x x f =,则()3f = ( )A 、9B 、49 C 、94 D 、3 二、填空题(共4题,每题4分,共16分)11、函数xx y -++=211的定义域为 。
人教版高一数学必修一-第一章练习题与答案
精品文档集合与函数基础测试一、选择题 ( 共 12 小题,每题 5 分,四个选项中只有一个符合要求).函数 y== x2-x+10在区间(,)上是()1624A.递减函数B.递增函数C.先递减再递增D.选递增再递减.x y22.方程组{x y 0 A.{( 1,1)}的解构成的集合是()B.{1,1}C.(1,1)D.{1}3.已知集合 A a,b,c},下列可以作为集合 A 的子集的是()={A. aB. {a,c}C. {a, e}D.{a, b,c,d}4.下列图形中,表示M N 的是()M NN M M N MNAB C D5.下列表述正确的是()A.{ 0}B.{ 0}C.{ 0}D.{ 0}6、设集合 A={x|x 参加自由泳的运动员 } ,B={x|x 参加蛙泳的运动员 } ,对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为()A.A∩BB.A BC.A∪BD.A B7. 集合 A={x x2k, k Z } ,B={x x2k1, k Z } ,C={ x x 4k1, k Z } 又a A,b B, 则有()A. ( a+b) AB. (a+b)BC.(a+b) CD. (a+b)A、B、C任一个)8.函数 f (x)=- x2+( a-) x+2在(-∞,)上是增函数,则 a 的范围是(214A. a≥5B.a≥3C.a≤3D.a≤- 59. 满足条件 {1,2,3}M{1,2,3,4,5,6}的集合 M的个数是()A. 8B. 7C. 6D.510.全集 U={1,2 ,3,4 ,5 ,6 ,7,8},A={3 ,4,5} ,B={1 ,3 ,6} ,那么集合 { 2,7 ,8}是()A.ABB. A BC.C U A C U BD.C U A C U B11. 下列函数中为偶函数的是()A.y x B. y x C. y x2D. y x31 12. 如果集合 A={ x | ax 2+ 2x + 1=0}中只有一个元素,则 a 的值是()A.0B.0 或1C.1D.不能确定二、填空题 ( 共 4 小题,每题 4分,把答案填在题中横线上 ).函数 f (x)=× -| x|的单调减区间是.13223___________.函数 y= 1 的单调区间为___________.14x+115. 含有三个实数的集合既可表示成{ a,b,1},又可表示成{ a2, a b,0},则a2 0 0 3 b2 0 0 4a .。
高一数学必修1基础试题附答案
高一数学必修1基础试题附答案高一数学必修1基础试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x =4kπ+π,k∈Z},则A.A BB.B AC.A=BD.A∩B=∅3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q ⊆(P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9)D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=a x+b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为A.18B.30C. 272D.286.函数f (x )=3x -12-x(x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是A.2B.-2C.-1D.-37.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为A.3x -2B.3x +2C.2x +3D.2x -38.下列各组函数中,表示同一函数的是A.f (x )=1,g (x )=x 0B.f (x )=x+2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎪⎨⎪⎧x x ≥0-x x <0D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0,则f {f [f (-3)]}等于 A.0 B.π C.π2D.9 10.已知2lg(x -2y )=lg x +lg y ,则x y 的值为A.1B.4C.1或4D. 14或4 11.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则A.a ≥1B.a >1C.0<a ≤1D.a <112.若定义在区间(-1,0)内的函数f (x )=log 2a (x+1)满足f (x )>0,则a 的取值范围是A.(0,12 )B.(0,⎥⎦⎤21C.( 12,+∞) D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x 2+ax +a -2>0的解集为R ,则a可取值的集合为__________.14.函数y =x 2+x +1 的定义域是______,值域为__ ____.15.若不等式3ax x 22->(13)x +1对一切实数x 恒成立,则实数a 的取值范围为___ ___. 16. f (x )=]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为_____ _. 17.函数y =12x +1的值域是__________. 18.方程log 2(2-2x )+x +99=0的两个解的和是______.第Ⅱ卷一、选择题二、填空题13 14 1516 1718三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(C U A)∩(C U B).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f(x)=aa2-2(a x-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.高一数学综合训练(一)答案一、选择题二、填空题13. 14. R [32,+∞) 15. -12 < a < 3216. (-2,-1] 17. (0,1)18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).(C U A )∩(C U B )={x |-1<x <1}20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)又∵f (2)=1 ∴f (8)=3(2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16)∵f (x )是(0,+∞)上的增函数 ∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <16721.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力. 【解】 (1)当每辆车月租金为3600元时,未租出的车辆数为 3600-300050 =12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050 )(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x-4050)2+307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 元22.已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.考查函数最值及对数函数性质.【解】 令t =log 41x ∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412, ∴t ∈[-1,-12]∴f (t )=t 2-t +5=(t -12 )2+194,t ∈[-1,-12] ∴当t =-12 时,f (x )取最小值 234当t =-1时,f (x )取最大值7.23.已知函数f (x )=a a 2-2(a x-a -x )(a >0且a ≠1)是R 上的增函数,求a 的取值范围.考查指数函数性质.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2则f (x 2)-f (x 1)= aa 2-2(a 2x -a 2x --a 1x +a 1x -)=aa 2-2(a 2x -a 1x )(1+211x x a a⋅)由于a >0,且a ≠1,∴1+211x x a a >0 ∵f (x )为增函数,则(a 2-2)( a 2x -a 1x )>0于是有⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x x x x a a a a a a 或,解得a > 2 或0<a <1 . . .。
人教版高中数学新教材必修第一册综合测试题(基础,含多选题)
人教版高中数学新教材必修第一册综合测试题第一部分选择题(共60分)一、单项选择题:(共8小题,每题5分,共40分. 在每个小题给出的四个选项中,只有一项是符合题目要求的 )1.设集合{}1,2,3,4,5U =,,{1,3,5}A =,{2,3,5}B =,则()U C A B 等于( )A .{3, 5}B .{ 4 }C .{1,2,4}D .∅2.设x∈R,则“05x <<” 是“02x <<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.在下列四组函数中,()f x 与()g x 表示同一函数的是( )A .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩B .2(),()x f x x g x x==C .()1(),()1()f x x x g x x x =+∈=+∈R ZD .2(),()f x x g x ==4. 若c b a >>,则下列不等式成立的是( )A .22a b >B .a c b c +>+C .bc ac >D .bc ac <5. 函数(){}1,1,1,2f x x x =+∈-的值域是 ( ).A ( 0,2,3 ) .B 03y ≤≤ .C {}0,2,3 .D []0,36.若不等式x 2+kx +1<0的解集为空集,则k 的取值范围是( )A .[-2,2]B .(-∞,-2]∪[2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞)7. 若0,0>>y x ,且28x y +=,则xy 的最大值是( )A .2B .4C .8D .16 8.甲、乙两同学同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均分别相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定 二、 多项选择题: (共4题,每题5分,共20分. 在每个小题给出的四个选项中,有多个项符合题目要求. 全部选对的得5分,选对但不全的得3分,未选或有选错的得0分)9.已知集合}01|{2=-=x x A ,则下列式子表述正确的有( )A .A ∈1B .A ∈-}1{C .A ⊆φD .A ⊆-}1,1{ 10.下列命题为真命题的是( )A .2,x R x x ∀∈≥B .0,0a b a ==若则C .0,0a a b ==若则D .菱形的对角线互相平分 11. 以下四个不等式, 其中是a 1<b1成立的充分条件的是( ) A .a<0<b B .b<a<0 C .b<0<a D .0<b<a ,12.下列结论正确的是( ) A. 1+2x x ≥ B. 11+3-1x x x >时,的最小值是 C. +y=4x 时,y x 的最大值4 D. 0 a ≠时,2212a a ≥+第二部分非选择题(90分)三.填空题: (本题共4个小题,每小题5分,共20分)13. 函数11y x =-的定义域是__________. 14. 满足{}{}1,21,2,3B =的集合B 的个数为15. 不等式225413x x x -+<-+的解集是__________.16. 已知函数()32,f x x =+若()8,f a = 则实数a 的值是_________.四、解答题(共70分,解答必须写出必要的文字说明、证明过程或演算步骤)(){}{}17. 10 121,25P x a x a Q x x =+≤≤+=-≤<分若(1)当a =3时,求(C R P) ∩Q ;(2)0,a P Q a >⊆若,求的取值范围18.(12分) 已知命题P: 2,2,x R x x m ∀∈≠-+命题q: 2,210x R x x m ∃∈+--=(1) 写出命题P ⌝(2)若命题P 为假命题,命题q 为真命题,求实数m 的取值范围19.(12分) 已知集合{}{}2A 22,-8+15=0x a x a B x x x =-≤≤+=(1)当3a =时,A B 判断集合与的关系;(2)x B ∈若“”是x A ∈“”的充分不必要条件,求实数a 的取值范围20.(12分) 已知两个正实数,x y 满足141x y+= (1) 求4y x +的最小值; (2) 若不等式234y x m m +≥-恒成立,求实数m 的取值范围21.(12分)已知函数2()4f x x ax =-++,()5g x x =-+.(1)当1a =时,比较()()f x g x 与的大小;(2)若不等式()()f x g x ≥的解集包含[1,2],求a 的取值范围。
人教版高一数学必修一第一章练习题与答案
word 格式-可编辑-感谢下载支持集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.M N A M N B N M C M N D18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3).所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。
人教版高中数学必修一综合测试题及答案
人教版高中数学必修一测试题一一、选择题(本大题共10小题,每小题5分,共60分)1。
已知A={x|y=x,x∈R},B={y|y=x2,x∈R},则A∩B等于( )A。
{x|x∈R} B。
{y|y≥0}C.{(0,0),(1,1)} D。
2. 函数的单调递增区间为()A.B.C.D.3. 下列四个函数中,在(0,+∞)上为增函数的是()A。
f(x)=3—x B。
f(x)=x2-3xC。
f(x)=- D.f(x)=—|x|4。
函数f(x)=x2+2(a-1)x+2在区间(—∞,4]上递减,则a的取值范围是()A.[—3,+∞]B.(—∞,—3)C。
(—∞,5]D。
[3,+∞)5。
当时,在同一坐标系中,函数的图象是( ).6y=x2y=x27。
已知函数f(x)=的定义域是一切实数,则m的取值范围是()A.0〈m≤4 B。
0≤m≤1 C.m≥4 D.0≤m≤48。
某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠。
某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是( )A.413.7元B。
513.7元C。
546。
6元D。
548。
7元9。
二次函数y=ax2+bx与指数函数y=()x的图象只可能是()10. 已知函数f(n)=其中n∈N,则f(8)等于()A。
2 B.4 C.6 D.711、如图,设a,b,c,d〉0,且不等于1,y=ax ,y=bx ,y=cx ,y=dx 在同一坐标系中的图象如图,则a,b,c,d的大小顺序()ArrayA、a〈b<c〈dB、a〈b〈d〈cC、b<a<d<cD、b〈a<c〈d12.已知0〈a〈1,b<—1,函数f(x)=a x+bA。
人教版最新高一数学必修一复习测试题及参考答案
——教学资料参考参考范本——人教版最新高一数学必修一复习测试题及参考答案______年______月______日____________________部门人教版最新高一数学必修一复习测试题及参考答案(附参考答案)班级 姓名一、选择题。
(共10小题,每题5分) 1、设集合A={xQ|x>-1},则( )∈A 、B 、C 、D 、 A ∅∉2A ∉2A∈{}2⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( ) A 、{1,2} B 、{1,5} C 、{2,5} D 、{1,2,5}3、函数的定义域为( )21)(--=x x x fA 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。
3,0.37,,㏑0.3,的大小顺序是( )A 、 70。
3,0.37,,㏑0.3,B 、70。
3,,㏑0.3, 0.37C 、 0.37, , 70。
3,,㏑0.3,D 、㏑0.3, 70。
3,0.37,6、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.052那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为( ) A 、1.2 B 、1.3 C 、1.4 D 、1.57、函数 的图像为( )2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 8、设(a>0,a ≠1),对于任意的正实数x ,y ,都有( )()log a f x x =A 、f(xy)=f(x)f(y)B 、f(xy)=f(x)+f(y)C 、f(x+y)=f(x)f(y)D 、f(x+y)=f(x)+f(y)9、函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )A 、b>0且a<0B 、b=2a<0C 、b=2a>0D 、a ,b 的符号不定10、某企业近几年的年产值如图,则年增长率最高的是( )(年增长率=年增长值/年产值)A 、97年B 、98年0099989796(年)2004006008001000(万元)C 、99年D 、00年二、填空题(共4题,每题5分) 11、f(x)的图像如下图,则f(x)的值域为 ; 12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、计算:+= ;2391- ⎪⎭⎫ ⎝⎛326415、函数的递减区间为212log (45)y x x =--三、解答题(本大题共6小题,满分75分,解答题写出必要的文字说明、推演步骤。
人教版高一数学必修1测试题(含答案)
人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个 6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a << C 、102a << D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x <,则3x -的值是 ; 16、100lg 20log 25+= 。
人教版高一数学必修一第一章练习题与答案
集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B. 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a M N A M N B N M C M N D=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。
人教版高中数学必修一综合测试题(很基础,很全面)
人教版高中数学必修一综合测试题(考试时间为120分钟,满分150分)一、 选择题(本大题共12小题,每小题5分,共60分)1.已知集合{2,1,0,1,2}A =--,{|22,}B x x x N =-<<∈,则AB =( ) A. {1,0}- B. {0,1} C. {1,0,1}- D. {0,1,2}2.下列图象中表示函数图象的是 ( )A. B. C. D.3、下列函数中,在(0,)+∞上为增函数的是( )。
A 、()3f x x =-B 、2()3f x x x =-C 、1()1f x x =-+ D 、()||f x x =-4.4等于( )A. 16aB. 8aC. 4aD. 2a 5.计算:log 916·log 881的值为( )A. 18B. 118C. 83D. 386.已知函数2()3(0)x f x a a -=+≠,则()f x 的图象过定点( )A.(0,4)B.(2,4)C. (0,3)D. (4,3) 7. 若11221272,,log 327a b c --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A. a b c << B. a c b << C.c b a << D. c a b << 8. 函数2()log ()21x f x x g x -==-与与在同一平面直角坐标系下的图象大( )9.函数()f x = ) A. {}0x x > B. {}1x x > C. {}1x x ≥ D. {}01x x <≤ 10.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是( )A. 3a ≤-B. 3a ≥-C. 5a ≤D. 5a ≥11、已知函数f(x)是R 上的减函数,A (0,1),B (2,-1)是其图象上的两点,那么∣f(x)∣<1的解集的补集是 ( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(∞,0]∪[2,+∞) 12.12R (),f x x ∈定义在上的偶函数满足:对任意的x (]12,0(),x x -∞≠有12)x x -•([]21()()0.)f x f x n N *->∈则当时,有( A.()(1)(1)f n f n f n -<-<+ B. (1)()(1)f n f n f n -<-<+C. (1)()(1)f n f n f n +<-<-D. (1)(1)()f n f n f n +<-<-二、填空题(本大题共4小题,每小题5分,共20分)13、210()20x x f x x x ⎧+≤=⎨->⎩ , , , ,若()10f x = ,则_______x =.14.使不等式31220x -->成立的x 的取值范围是 .15、已知函数3()8f x ax bx =+- ,且f(-2) =10,则f (2 ) =_______. 16.下列命题:①若函数()f x 是一个定义在R 上的函数,则函数h x f x f x 是奇函数; ②函数211x x y x 是偶函数; ②函数12x y -=的图象可由12x y的图象向右平移2个单位得到; ②函数1y x=在区间12,上既有最大值,又有最小值; 则上述正确命题的序号是________②.三、解答题(本大题共6小题,共70分)17.(本题满分10分)已知全集为U=R ,A={22|<<-x x } ,B={1,0|≥<x x x 或} 求:(1)A ⋂B ,(2)A ⋃B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础知识测试人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U A C B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合MN ()A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( )A 、1个B 、2个C 、3个D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+ B 、23x x -- C 、259x x +- D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x =,则10x -等于 ( )A 、15- B 、15C 、150D 、16259、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a << B 、112a << C 、102a <<D 、1a > 10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A、lg 3B、3C、310D 、103二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B,则a的取值范围是 ; 14、函数y =的定义域为 ; 15、若2x<,则3x-的值是 ; 16、100lg 20log 25+=。
三、解答题17、(本小题满分10分)设{}{}24,21,,5,1,9A a a B a a =--=--,已知{}9A B =,求a 的值。
18、(本小题满分10分)判断并证明()21xf x x =+在()0,+∞的单调性。
19、(本小题满分12分)研究函数1lg 1x y x-=+的定义域和奇偶性。
20、(本小题满分12分)已知:0,0a b >>,且baa b =,求证:a a b bba ab -⎛⎫= ⎪⎝⎭。
21、(本小题满分12分)某商品最近30天的价格()f t (元)与时间t 满足关系式()()()18,015,3118,1530,3t t t N f t t t t N ++⎧+≤<∈⎪⎪=⎨⎪-+≤<∈⎪⎩,且知销售量()g t 与时间t 满足关系式 ()()30,030,g t t t t N +=-+≤≤∈,求该商品的日销售额的最大值。
22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log y x的值。
人教版数学必修I 测试题高一数学(答案卷)一、选择题(本大题共12道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4道小题,每小题5分,共20分。
把答案填在题中横线上)13、[)2,+∞ ; 14、(]1,0- ; 15、1- ; 16、 2 。
三、解答题(本大题共6道小题,共70分。
解答应写出文字说明、证明过程或演算步骤)17、(本小题满分10分)设{}{}24,21,,5,1,9A a a B a a =--=--,已知{}9A B =,求a 的值。
解:{}9,99A B A B =∴∈∈且----------------------------------1分有219a -=或29a =,解得:5,3a a ==±或---------------------4分当5a =时,{}{}4,9,25,0,4,9A B =-=-,则有{}4,9A B =-,与题意不相符,∴5a =舍去。
-----------6分当3a =时,{}4,9,5,512A a a =--=-=-,则与B中有3个元素不相符,∴3a =舍去。
------------------8分当3a =-时,{}{}4,7,9,8,4,9A B =--=-,{}9A B = 3a ∴=------10分18、(本小题满分10分)判断并证明()221x f x x =+在()0,+∞的单调性。
解:判断:()221x f x x =+在()0,+∞的单调递增。
--------------------------2分证明:设120x x >>,则有()()2212122212,11x x f x f x x x ==++ ----------------3分()()()()()()2222221221121222221212111111x x x x x x f x f x x x x x •+-•+-=-=+++•+--------5分()()()()()()22121212222212121111x x x x x x x x x x +•--==+•++•+-------------7分120x x >>,12120,0x x x x ∴+>->,又221210,10x x +>+>-----10分()()()()12122212011x x x x xx +•-∴>+•+,即()()120f x f x ->故()221x f x x =+在()0,+∞的单调递增。
19、(本小题满分12分)研究函数1lg 1x y x-=+的定义域和奇偶性。
解:(1) 依题意有:101xx->+,----------------------------------------2分解得:11x -<<-----------------------------------------4分所以,函数1lg 1x y x-=+的定义域为()1,1-(2) 设()1,1x ∈-,则()1,1x -∈-有:()1lg1xf x x+-=--------------------------------------6分111lg lg 11x x x x ---⎛⎫==- ⎪++⎝⎭()f x =-------------------------------------------10分所以函数1lg1xy x-=+为奇函数--------------------------------12分20、(本小题满分12分)已知:0,0a b >>,且baa b =,求证:a a b bba ab -⎛⎫= ⎪⎝⎭。
证明:由b aa b=知:b ab a=----------------------------------------4分 则左边=a a bbaba ab b ⎛⎫= ⎪⎝⎭-----------------------------------------6分a b a b ba aa =⎛⎫ ⎪⎝⎭---------------------------------------- 10分1a a b bbaa--===右边-------------------------------------12分21、(本小题满分12分)某商品最近30天的价格()f t (元)与时间t 满足关系式()()()18,015,3118,1530,3t t t N f t t t t N ++⎧+≤<∈⎪⎪=⎨⎪-+≤<∈⎪⎩,且知销售量()g t 与时间t 满足关系式 ()()30,030,g t t t t N +=-+≤≤∈,求该商品的日销售额的最大值。
解: 设()W t 表示商品甲的日销售额(单位:元)与时间t 的函数关系。
--------1分则有:()()()W t f t g t =•--------------------------------------2分()()()()1830,015,31830,1530,3t t t t N t t t t N ++⎧⎛⎫+•-+≤<∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+•-+≤≤∈ ⎪⎪⎝⎭⎩()()2212240,015,3128540,1530,3t t t t N t t t t N ++⎧-++≤<∈⎪⎪=⎨⎪-+≤≤∈⎪⎩---------------------5分()()()()2213243,015,314248,1530,3t t t N t t t N ++⎧--+≤<∈⎪⎪=⎨⎪--≤≤∈⎪⎩--------------------7分当015,t t N +≤<∈时,易知3t =时,()()max 3243W t W ==--------9分当1530,t t N +≤≤∈时,易知15t =时,()()max 15195W t W ==----11分所以,当3t =时,该商品的日销售额为最大值243元。
------------12分22、(本小题满分14分)已知()()()()22log 4log 1log 5log 21,0,1a a a a x y xy a a +++=+->≠且,求8log y x的值。
解:原方程可变形为: ()()()22log 41log 521a a x y xy ⎡⎤+•+=-⎡⎤⎣⎦⎣⎦ -------------2分可得:()()()2241521x y xy +•+=-222241090x y x y xy ++-+=-----------------------5分得:()()222269440x y xy x y xy -+++-= 即:()()22320xy x y -+-=--------------------------9分易知:32xy x y=⎧⎨=⎩------------------------------------10分所以:12y x =---------------------------------------12分故881log log 32y x ==--------------------------------14分必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A)3个 (B) 4个 (C) 5个 (D) 6个2.已知S={x|x=2n,n ∈Z}, T={x|x=4k ±1,k ∈Z},则 ( ) (A)S ⊂≠T (B) T ⊂≠S (C)S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么PQ 等( )(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R ,则a 的取值范围是 ( )(A)016<≤-a (B)16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B)5 (C)4 ( D)36.函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2]7.函数y=(2k+1)x+b 在(-∞,+∞)上是减函数,则 ( )(A)k>12 (B)k<12 (C)k>12- (D).k<12- 8.若函数f(x)=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤-3 (B)a ≥-3 (C)a ≤5 (D)a ≥39.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D) 121a a ==或10.已知函数f(x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11.函数y = ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1]12.设a,b,c 都是正数,且346a b c ==,则下列正确的是 ( )(A)111ca b =+ (B)221Ca b =+ (C)122Ca b =+ (D)212ca b =+第Ⅱ卷(非选择题,共60分)二、填空题:(每小题4分,共16分,答案填在横线上)13.已知(x,y )在映射 f 下的象是(x-y,x+y),则(3,5)在f 下的象是 ,原象是 。